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Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with
this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face
recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix
for nonlinear dimensionality reduction. Meanwhile, it can successfully avoid the singularity problem by not calculating the matrix
inverse. In addition, in order to make the nonlinear structure captured by the data-dependent kernel consistent with the intrinsic
manifold structure, a manifold adaptive nonparameter kernel is incorporated into the learning process of SKMFA. Experimental
results on three face image databases demonstrate the effectiveness of our proposed algorithm.

1. Introduction

During the past decade, face recognition has been an active
area of research in image processing and computer vision
due to its extensive range of prospective applications, such
as human-computer interface, information surveillance, and
identity authentication. One of the most successful and well-
studied techniques to face recognition is the appearance-
based method. When using appearance-based methods, a
face image of size 𝑛

1
× 𝑛

2
pixels is usually represented by a

vector in an 𝑛
1
× 𝑛

2
-dimensional space. Consequently, the

face images are typically of very high dimensionality, ranging
from several thousands to several hundreds of thousands.
Due to the consideration of the curse of dimensionality,
learning in such high dimensionality in many cases is
computationally expensive and often leads to low recognition
accuracy. One common response to address this problem
is to apply dimensionality reduction techniques to gener-
ate a lower-dimensional equivalence of the original high-
dimensional face image space for the given observations
and targets. Once the high-dimensional face image data is
projected into lower-dimensional feature subspace in which
the semantic structure of the face image space becomes clear,
traditional classification schemes can then be applied. To
this end, principal component analysis (PCA) and linear

discriminant analysis (LDA) [1] are the most well-known
dimensionality reduction techniques.

PCA aims to find a set of mutually orthogonal basis
vectors that capture the global information of the data points
in terms of variance, and the orthogonal basis vectors are
the leading eigenvectors of the data’s total variance matrix
associated with the leading eigenvalues. PCA is optimal in
terms of representation and reconstruction, but not for dis-
criminating one face class from others. Unlike PCA, which is
unsupervised, LDA is a supervised dimensionality reduction
algorithm. LDA aims to find an optimal transformation that
maps the data into a lower-dimensional space that minimizes
the within-class scatter and simultaneously maximizes the
between-class scatter, thus achieving maximum discrimina-
tion. Both PCA and LDA have widely been applied to face
recognition and image retrieval. It is generally believed that,
when they come to solving problems of pattern classification,
LDA-based algorithms outperform PCA-based algorithms
since the former focuses on the most discriminant feature
extraction while the latter achieves simply object recon-
struction [2]. Independent component analysis (ICA) [3] is
another linear subspace analysis method, which separates the
high-order moments of the input data besides the second-
order moments in PCA. However, previous researches
reported that ICA gave the same recognition accuracy as
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PCA, sometimes even a little worse than PCA [4]. In addition,
NMF is also a subspace method which aims to find a parts-
based representation of objects by imposing nonnegative
constraints [5]. However, NMF is an unsupervised learning
method and still focuses on the global geometrical structure
of face image space. Moreover, the iterative update method
for solving NMF problem is computationally expensive. In
summary, the aforementioned algorithms see only the global
Euclidean structure and can not discover the local manifold
structure hidden in the high-dimensional data. In fact, a
number of research efforts have shown that the face images
possibly reside on a nonlinear submanifold hidden in the
face image space [6–13]. Therefore, face representation is
fundamentally related to the problem of manifold learning.

Manifold learning focuses on uncovering the com-
pact, low-dimensional representations of the observed high-
dimensional data that lie on or nearly on a manifold in an
unsupervisedmanner. In order to detect the underlyingman-
ifold structure,manymanifold learning algorithms have been
proposed, such as isometric feature mapping (ISOMAP) [14],
local linear embedding (LLE) [15], and Laplacian eigenmap
(LE) [16]. ISOMAP, a variant of multidimensional scaling
(MDS), aims to perverse global geodesic distances of all pairs
of samples. LLE is based on the assumption that data lying on
a nonlinear manifold can be viewed as linear in local areas,
and it aims to discover the nonlinear structure via locally
linear reconstructions. LE aims to preserve proximity rela-
tionships bymanipulations on an undirectedweighted graph,
which indicates neighbour relations of pairwise data points.
Thus, one of the key ideas of these manifold learning algo-
rithms is the so-called locally invariant idea [17]; that is, the
nearby points are likely to have the similar embedding/labels.
Despite that these manifold learning algorithms have yielded
impressive results on some benchmark artificial data set, they
suffer from the out of sample problem; that is, they yieldmaps
that are defined only on the training data points and how to
evaluate the maps on novel test data points remains unclear.
Therefore, these manifold learning algorithms might not be
optimal in discriminating face images with different seman-
tics, which is the ultimate goal of face recognition. To cope
with the out of sample problem, He and Niyogi [18] applied a
linearization procedure to construct explicit maps over new
samples and proposed locality preserving projection (LPP)
algorithm for manifold learning. LPP is a linearization of
LE, aims to discover the local geometrical structure, and
can be derived by finding the optimal linear approximations
to the eigenfunctions of the Laplace-Beltrami operator on
the manifold. As LPP is unsupervised, it is designed to best
preserve data locality or similarity in the embedding space
rather than good discriminating capability. As a result, the
projected data points of different classes may still mix up
after LPP embedding, which deteriorates the discrimination
performance. In other words, for classification problem such
as face recognition, the local manifold structure itself is not
sufficient. A successful manifold learning algorithm should
have the following two properties: (1) close intraclass pairs
remain close after projection and (2) close but dissimilar
pairs are kept separate after projection. Based on this con-
sideration, Yan et al. [19] recently proposed the marginal

Fisher analysis (MFA) method for manifold learning by
simultaneously utilizing the local manifold structure and the
class label information. The empirical studies in [19] have
shown that MFA is more competitive than LDA and LPP
algorithms on face recognition.

MFA is a supervised learning method. It searches for
the projection directions on which the marginal sample
pairs of different classes are far away from each other while
requiring data points of the same class to be close to each
other. To obtain good generalization capability on testing
samples, one needs a collection of labelled data points to train
MFA. However, in the many practical applications of pattern
classification (such as face recognition), one often faces a
lack of sufficient labelled data, since labelling often requires
expensive human labour and much time. Meanwhile, large
numbers of unlabeled data can be far easier to obtain. Given
the high cost in manually labelling face image data and at
the same time abundant unlabeled face image is often easily
accessible, it is desirable to develop dimensionality reduction
methods that are capable of exploiting both labelled and unla-
beled data. This motivates us to introduce semisupervised
learning [20] into the dimensionality reduction process.

All the early semisupervised learning techniques mainly
focus on semisupervised classifier design [21–25], which aims
to employ a large number of unlabeled data to help build a
better classifier from the labelled data. Recently, the semisu-
pervised learning idea has been successfully applied to feature
selection [26], clustering [27], distance metric learning [28],
and matrix factorization [29]. Particularly, the semisuper-
vised learning idea achieved great successes on various image
analysis tasks. For example, semisupervised discriminant
analysis (SDA) [30] used the consistency assumption; that
is, nearby samples in the feature space or samples on
the same manifold structure are likely to have the similar
embedding/labels. All these approaches demonstrated that
the learning performance can be significantly enhanced if
the consistency assumption is exploited and the unlabeled
data is considered. It is very natural that this idea should also
be considered in semisupervised dimensionality reduction.
However, most of the existing extension algorithms of MFA
fail to take into account the intrinsic manifold structure
revealed by unlabeled data points.

In this paper, we propose a novel semisupervised ker-
nel MFA (SKMFA) algorithm, which takes advantage of
both labelled and unlabeled data for face recognition. The
main idea of our algorithm is to convert the traditional
marginal Fisher analysis (MFA) into a semisupervised kernel
counterpart, which still has no straightforward solution
available in the literature. In addition, for semisupervised
kernel MFA, the kernel function has an essential impact
on the dimensionality reduction performance. Therefore,
we propose to first induce a new manifold adaptive kernel
by employing kernel deformation techniques to incorporate
the manifold structure revealed by unlabeled data into the
nonparameter kernel and then apply semisupervised kernel
MFA to dimensionality reduction tasks by using themanifold
adaptive kernel. Finally, extensive experiments on three
face image databases demonstrate the effectiveness of the
proposed SKMFA algorithm.
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The rest of the paper is organized as follows. In Section 2,
we provide a brief review of marginal Fisher analysis (MFA)
algorithm. Section 3 introduces our proposed semisupervised
kernel MFA (SKMFA) algorithm for face recognition. The
experimental results on face recognition are presented in
Section 4. Finally, we provide the concluding remarks and
suggestions for future work in Section 5.

2. Brief Review of MFA

Marginal Fisher analysis (MFA) [19] is a recently proposed
manifold learning algorithm for dimensionality reduction;
it is based on the graph embedding framework and can
precisely model both intraclass compactness and interclass
separability by jointly considering the local manifold struc-
ture and the label information, as well as characterizing the
separability of different classes with the margin criterion.
Meanwhile, MFA avoids the out of sample problem existing
in traditional manifold learning algorithms by applying a
linearization procedure to construct explicit maps over new
samples.

Given a set of face images {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} ⊂ R𝑝, let 𝑋 =

[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]; there are 𝑐 classes; the 𝑖th face image 𝑥

𝑖
is

associated with a class label 𝑐
𝑖
∈ {1, 2, . . . , 𝑐}. MFA aims to

find a linear transformation 𝑈 ∈ R𝑝×𝑞 that maps each face
image 𝑥

𝑖
(𝑖 = 1, . . . , 𝑛) in the 𝑝-dimensional space to a vector

𝑦
𝑖
in the lower 𝑞-dimensional space by 𝑦

𝑖
= 𝑈

𝑇
𝑥
𝑖
such that

𝑦
𝑖
represents 𝑥

𝑖
well in terms of maximizing the interclass

separability and simultaneously minimizing the intraclass
compactness. The optimal linear transformation of MFA can
be obtained by solving the following maximization problem:

𝑈opt

= argmax
𝑈

𝑆
𝑝

𝑆
𝑐

=argmax
𝑈

∑
𝑖
∑
(𝑖,𝑗)∈𝑃𝑘2

(𝑐𝑖) or (𝑖,𝑗)∈𝑃𝑘2(𝑐𝑗)
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𝑇
𝑥
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−𝑈
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𝑊
𝑝

𝑖𝑗

∑
𝑖
∑
𝑖∈𝑁𝑘1

(𝑗) or 𝑗∈𝑁𝑘1(𝑖)





𝑊
𝑇
𝑥
𝑖
−𝑊

𝑇
𝑥
𝑗







2

𝑊
𝑖𝑗

= argmax
𝑈

𝑈
𝑇
𝑋(𝐷

𝑝
−𝑊

𝑝
)𝑋

𝑇
𝑈

𝑈
𝑇
𝑋 (𝐷 −𝑊)𝑋

𝑇
𝑈

,

(1)

where 𝑆
𝑝

and 𝑆
𝑐
denote the interclass separability and

intraclass compactness, respectively, and their definition, are
as follows:

𝑆
𝑝
= ∑

𝑖

∑

(𝑖,𝑗)∈𝑃𝑘2
(𝑐𝑖) or (𝑖,𝑗)∈𝑃𝑘2(𝑐𝑗)






𝑈
𝑇
𝑥
𝑖
− 𝑈

𝑇
𝑥
𝑗







2

𝑊
𝑝

𝑖𝑗

= 2𝑈
𝑇
𝑋(𝐷

𝑝
−𝑊

𝑝
)𝑋

𝑇
𝑈

𝑆
𝑐
= ∑

𝑖

∑

𝑖∈𝑁𝑘1
(𝑗) or 𝑗∈𝑁𝑘1(𝑖)






𝑊
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−𝑊

𝑇
𝑥
𝑗







2

𝑊
𝑖𝑗

= 2𝑈
𝑇
𝑋(𝐷 −𝑊)𝑋

𝑇
𝑈,

(2)

where 𝑊𝑝

𝑖𝑗
and 𝑊

𝑖𝑗
denote the weighting coefficients of

penalty graph and intrinsic graph defined on the data points,
respectively; 𝑊𝑝

𝑖𝑗
and 𝑊

𝑖𝑗
as well as their corresponding

diagonal matrices𝐷𝑝 and𝐷 are defined as follows:

𝑊
𝑝

𝑖𝑗
= {

1, if (𝑖, 𝑗) ∈ 𝑃
𝑘2
(𝑐
𝑖
) or (𝑖, 𝑗) ∈ 𝑃

𝑘2
(𝑐
𝑗
)

0, otherwise

𝑊
𝑖𝑗
= {

1, if 𝑖 ∈ 𝑁
𝑘1
(𝑗) or 𝑗 ∈ 𝑁

𝑘1
(𝑖)

0, otherwise

𝐷
𝑝

𝑖𝑖
= ∑

𝑗

𝑊
𝑝

𝑖𝑗

𝐷
𝑖𝑖
= ∑

𝑗

𝑊
𝑖𝑗
,

(3)

where 𝑃
𝑘2
(𝑐
𝑖
) denotes a set of data pairs that are the 𝑘

2
nearest

pairs among the set {(𝑖, 𝑗) | 𝑐
𝑖
̸= 𝑐
𝑗
} and 𝑁

𝑘1
(𝑖) denotes the

index set of the 𝑘
1
nearest neighbours of sample 𝑥

𝑖
that are

in the same class.
As can be seen from (1)-(2), the objective function ofMFA

is to look for an optimal transformation matrix 𝑈 such that
nearby data pairs in the same class aremade close and the data
pairs in different classes are separated from each other with
the margin criterion. Therefore, maximizing it is an attempt
to ensure both within-class compactness and between-class
separability. Finally, the transformation matrices 𝑈 of MFA
are the eigenvectors associated with the largest eigenvalues of
the following generalized eigenproblem:

𝑋(𝐷
𝑝
−𝑊

𝑝
)𝑋

𝑇
𝑈 = 𝜆𝑋 (𝐷 −𝑊)𝑋

𝑇
𝑈. (4)

𝑋(𝐷 − 𝑊)𝑋
𝑇 is nonsingular after some preprocessing steps

(such as PCA projection) on 𝑋; thus, the transformation
matrix 𝑈 of MFA can also be regarded as the eigenvectors of
the matrix (𝑋(𝐷 −𝑊)𝑋𝑇)−1𝑋(𝐷𝑝 −𝑊𝑝

)𝑋
𝑇 associated with

the largest eigenvalues.
Despite the success of applyingMFA tomany fields, there

are still some problems that are not properly addressed till
now.

(1) MFA has a singular problem in face recognition,
which stems from the fact that the number of training
images is usually much smaller than the dimension
of each image, a deficiency that is generally known as
singular or small sample size (SSS) problem.

(2) MFA is a supervised learning method; it needs a
collection of labelled data in order to guarantee
good generalization capability on testing samples.
However, for real-world face recognition, it is easy
to obtain a large number of face images while only a
few of them are labelled manually. In this case, purely
supervisedMFA cannot be well trained because of the
lack of sufficient labelled data.

(3) MFA is still a linear technique in nature, so it is
inadequate to describe the complexity of real face
images because of illumination, facial expression, and
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pose variations. Although the nonlinear extension of
MFA through kernel trick has been proposed in [19],
the most commonly adopted kernels are the data-
independent kernels which may not be consistent
with the intrinsic manifold structure revealed by
unlabeled data.

To fully address the above issues, we propose a novel
semisupervised kernel MFA (SKMFA) algorithm for face
recognition in the following section.

3. Semisupervised Kernel MFA Algorithm for
Face Recognition

In the following, we first propose the semisupervised MFA
algorithmwhich can avoid the singular problem and consider
the unlabeled samples to learn the projection matrix for
dimensionality reduction, and then the nonlinear extension
of semisupervised MFA through kernel trick is proposed.
Finally, we discuss how to design manifold adaptive non-
parameter kernel function which can reflect the underlying
geometry of the data.

3.1. Semisupervised MFA. AlthoughMFA can produce linear
discriminating features, the matrices 𝑋(𝐷 − 𝑊)𝑋𝑇 and
𝑋(𝐷

𝑝
− 𝑊

𝑝
)𝑋

𝑇 in the generalized eigenproblem (4) are
often singular because the number of available samples is
smaller than the dimensionality of the samples. In order
to avoid the numerical computational problem caused by
matrix singularity, inspired by the scatter-difference-based
discriminant analysis method [2, 31, 32], we modified the
original objective function of MFA as

𝐽 (𝑈)

= argmax (𝑆
𝑝
− 𝑆

𝑐
)

=argmax(

∑

𝑖

∑

(𝑖,𝑗)∈𝑃𝑘2
(𝑐𝑖) or (𝑖,𝑗)∈𝑃𝑘2 (𝑐𝑗)






𝑈
𝑇
𝑥
𝑖
−𝑈

𝑇
𝑥
𝑗







2

𝑊
𝑝
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−∑

𝑖

∑

𝑖∈𝑁𝑘1
(𝑗) or 𝑗∈𝑁𝑘1 (𝑖)






𝑊
𝑇
𝑥
𝑖
−𝑊

𝑇
𝑥
𝑗







2

𝑊
𝑖𝑗

)

=argmax Tr (𝑈𝑇𝑋(𝐷𝑝−𝑊𝑝
)𝑋

𝑇
𝑈−𝑈

𝑇
𝑋(𝐷−𝑊)𝑋

𝑇
𝑈)

=argmax Tr (𝑈𝑇 (𝑋 (𝐷𝑝−𝑊𝑝
)𝑋

𝑇
−𝑋 (𝐷−𝑊)𝑋

𝑇
)𝑈) .

(5)

Maximizing 𝐽(𝑈) is to find projections such that the close
data points are attracted closer (minimizing the within-class
compactness), while the data pairs in different classes are
simultaneously separated from each other with the margin
criterion (maximizing the between-class separability). So
maximizing 𝐽(𝑈) can be equivalently interpreted asminimiz-
ing the within-class compactness while simultaneously max-
imizing the between-class separability, which is consistent
with the optimal objective of MFA.

In the formulation defined in (5), we have the freedom
to multiply 𝑈 by some nonzero constant. Thus, we addi-
tionally require 𝑈 to be orthonormal vectors, which may
help preserve the shape of the data distribution. This means
that we need to solve the following constrained optimization
problem:

argmax
𝑈

Tr (𝑈𝑇 (𝑋 (𝐷𝑝 −𝑊𝑝
)𝑋

𝑇
− 𝑋 (𝐷 −𝑊)𝑋

𝑇
)𝑈)

(6)

subject to 𝑈𝑇𝑈 = 𝐼, (7)

where 𝐼 is the identity matrix.
It is worth noting that the only differences between the

previous optimization problem and the original optimization
problem of MFA lie in the following: the former involves
a constrained optimization whereas the latter solves an
unconstrained optimization. The motivation for using the
constraint 𝑈𝑇𝑈 = 𝐼 is that it allows us not to calculate the
inverse of the matrix 𝑆

𝑝
or 𝑆

𝑐
, which successfully avoids the

matrix singularity problem existing in the original MFA.
In addition, the original MFA is a supervised learning

technique, which typically requires a large number of train-
ing samples in order to achieve satisfactory performance.
However, for the practical large-scale applications such as
face recognition, one often faces a lack of sufficient labelled
face image data since labelling often requires expensive
human labour and much time. Meanwhile, large numbers of
unlabeled face data can be far easier to obtain due to the rapid
advances of digital camera technology. In this case, purely
supervised dimensionality reduction algorithms cannot be
well trained because of the lack of sufficient labelled data, and
purely unsupervised methods are usually unreliable because
there is no supervision guidance.Thismotivates us to explore
semisupervised learning [20] techniques for dimensionality
reduction. Consequently, to leverage both the labelled and
unlabeled data for dimensionality reduction, we propose the
semisupervised MFA algorithm as follows.

In face recognition, since the number of labelled samples
is small, it is important to consider the unlabeled samples to
learn the projection matrix for dimensionality reduction. In
fact, recent research has found that unlabeled samples may
be helpful to improve the classification performance [33, 34].
In the following, we generalize MFA by introducing new
reconstruction optimizations based on unlabeled samples
and then incorporating them into the whole dimensionality
reduction process, which leads to the semisupervised MFA
algorithm.

Assume that unlabeled samples are attached on the
original data set: 𝑋 = [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑥
𝑛+1
, . . . , 𝑥

𝑛+𝑛𝑢
], where

the first 𝑛 samples are labelled and the remaining 𝑛
𝑢
samples

are unlabeled. For each unlabeled sample data 𝑥
𝑖
(𝑛 + 1 ≤

𝑖 ≤ 𝑛 + 𝑛
𝑢
), as in [12, 15, 33], we assume that all of its

neighbourhoods are linear; that is, each data point can
be optimally reconstructed using a linear combination of
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its neighbours. Hence, our objective is to minimize the
reconstruction error:

argmin
𝑉𝑖𝑗

𝑛+𝑛𝑢

∑

𝑖=𝑛+1





𝜀
𝑖






2

= argmin
𝑉𝑖𝑗

𝑛+𝑛𝑢

∑

𝑖=𝑛+1













𝑥
𝑖
− ∑

𝑛+1≤𝑗 ̸= 𝑖≤𝑛+𝑛𝑢

𝑉
𝑖𝑗
𝑥
𝑗













2

,

(8)

where 𝜀
𝑖
is the reconstruction error for 𝑥

𝑖
and 𝑉

𝑖𝑗
is the

reconstruction coefficient which indicates the contribution of
𝑥
𝑗
to 𝑥

𝑖
. We further constrain ∑

𝑛+1≤𝑗 ̸= 𝑖≤𝑛+𝑛𝑢
𝑉
𝑖𝑗
= 1, 𝑉

𝑖𝑗
≥ 0

on (8). Obviously, the more similar 𝑥
𝑗
is to 𝑥

𝑖
, the larger 𝑉

𝑖𝑗

will be. Hence, we can easily obtain 𝑉
𝑖
= ∑

𝑝
𝐶
−1

𝑖,𝑝
/∑

𝑝,𝑞
𝐶
−1

𝑝,𝑞
,

𝐶
𝑝,𝑞
= (𝑥

𝑖
− 𝑥

𝑝
)
𝑇
(𝑥
𝑖
− 𝑥

𝑞
) is the local Grammatrix, and𝑉

𝑖𝑗
is

the 𝑗th elements of 𝑉
𝑖
, wherein 𝑛 + 1 ≤ 𝑝, 𝑞, 𝑖 ≤ 𝑛 + 𝑛

𝑢
.

Then, we can reconstruct 𝑦
𝑖
(= 𝑈

𝑇
𝑥
𝑖
) from 𝑦

𝑗
(= 𝑈

𝑇
𝑥
𝑗
)

in the low-dimensional feature space by using the obtained
reconstruction coefficient 𝑉

𝑖𝑗
, wherein 𝑛 + 1 ≤ 𝑖, 𝑗 ≤ 𝑛 + 𝑛

𝑢
;

that is,

𝐽 (𝑈) = argmin
𝑈

𝑛+𝑛𝑢

∑
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𝑇
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𝑉
𝑖𝑗
𝑈
𝑇
𝑥
𝑗













2

= argmin
𝑈

Tr (𝑈𝑇𝑋
𝑢
(𝐼 − 𝑉

𝑇
) (𝐼 − 𝑉

𝑇
)

𝑇

𝑋
𝑇

𝑢
𝑈) ,

(9)

where Tr() denotes the trace of matrix, 𝐼 is the identity
matrix, and 𝑋

𝑢
= [𝑥

𝑛+1
, 𝑥
𝑛+2
, . . . , 𝑥

𝑛+𝑛𝑢
] is the data matrix

to represent all unlabeled high-dimensional data samples.
Considering all the samples including both labelled and

unlabeled samples, we obtain the whole optimal objective
function of semisupervised MFA by using (6) and (9):

argmax
𝑈

Tr(
𝑈
𝑇
(𝑋 (𝐷

𝑝
−𝑊

𝑝
)𝑋

𝑇
− 𝑋 (𝐷 −𝑊)𝑋

𝑇
)𝑈

−𝜏𝑈
𝑇
𝑋
𝑢
(𝐼 − 𝑉

𝑇
) (𝐼 − 𝑉

𝑇
)

𝑇

𝑋
𝑇

𝑢
𝑈

)

= argmax
𝑈

Tr

× (𝑈
𝑇
(

(𝑋 (𝐷
𝑝
−𝑊

𝑝
)𝑋

𝑇
−𝑋 (𝐷−𝑊)𝑋

𝑇
)

−𝜏𝑋
𝑢
(𝐼 − 𝑉

𝑇
) (𝐼 − 𝑉

𝑇
)

𝑇

𝑋
𝑇

𝑢

)𝑈)

= argmax
𝑈

Tr (𝑈𝑇𝑀𝑈)
(10)

subject to 𝑈𝑇𝑈 = 𝐼, (11)

where

𝑀 = ((𝑋 (𝐷
𝑝
−𝑊

𝑝
)𝑋

𝑇
− 𝑋 (𝐷 −𝑊)𝑋

𝑇
)

−𝜏𝑋
𝑢
(𝐼 − 𝑉

𝑇
) (𝐼 − 𝑉

𝑇
)

𝑇

𝑋
𝑇

𝑢
)

(12)

and the parameter 𝜏 > 0 is a scaling factor to balance contri-
butions to optimize 𝑈 of labelled samples against unlabeled
samples.

Obviously, the optimal projection matrices 𝑈 of (10) are
the eigenvectors associated with the largest eigenvalues of the
following standard eigenproblem:

𝑀𝑈 = 𝜆𝑈. (13)

Let the column vectors 𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑑
be the solution of (13)

ordered according to eigenvalues 𝜆
1
> 𝜆

2
> ⋅ ⋅ ⋅ > 𝜆

𝑑
. The

optimal projectionmatrix𝑈 is given by𝑈 = [𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑑
].

Then, the embedding of the proposed semisupervised MFA
is as follows:

𝑥 → 𝑦 = 𝑈
𝑇
𝑥, (14)

where 𝑦 is a lower-dimensional representation of the face
image 𝑥.

Since the proposed semisupervised MFA does not need
to compute any matrix inverse for generating discriminating
lower-dimensional features, it successfully avoids the singu-
larity problem existing in the original MFA.

3.2. Nonlinear Generalization of Semisupervised MFA via
Kernel Trick. In this section, we describe how to generalize
our proposed semisupervised MFA to the nonlinear case by
using kernel trick [35]. The main idea of kernel trick is to
map the input data to a feature space through a nonlinear
mapping, where the inner products in the feature space can be
computed by a kernel function without knowing the nonlin-
ear mapping explicitly. Kernel trick has demonstrated huge
success in modelling real-world data with highly complex
nonlinear structures, such as support vector machine (SVM)
[35], kernel linear discriminant analysis (KLDA) [36], and
kernel principal component analysis (KPCA) [37].

To extend semisupervised MFA to the nonlinear case,
which leads to semisupervised kernel MFA, we consider the
problem in a feature space 𝐹 induced by some nonlinear
mapping

𝜑 : R
𝑛
→ 𝐹. (15)

For a proper chosen 𝜑, an inner product ⟨, ⟩ can be
defined in 𝐹, which makes for a so-called reproducing kernel
Hilbert space (RKHS). More specifically,

𝐾(𝑥, 𝑦) = ⟨𝜑 (𝑥) , 𝜑 (𝑦)⟩ . (16)

Holds, where 𝐾(, ) is a positive semidefinite kernel function.
The popular kernel functions include Gaussian kernel, poly-
nomial kernel, and Sigmoid kernel.
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Let 𝑆𝜑𝑝 and 𝑆𝜑𝑐 denote the interclass separability and intr-
aclass compactness in the feature space 𝐹, respectively. We
have

𝑆
𝜑

𝑝
= ∑

𝑖

∑

(𝑖,𝑗)∈𝑃𝑘2(
𝑐𝑖) or (𝑖,𝑗)∈𝑃𝑘2 (𝑐𝑗)






𝑈
𝑇
𝜑 (𝑥

𝑖
) − 𝑈

𝑇
𝜑 (𝑥

𝑗
)







2

𝑊
𝑝

𝑖𝑗

= Tr (𝑈𝑇𝜑 (𝑋) (𝐷𝑝 −𝑊𝑝
) 𝜑

𝑇
(𝑋)𝑈)

𝑆
𝜑

𝑐
= ∑

𝑖

∑

𝑖∈𝑁𝑘1
(𝑗) or 𝑗∈𝑁𝑘1 (𝑖)






𝑊
𝑇
𝑥
𝑖
−𝑊

𝑇
𝑥
𝑗







2

𝑊
𝑖𝑗

= Tr (𝑈𝑇𝜑 (𝑋) (𝐷 −𝑊)𝜑𝑇 (𝑋)𝑈) .
(17)

In addition, the reconstruction optimal function defined
in (9) for unlabeled samples in the feature space can be
transformed as follows:

argmin
𝑈

𝑛+𝑛𝑢

∑

𝑖=𝑛+1













𝑦
𝑖
− ∑

𝑛+1≤𝑗 ̸= 𝑖≤𝑛+𝑛𝑢

𝑉
𝑖𝑗
𝑦
𝑗













2

= argmin
𝑈

𝑛+𝑛𝑢

∑

𝑖=𝑛+1













𝑈
𝑇
𝜑 (𝑥

𝑖
) − ∑

𝑛+1≤𝑗 ̸= 𝑖≤𝑛+𝑛𝑢

𝑉
𝑖𝑗
𝑈
𝑇
𝜑 (𝑥

𝑗
)













2

= argmin
𝑈

Tr (𝑈𝑇𝜑 (𝑋
𝑢
) (𝐼−𝑉

𝑇
) (𝐼−𝑉

𝑇
)

𝑇

𝜑
𝑇
(𝑋

𝑢
)𝑈) .

(18)

By combining (17) and (18) together, both labelled and
unlabeled samples will be considered in obtaining the pro-
jection matrix 𝑈 in the feature space. Then, we obtain
the following optimal objective function of semisupervised
kernel MFA:

argmax
𝑈

(𝑆
𝜑

𝑝 − 𝑆
𝜑

𝑐
− 𝜏

𝑛+𝑛𝑢

∑

𝑖=𝑛+1



𝑈
𝑇
𝜑 (𝑥𝑖) − ∑

𝑛+1≤𝑗 ̸= 𝑖≤𝑛+𝑛𝑢

𝑉𝑖𝑗𝑈
𝑇
𝜑 (𝑥𝑗)



2

)

= argmax
𝑈

Tr(
𝑈
𝑇
𝜑 (𝑋) (𝐷

𝑝
−𝑊
𝑝
) 𝜑
𝑇
(𝑋)𝑈−𝑈

𝑇
𝜑 (𝑋) (𝐷−𝑊)𝜑

𝑇
(𝑋)𝑈

−𝜏𝑈
𝑇
𝜑 (𝑋𝑢) (𝐼 − 𝑉

𝑇
) (𝐼 − 𝑉

𝑇
)
𝑇

𝜑
𝑇
(𝑋𝑢)𝑈

)

= argmax
𝑈

Tr(
𝑈
𝑇
(𝜑 (𝑋) (𝐷

𝑝
−𝑊
𝑝
) 𝜑
𝑇
(𝑋)−𝜑 (𝑋) (𝐷−𝑊)𝜑

𝑇
(𝑋))𝑈

−𝜏𝑈
𝑇
𝜑 (𝑋𝑢) (𝐼 − 𝑉

𝑇
) (𝐼 − 𝑉

𝑇
)
𝑇

𝜑
𝑇
(𝑋𝑢)𝑈

)

= argmax
𝑈

Tr(
𝑈
𝑇
𝜑 (𝑋) ((𝐷

𝑝
−𝑊
𝑝
) − (𝐷 −𝑊)) 𝜑

𝑇
(𝑋)𝑈

−𝜏𝑈
𝑇
𝜑 (𝑋𝑢) (𝐼 − 𝑉

𝑇
) (𝐼 − 𝑉

𝑇
)
𝑇

𝜑
𝑇
(𝑋𝑢)𝑈

) .

(19)

Because any solution𝑈 ∈ 𝐹must lie within the span of all
the samples in 𝐹, there exist coefficients 𝛼

𝑖
(𝑖 = 1, 2, . . . , 𝑛, 𝑛 +

1, . . . , 𝑛 + 𝑛
𝑢
) such that

𝑈 =

𝑛+𝑛𝑢

∑

𝑖=1

𝛼
𝑖
𝜑 (𝑥

𝑖
) = 𝜑𝛼, (20)

where 𝜑 = 𝜑(𝑋) = [𝜑(𝑥
1
), 𝜑(𝑥

2
), . . . , 𝜑(𝑥

𝑛+𝑛𝑢
)] and 𝛼 =

(𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛+𝑛𝑢
)
𝑇.

Following some algebraic formulations, we can rewrite
(19) as follows:

argmax
𝑈

(𝑆
𝜑

𝑝 − 𝑆
𝜑

𝑐
− 𝜏

𝑛+𝑛𝑢

∑

𝑖=𝑛+1



𝑈
𝑇
𝜑 (𝑥𝑖) − ∑

𝑛+1≤𝑗 ̸= 𝑖≤𝑛+𝑛𝑢

𝑉𝑖𝑗𝑈
𝑇
𝜑 (𝑥𝑗)



2

)

= argmax
𝑈

Tr(
𝑈
𝑇
𝜑 (𝑋) ((𝐷

𝑝
−𝑊
𝑝
) − (𝐷 −𝑊)) 𝜑

𝑇
(𝑋)𝑈

−𝜏𝑈
𝑇
𝜑 (𝑋𝑢) (𝐼 − 𝑉

𝑇
) (𝐼 − 𝑉

𝑇
)
𝑇

𝜑
𝑇
(𝑋𝑢)𝑈

)

= argmax
𝛼

Tr(
𝛼
𝑇
𝐾((𝐷

𝑝
−𝑊
𝑝
) − (𝐷 −𝑊))𝐾𝛼

−𝜏𝛼
𝑇
𝐾𝑢 (𝐼 − 𝑉

𝑇
) (𝐼 − 𝑉

𝑇
)
𝑇

𝐾𝑢𝛼
)

= argmax
𝛼

Tr(𝛼𝑇 (
𝐾((𝐷

𝑝
−𝑊
𝑝
) − (𝐷 −𝑊))𝐾

−𝜏𝐾𝑢 (𝐼 − 𝑉
𝑇
) (𝐼 − 𝑉

𝑇
)
𝑇

𝐾𝑢

)𝛼) ,

(21)

where 𝐾 is the kernel matrix defined on the labelled samples
and𝐾

𝑢
is the kernel matrix defined on the unlabeled samples.

By imposing 𝛼𝑇𝛼 = 𝐼 on (21), the problem of semisuper-
vised kernel MFA (SKMFA) is transformed into finding the
leading eigenvectors of matrix (𝐾((𝐷𝑝 −𝑊𝑝

) − (𝐷−𝑊))𝐾−

𝜏𝐾
𝑢
(𝐼 − 𝑉

𝑇
)(𝐼 − 𝑉

𝑇
)

𝑇

𝐾
𝑢
). Since no matrix inverse needs to

be computed, SKMFA successfully avoids the singularity
problem.

Thus, each eigenvector 𝛼 gives a projection function𝑈 in
the feature space. For a new sample data 𝑥, its projection onto
𝑈 in the feature space 𝐹 can be calculated by

⟨𝑈, 𝜑 (𝑥)⟩ =

𝑛

∑

𝑖=1

𝛼
𝑖
⟨𝜑 (𝑥

𝑖
) , 𝜑 (𝑥)⟩

=

𝑛+𝑛𝑢

∑

𝑖=1

𝛼
𝑖
𝐾(𝑥

𝑖
, 𝑥) ,

(22)

where𝐾(, ) is a given kernel function.

3.3. Manifold Adaptive Nonparameter Kernel. Similar to the
other kernel-based methods, the kernel is also at the heart of
semisupervised kernel MFA (SKMFA) algorithm. To achieve
good performance, one has to define a good kernel presen-
tation. However, the most commonly used kernels (such as
Gaussian kernel, polynomial kernel, and Sigmoid kernel) are
all data-independent kernels which may not be consistent
with the intrinsic manifold structure revealed by unlabeled
data points [38]. Meanwhile, these traditional kernels need
complex operation to determine model parameters, which
greatly limits their performance. To tackle the previous
problems, a novel manifold adaptive nonparameter kernel
function is proposed to improve the performance of SKMFA.

Let V be a linear space with a positive semidefinite inner
product (quadratic from) and let 𝑆 : 𝐻 → V be a bounded
linear operator.We define �̃� to be the space of functions from
𝐻 with the modified inner product

⟨𝑓, 𝑔⟩
�̃�
= ⟨𝑓, 𝑔⟩

𝐻
+ ⟨𝑆𝑓, 𝑆𝑔⟩

V
. (23)

It has been shown that �̃� is still a reproducing kernel hilbert
space (RKHS) [38].
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Given the data points 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, let 𝑆 : 𝐻 → R𝑛 be

the evaluation map 𝑆(𝑓) = (𝑓(𝑥
1
), 𝑓(𝑥

2
), . . . , 𝑓(𝑥

𝑛
)). Denote

𝑓 = (𝑓(𝑥
1
), 𝑓(𝑥

2
), . . . , 𝑓(𝑥

𝑛
)), 𝑔 = (𝑔(𝑥

1
), 𝑔(𝑥

2
), . . . , 𝑔(𝑥

𝑛
)).

Note that 𝑓, 𝑔 ∈ V; thus we can obtain

⟨𝑆𝑓, 𝑆𝑔⟩
V
= ⟨𝑓, 𝑔⟩ = 𝑓

𝑇
𝑀𝑔, (24)

where𝑀 is a symmetric positive semi-definite matrix. If we
define

𝐾
𝑥
= (𝐾 (𝑥, 𝑥

1
) , . . . , 𝐾 (𝑥, 𝑥

𝑛
)) , (25)

then it can be shown that the reproducing kernel �̃� in �̃� is of
the following explicit form:

�̃� (𝑥, 𝑧) = 𝐾 (𝑥, 𝑧) − 𝐾
𝑇

𝑥
(𝐼 + 𝑀𝐾)

−1
𝑀𝐾

𝑧
, (26)

where 𝐼 is an identity matrix and𝐾 is the kernel matrix𝐾
𝑖𝑗
=

𝐾(𝑥
𝑖
, 𝑥
𝑗
) in𝐻. The key issue now is the choice of𝑀 and the

original kernel 𝐾, so that the deformation of kernel induced
by the data-dependent norm is motivated with respect to the
intrinsic geometry of the data.

In order to model the intrinsic manifold structure, as
suggested in [16], the graph Laplacian implements a smooth-
ness assumption with respect to an empirical estimate of the
geometric structure of the data. Then we construct a nearest
graph 𝐺(𝑉,𝑊) to reflect the underlying manifold structure
of the data. Each data point 𝑥

𝑖
corresponds to a node in 𝑉,

and an edge is established between two nodes V
𝑖
and V

𝑗
if the

corresponding two data points 𝑥
𝑖
and 𝑥

𝑗
are among 𝑘 nearest

neighbours of each other. Although there are many choices
for the weight matrix on the graph, in order to eliminate the
noise data on the manifold, we adopt the trick proposed in
[39] to construct the nearest graph𝐺. Let us define a distance
function ℎ(𝑥) = ‖𝑥 − 𝑥(𝑘)‖, where 𝑥(𝑘) is the 𝑘th nearest
neighbor of 𝑥 in𝐺. The weight matrix𝑊 associated with𝐺 is
defined as follows:

𝑊
𝑖𝑗
=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

exp(−





𝑥
𝑖
− 𝑥

𝑗







2

max {ℎ2 (𝑥
𝑖
) , ℎ

2
(𝑥
𝑗
)}

) ,

if 

𝑥
𝑖
− 𝑥

𝑗






≤ max {ℎ (𝑥

𝑖
) , ℎ (𝑥

𝑗
)}

0,

otherwise.

(27)

The graph Laplacian is defined as 𝐿 = 𝐷 − 𝑊, where 𝐷
is a diagonal degree matrix given by 𝐷

𝑖𝑖
= ∑

𝑗
𝑊
𝑖𝑗
. The graph

Laplacian provides the following smoothness penalty on the
graph:

𝑓
𝑇
𝐿𝑓 =

𝑛

∑

𝑖=1

(𝑓 (𝑥
𝑖
) − 𝑓 (𝑥

𝑗
))𝑊

𝑖𝑗
. (28)

Thus, we set 𝑀 in (26) to be 𝑀 = 𝐿. Then, the next
central issue is how to select an original input kernel function.
The traditionally used kernel functions often assume certain
parametric forms, but how to choose appropriate parameters
of kernel function is an open problem, thus limiting their

capacity of fitting diverse patterns in real applications. To
cope with that problem, we adopt the following nonparam-
eter kernel function as the original input kernel function in
(26).

Generally, a nonparameter kernel matrix 𝐾 with respect
to 𝑛 patterns can be expressed as 𝐾 = 𝑋𝑇𝑋 ≻ 0, where 𝑋 =
[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
] is the matrix of the embedding of data points

[40]. The regularizer of the kernel matrix 𝐾, which captures
the local dependency between the embedding of 𝑥

𝑖
and 𝑥

𝑗
,

can be defined as

𝑛

∑

𝑖,𝑗=1

𝑊
𝑖𝑗















𝑥
𝑖

√𝐷
𝑖𝑖

−

𝑥
𝑗

√𝐷𝑗𝑗















2

= Tr (𝑋�̃�𝑋𝑇) = Tr (�̃�𝐾) ,

(29)

where �̃� is the normalized graph Laplacian matrix defined as
follows:

�̃� = 𝐼 − 𝐷
−1/2
𝑊𝐷

−1/2
, (30)

where𝑊 is defined in (27) and𝐷 is a diagonal degree matrix
given by𝐷

𝑖𝑖
= ∑

𝑗
𝑊
𝑖𝑗
.

In addition, for the semisupervised learning algorithm,
recent researches have pointed out that the class label infor-
mation is not readily available, while it is easier to obtain
some collection of similar pairwise constraints 𝑆 (known as
“must links,” i.e., the data pairs share the same class label)
and a collection of dissimilar pairwise DS (known as “cannot-
links,” i.e., the data pairs have different class label), which
is often referred to as “side information.” Given 𝑆 and DS,
we construct a similarity matrix 𝑇 ∈ R𝑛×𝑛 to represent the
pairwise constraints; that is,

𝑇
𝑖𝑗
=

{
{
{

{
{
{

{

+1, (𝑥
𝑖
, 𝑥
𝑗
) ∈ 𝑆

−1, (𝑥
𝑖
, 𝑥
𝑗
) ∈ DS

0, otherwise.

(31)

Then, an intuitive principle for kernel learning is that the
kernel entry 𝐾

𝑖𝑗
= 𝐾(𝑥

𝑖
, 𝑥
𝑗
) should be aligned with the side

information 𝑇
𝑖𝑗
as much as possible; that is, the alignment

𝑇
𝑖𝑗
𝐾
𝑖𝑗
of each kernel entry is maximized.

Therefore, following the suggestions in [40], by simul-
taneously considering the side information in (31) and the
regularizer in (29), the nonparameter kernel learning can be
formulated as follows:

min
𝐾≻0

Tr (�̃�𝐾) + 𝐶 ∑

(𝑥𝑖 ,𝑥𝑗)∈𝑆∪DS
𝑙 (𝑇

𝑖𝑗
𝐾
𝑖𝑗
) , (32)

where 𝐶 is the positive constant to control the tradeoff
between the empirical loss 𝑙() and the intrinsic data manifold
and 𝑙() is the square hinge loss function defined as follows:

𝑙 (𝑓) =

1

2

(max (0, 1 − 𝑓))2. (33)

It is worth noting that the previous optimization prob-
lem belongs to a semidefinite programming (SDP) problem,
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which can be solved with standard SDP solver SeDuMi [41].
Once we obtain the optimal nonparameter kernel 𝐾, by
substituting𝑀 (= 𝐿) and 𝐾 into (26), we eventually get the
following manifold kernel function:

�̃� (𝑥, 𝑧) = 𝐾 (𝑥, 𝑧) − 𝐾
𝑇

𝑥
(𝐼 + 𝐿𝐾)

−1
𝐿𝐾

𝑧
. (34)

3.4. The Semisupervised Kernel MFA Algorithm. We sum-
marize our proposed semisupervised kernel MFA (SKMFA)
algorithm as follows.

(1) Calculate the initial nonparameter kernelmatrix𝐾 by
solving the optimization problem (32).

(2) Compute the weight matrix 𝑊 in terms of (27) and
set𝑀 = 𝐿, where 𝐿 = 𝐷 −𝑊 is graph Laplacian and
𝐷 is a diagonal degree matrix given by𝐷

𝑖𝑖
= ∑

𝑗
𝑊
𝑖𝑗
.

(3) Obtain the manifold adaptive kernel �̃� according to
(34).

(4) Find the eigenvector 𝛼 by solving the following
eigenproblem:

(

�̃� ((𝐷
𝑝
−𝑊

𝑝
) − (𝐷 −𝑊)) �̃�

−𝜏�̃�
𝑢
(𝐼 − 𝑉

𝑇
) (𝐼 − 𝑉

𝑇
)

𝑇

�̃�
𝑢

)𝛼 = 𝜆𝛼. (35)

(5) For a new sample data 𝑥, its lower-dimensionality
representation 𝑦 can be calculated by

𝑥 → 𝑦 =

𝑛+𝑛𝑢

∑

𝑖=1

𝛼
𝑖
�̃� (𝑥

𝑖
, 𝑥) , (36)

where �̃�(, ) is the manifold adaptive kernel defined in
(34).

4. Experimental Results

In this section, we investigate the performance of our pro-
posed semisupervised kernel MFA (SKMFA) algorithm and
compare it with other representative dimensionality reduc-
tion algorithms for face recognition. All of our experiments
have been performed on a P4 3.5GHzWindows XPmachine
with 2GB memory.

4.1. Face Databases and Experimental Settings. Three real-
world face databases are used in our experimental study,
including the Yale database, the Olivetti Research Labo-
ratory (ORL) database, and the PIE (pose, illumination,
and expression) database from CMU. In all experiments,
preprocessing to locate the faces was applied. Original face
images were manually aligned, cropped, and then resized to
32 × 32 pixels, with 256 gray levels per pixel. The important
statistics of three databases are summarized next.

The Yale face database (http://cvc.yale.edu/projects/yale-
faces/yalefaces.html) was constructed at the Yale centre for
computational vision and control. There are 15 persons, and
each person has 11 different images. The images demonstrate
variations in lighting condition and facial expression. Some

Figure 1: Face image examples of the Yale database.

Figure 2: Face image examples of the ORL database.

Figure 3: Face image examples of the CMU PIE database.

sample face images after preprocessing of the database are
shown in Figure 1.

In the ORL database (http://www.cl.cam.ac.uk/research/
dtg/attarchive/facedatabase.html), there are 40 persons, and
each person has 10 different images. Some images were cap-
tured at different times and have different variations includ-
ing expression and facial details. Some sample face images
after preprocessing of the database are shown in Figure 2.

The CMU PIE database [42] contains 68 individuals with
41368 face images as a whole. The face images were captured
by 13 synchronized cameras and 21 flashes under varying
poses, illumination, and expressions. In this experiment, we
choose the five frontal poses (C05, C07, C09, C27, and C29)
and illumination indexed as 10 and 13 which contain 10 front
face images for each person. Some sample face images after
preprocessing of the database are shown in Figure 3.

The experimental settings are as follows. We randomly
selected 10 face images per individual to form the training set
for Yale database and 8 face images per individual to form the
training set for ORL and CMU PIE databases.The remaining
images for each person were used for the testing set. In the
training set, we randomly selected 𝑙 (= 2, 4) face images per
individual as labelled data set and the rest as unlabeled data
set for each face image database.

To perform face recognition, we first obtain the face sub-
space by using dimensionality reduction algorithms. Then,
the new face images to be identified are projected onto the
face subspaces. Finally, the nearest-neighbour classifier is
adopted to identify new facial images, where the Euclidean
metric is used as the distance measure.

4.2. Compared Algorithms. Five algorithms, which are com-
pared in our experiments, are listed below:

(1) Marginal Fisher analysis (MFA) [19], which provides
us with a baseline performance of linear dimen-
sionality reduction algorithms. We can examine the
usefulness of kernel approaches by comparing the
performance of kernel Marginal Fisher analysis with
MFA.

(2) Kernel marginal Fisher analysis (KMFA) is proposed
in [19]. This method is the nonlinear extension of
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Table 1: Comparisons of recognition accuracy (in percent) on the
Yale database.

Algorithm Two labels Four labels
MFA 58.4 ± 1.15 68.7 ± 1.27
KMFA 67.8 ± 1.28 76.3 ± 1.33
SDA 69.3 ± 1.49 77.6 ± 1.25
KSDA 70.7 ± 1.32 78.4 ± 1.18
SKMFA 73.6 ± 0.73 81.5 ± 0.69

Table 2: Comparisons of recognition accuracy (in percent) on the
ORL database.

Algorithm Two labels Four labels
MFA 87.5 ± 1.43 91.3 ± 1.41
KMFA 88.4 ± 1.50 93.8 ± 1.38
SDA 87.9 ± 1.56 93.2 ± 1.42
KSDA 88.6 ± 1.37 94.5 ± 1.29
SKMFA 93.4 ± 1.25 96.1 ± 1.07

Table 3: Comparisons of recognition accuracy (in percent) on the
CMU PIE database.

Algorithm Two labels Four labels
MFA 70.2 ± 1.90 81.3 ± 1.76
KMFA 72.5 ± 1.85 83.4 ± 1.72
SDA 73.1 ± 1.63 83.7 ± 1.49
KSDA 75.4 ± 1.27 84.6 ± 0.98
SKMFA 79.3 ± 0.98 85.8 ± 0.75

the traditional MFA via kernel trick. The settings of
KMFA algorithm are identical to the description in
the corresponding paper [19].

(3) Semisupervised discriminant analysis (SDA) is pro-
posed in [30], which is believed to be one of the
most representative semisupervised dimensionality
reduction algorithms.

(4) Kernel semisupervised discriminant analysis (KSDA)
is proposed in [30]. This method is the nonlinear
extension of the traditional SDA via kernel trick. The
settings of KSDA algorithm are identical to the des-
cription in the corresponding paper [30].

(5) Semisupervised kernel marginal Fisher analysis
(SKMFA), as described in Section 3, is a new method
proposed in this paper.

Note that the settings of the compared algorithms are
identical to the description in the corresponding papers. For
our proposed SKMFAalgorithm, there is a parameter 𝜏which
controls the balance contributions of labelled samples against
unlabeled samples. We simply set the value of 𝜏 as 1, and the
effect of parameter selection will be discussed later.

4.3. Face Recognition Results. For each given 𝑙 (= 2, 4), we
average the results over 20 random splits and report themean
aswell as the standard deviation.The face recognition accura-
cies for each algorithm in three face databases are reported on
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Figure 4: Two labelled data for training on the Yale database.
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Figure 5: Four labelled data for training on the Yale database.

the Tables 1, 2, and 3, respectively.The recognition accuracies
versus the variation of reduced dimensions are shown in
Figures 4, 5, 6, 7, 8, and 9. The main observations from the
previous performance comparisons include the following.

(1) Our proposed SKMFA algorithm consistently outper-
forms the MFA, KMFA, SDA, and KSDA algorithms
in terms of recognition accuracy, which indicates that
SKMFA can effectively use the intrinsic nonlinear
manifold structure revealed by unlabeled data to
improve the recognition accuracy.

(2) The KMFA and KSDA algorithms achieve higher rec-
ognition accuracy than their linear counterparts (i.e.,
MFA and SDA), respectively, which suggests the effec-
tiveness of kernel approaches.
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Figure 7: Four labelled data for training on the ORL database.

(3) The semisupervised algorithms (SKMFA, KSDA, and
SDA) achieve higher recognition accuracy than the
supervised algorithm (MFA), which demonstrates
that these semisupervised algorithms can effectively
utilize only a few labelled samples to predict the labels
of the unlabeled samples.

(4) The recognition accuracies of SDA and KMFA are
almost similar. For some databases, SDA outperforms
KMFA, while KMFA is better than SDA for other
databases. A possible explanation is as follows: KMFA
is only a supervised nonlinear algorithm (not a semi-
supervised algorithm), while SDA is only a semisu-
pervised linear algorithm (not a nonlinear algo-
rithm). Thus, it is hard to evaluate whether nonlinear
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Figure 8: Two labelled data for training on the CMU PIE database.
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Figure 9: Four labelled data for training on the CMU PIE database.

extension with kernel trick or semisupervised infor-
mation is more important for recognition.

(5) Although KSDA and KMFA belong to kernel-based
nonlinear manifold learning algorithm, KSDA per-
forms better than KMFA. The possible explanation is
that KSDA can utilize a large number of unlabeled
data aswell as relatively limited labelled data for better
discrimination ability.

(6) Although KMFA and SKMFA are the nonlinear
extensions of MFA via kernel trick, KMFA performs
much worse than SKMFA. This is because KMFA
adopts the commonly used data-independent kernel
which may not be consistent with the intrinsic mani-
fold structure of face images.
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Figure 10: The performance of SKMFA varies with the parameter 𝜏
on the Yale database.

(7) Our proposed SKMFA algorithm achieves much
better performance than the MFA, KMFA, SDA,
and KSDA algorithms. The main reason could be
attributed to the following fact: first, SKMFA simul-
taneously considers the intraclass geometry and the
interactions of samples from different classes; second,
SKMFA successfully avoids the singularity problem
without calculating the matrix inverse; third, the
manifold adaptive kernel is consistent with the intrin-
sic manifold structure revealed by unlabeled data
points and can effectively capture the nonlinear struc-
ture of face images. Therefore, our proposed SKMFA
algorithm achieves the best performance among the
compared algorithms by simultaneously using the
aforementioned optimal strategies.

4.4. Parameter Selection for SKMFA. The parameter 𝜏 > 0
is an essential parameter in our SKMFA algorithm which
controls the balance contributions of labelled samples
against unlabeled samples. We empirically set it to be 1 in the
previous experiments. In this subsection, we try to examine
the impact of parameter 𝜏 on the performance of SKMFA.
Figures 10, 11, and 12 show how the average performance of
SKMFA varies with 𝜏.

5. Conclusions

In this paper, we have proposed a novel nonlinear algo-
rithm, called semisupervised kernel marginal Fisher analysis
(SKMFA), for face recognition. It can make efficient use
of both labelled and unlabeled data points for nonlinear
dimensionality reduction.The labelled data points are used to
maximize the discriminating power, while the unlabeled data
points are used to reveal the intrinsic manifold structure. In
addition, the manifold adaptive kernel is adopted to further
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Figure 11: The performance of SKMFA varies with the parameter 𝜏
on the ORL database.
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Figure 12: The performance of SKMFA varies with the parameter 𝜏
on the CMU PIE database.

improve the algorithm performance. Experimental results
on three face image databases demonstrate the effectiveness
of our proposed algorithm. Since our proposed SKMFA
algorithm is a general nonlinear dimensionality reduction
algorithm for high-dimensional data, we plan to apply the
algorithm to video and audio classification in the future.
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