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From the nonextensive statistical mechanics, we investigate the chiral phase transition at finite temperature 𝑇 and baryon chemical
potential 𝜇𝐵 in the framework of the linear sigmamodel.The corresponding nonextensive distribution, based on Tsallis’ statistics, is
characterized by a dimensionless nonextensive parameter, 𝑞, and the results in the usual Boltzmann-Gibbs case are recovered when𝑞 → 1. The thermodynamics of the linear sigma model and its corresponding phase diagram are analysed. At high temperature
region, the critical temperature 𝑇𝑐 is shown to decrease with increasing 𝑞 from the phase diagram in the (𝑇, 𝜇) plane. However,
larger values of 𝑞 cause the rise of𝑇𝑐 at low temperature but high chemical potential. Moreover, it is found that 𝜇 different from zero
corresponds to a first-order phase transition while 𝜇 = 0 to a crossover one. The critical endpoint (CEP) carries higher chemical
potential but lower temperature with 𝑞 increasing due to the nonextensive effects.

1. Introduction

Quantum Chromodynamics (QCD) is a basic theory of
describing the strong interactions among quarks and gluons,
the fundamental constituents of matter. More and more
attentions have already been attracted to theQCDphase tran-
sition both theoretically and experimentally [1–8]. Though
experimental studies and lattice Monte-Carlo simulations
have made it possible to research on the phase diagram
quantitatively, there still remains uncertainty at high baryon
density region [9]. Consequently, the phase transition is
also a vital topic in high-energy physics, where the thermal
vacuum created by heavy-ion collisions differs from the one
at zero temperature and chemical potential [7]. In order to
study certain essential features of it, the linear sigma model
has been proposed to illuminate the restoration of chiral
symmetry and its spontaneous breaking [8].

Near the phase transition boundary, one should be cau-
tious when using the Boltzmann-Gibbs (BG) statistics for the
appearance of critical fluctuations due to a large correlation
length [10]. It is of interest to investigate the phase transition

in the formalism beyond conventional BG statisticalmechan-
ics. Recently nonextensive statistics firstly proposed in [11]
has attracted a lot of attention and discussions [12]. In this
formalism, instead of the exponential function, a generalized𝑞-exponential function is defined as [11, 12]

exp𝑞 (𝑥) fl [1 + (1 − 𝑞) 𝑥]1/(1−𝑞) , (1)

where the parameter 𝑞 is called the nonextensive parameter,
which accounts for all possible factors violating assumptions
of the usual BG case. Its inverse function is also listed [11, 12]

ln𝑞 (𝑥) fl 𝑥1−𝑞 − 11 − 𝑞 . (2)

Both of them return to the usual exponential and logarithm
function with 𝑞 → 1.

The purpose of this paper is to clarify the nonextensive
effects on physical quantities of the chiral phase transition
in the generalized linear sigma model. We focus on the
situations where both of temperature and chemical potential
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are not vanished, which then indicates the influence of
the Tsallis distribution on the whole phase diagram in the(𝑇, 𝜇) plane. Whereas the nonextensive parameter 𝑞 is still
a phenomenological parameter [12], not only the case of𝑞 > 1 but also 𝑞 < 1, in this work, is computed. For
comparisons, we have presented discussions on this issue for
finite temperature but vanishing chemical potential [13, 14].
Given the consistency of nonextensive generalizations with
the initial BG approaches, we also list the results of 𝑞 = 1
whichwere investigated [15].We close our researcheswith the
comparisons to the nonextensive Nambu Jona-Lasiniomodel
(𝑞-NJL model) [16, 17] of the critical endpoint (CEP), whose
location is still the hot topic for experiments as well as its
theoretical researches [3, 5].

This paper is organized as follows. In Section 2 we
introduce the theoretical framework, where the nonextensive𝑞-linear sigma model is stated. Their consequences for var-
ious thermodynamic quantities with different nonextensive
parameters, 𝑞, are explored in Section 3; more detailed
discussions on the results are also contained. Section 4 is our
brief summary and outlook.

2. Theoretical Framework

Within the linear sigma model, the chiral effective
Lagrangian with quark degrees of freedom reads [15, 18, 19]

L = 𝜓 [𝑖𝛾𝜇𝜕𝜇 − 𝑔 (𝜎 + 𝑖𝛾5󳨀→𝜏 ⋅ 󳨀→𝜋)]𝜓
+ 12 (𝜕𝜇𝜎𝜕𝜇𝜎 + 𝜕𝜇󳨀→𝜋 ⋅ 𝜕𝜇󳨀→𝜋) − 𝑈 (𝜎, 󳨀→𝜋) ,

(3)

where 𝜓 = (𝑢, 𝑑) stands for the spin-1/2 two flavors’ light
quark fields and the scalar field 𝜎 and the pion field 󳨀→𝜋 =(𝜋1, 𝜋2, 𝜋3) together form a chiral field Φ = (𝜎, 󳨀→𝜋), with its
potential

𝑈(𝜎, 󳨀→𝜋) = 𝜆24 (𝜎2 + 󳨀→𝜋 2 − V2)
2 − 𝐻𝜎. (4)

Considering the obvious symmetry breaking term 𝐻𝜎 = 0,
L is invariant under chiral SU(2)𝐿×SU(2)𝑅 transformations.
The chiral symmetry is spontaneously broken in the vacuum
with the expectation values: ⟨𝜎⟩ = 𝑓𝜋 and ⟨󳨀→𝜋⟩ = 0,
where 𝑓𝜋 = 93MeV is the pion decay constant. By the
partially conserved axial vector current (PCAC) relation [15],
the quantity V2 = 𝑓2𝜋 − 𝑚2𝜋/𝜆2 with the constant 𝐻 = 𝑓𝜋𝑚2𝜋,
where𝑚𝜋 = 138MeV is the pionmass.The coupling constant𝜆2 is fixed as 20 by 𝑚2𝜎 = 2𝜆2𝑓2𝜋 + 𝑚2𝜋, where 𝑚𝜎 = 600MeV
is the sigma mass. Another coupling constant 𝑔 is usually
determined by the requirement of the constituent quarkmass
in vacuum, 𝑀vac = 𝑔𝑓𝜋, which is about 1/3 of the nucleon
mass, leading to 𝑔 ≈ 3.3. [15]

In order to investigate the temperature𝑇 and the chemical
potential𝜇 dependence in thismodel, let us consider a system
of both quarks and antiquarks in the thermodynamical

equilibrium. Here quark chemical potential 𝜇 ≡ 𝜇𝐵/3. And
the grand partition function goes like

Z = 𝑇𝑟 exp [−H − 𝜇N
T

]
= ∫D𝜓D𝜓D𝜎D󳨀→𝜋 exp [∫

𝑥
(L + 𝜇𝜓𝛾0𝜓)] ,

(5)

where ∫
𝑥
≡ 𝑖 ∫1/𝑇
0
𝑑𝑡 ∫
𝑉
𝑑3󳨀→𝑥 with 𝑉 being the volume of the

system.
Thus the grand canonical potential can be obtained

Ω(𝑇, 𝜇) = −𝑇𝑉 lnZ = 𝑈 (𝜎, 󳨀→𝜋) + Ω𝜓𝜓 (6)

with the (anti)quark contribution being

Ω𝜓𝜓 (𝑇, 𝜇) = −]∫ 𝑑3󳨀→𝑝(2𝜋)3 {𝐸 + 𝑇 ln [1 + 𝑒−(−𝜇+𝐸)/𝑇]
+ 𝑇 ln [1 + 𝑒−(𝜇+𝐸)/𝑇]} ,

(7)

where ] = 12 is the internal degrees of freedom of quarks and
𝐸 = √𝑝2 +𝑀2 is the valence (anti)quark energy, with the
mass of constituent (anti)quark defined as

𝑀2 = 𝑔2 (𝜎2 + 󳨀→𝜋 2) . (8)

Here the first divergent term of 𝐸 is absorbed in the coupling
constant in the results which comes from the negative energy
states of the Dirac sea.

It is inadequate to apply naively the BG statistics in
such a system; critical fluctuations of energy and particle
numbers will appear as well as a large correlation. In order
to investigate the phase transition of systems departing from
the classical thermal equilibrium, the nonextensive statistics
[11] are introduced. The so-called Tsallis entropy and density
matrix are given, respectively, as 𝑆𝑞 = 𝑘𝐵𝑇𝑟(𝜌 − 𝜌𝑞)/(𝑞 −1) and 𝜌 = exp𝑞(−𝐸/𝑇)/𝑍𝑞, where 𝑘𝐵 is the Boltzmann
constant (set to 1 for simplicity next), 𝑞 describes the degree
of nonextensivity, and 𝑍𝑞 is the corresponding generalized
partition function.

Recently these generalized statistics have been of great
interest theoretically [20–22] and widely applied in many
fields [23–26]. In the following, we investigate the linear
sigma model within the nonextensive statistics. Firstly we
rewrite the partition function of (5) as

Z𝑞 = 𝑇𝑟 exp𝑞 [−H − 𝜇N𝑇 ]
= ∫D𝜓D𝜓D𝜎D󳨀→𝜋exp𝑞 [∫

𝑥
(L + 𝜇𝜓𝛾0𝜓)] ,

(9)
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where the 𝑞-exponential is seen in (1). Considering the 𝑞-
thermodynamics [27], we have

Ω𝜓𝜓 (𝑇, 𝜇, 𝑞) = −𝑇𝑉 ln𝑞Z𝑞 − 𝑈 (𝜎, 󳨀→𝜋)
= ∑
𝑛

∑
𝑝

{ln𝑞 [𝛽2 (𝐸2𝑛 + (𝐸 − 𝜇)2)]
+ ln𝑞 [𝛽2 (𝐸2𝑛 + (𝐸 + 𝜇)2)]} .

(10)

Before carrying it out, we give out the generalized identities
with respect to 𝑞-sums and integrals

ln𝑞 [𝛽2 (𝐸2𝑛 + (𝐸 ± 𝜇)2)]
= ∫𝛽2(𝐸±𝜇)2
1

𝑑𝜃2
(𝜃2 + (2𝑛 + 1)2 𝜋2)𝑞

+ ln𝑞 [1 + (2𝑛 + 1)2 𝜋2]
(11)

and the generalized sum over 𝑛, in our assumptions,

∑
𝑛

1
(𝜃2 + (2𝑛 + 1)2 𝜋2)𝑞
≈ 1𝜃 (12 − 1

(exp2−𝑞 (𝜃) + 1)𝑞) ,
(12)

where 𝐸𝑛 = (2𝑛 + 1)𝜋𝑇 is used and the index 2 − 𝑞 appears
because of the duality

exp𝑞 (−𝑥) ⋅ exp2−𝑞 (𝑥)
= [1 − (1 − 𝑞) 𝑥]1/(1−𝑞) ⋅ [1 + (𝑞 − 1) 𝑥]1/(𝑞−1) = 1. (13)

Integrating over 𝜃 and dropping terms that are independent
of 𝛽 and 𝜇, we finally obtain

Ω𝜓𝜓 (𝑇, 𝜇, 𝑞) = −]∫ 𝑑3󳨀→𝑝(2𝜋)3 {𝐸
+ 𝑇 ln𝑞 [1 + exp𝑞 (−𝐸 − 𝜇𝑇 )]
+ 𝑇 ln𝑞 [1 + exp𝑞 (−𝐸 + 𝜇𝑇 )]} .

(14)

In our calculations within the mean-field approximation,
we follow [15, 28] where the expectation value of the pion field
is set to zero; 󳨀→𝜋 = 0. By solving the gap equation

𝜕𝜕𝜎Ω𝜓𝜓 (𝑇, 𝜇, 𝑞)󵄨󵄨󵄨󵄨𝜎=𝜎𝑉 = 0, (15)

the value for constituent (anti)quark mass 𝑀 = 𝑔𝜎𝑉
can be determined, which will be also affected by different
nonextensive parameters, 𝑞. Here we have replaced 𝜎 and 󳨀→𝜋
in the exponent by their expectation values in the mean-field
approximation.

With such a 𝑞-thermal effective potential, we then explore
the nonextensive effects on the physical quantities, as well as
the phase transition, in the linear sigmamodel.Thenumerical
results will be shown in the next section.

3. Results and Discussion

In virtue of the fact that there still exist fierce controversies
over the possible interpretations of the nonextensive param-
eter 𝑞, we shall discuss the nonextensive effects in the 𝑞-linear
sigma model for both the 𝑞 > 1 and 𝑞 < 1 case. Meanwhile,
we give out the result of 𝑞 = 1 as the baseline for better
understanding.

It is worthy to note that the value of nonextensive
parameter 𝑞 cannot be much smaller than 1 since, in the
expression of (14), the corresponding generalized exponential

exp𝑞 (−𝐸 + 𝜇𝑇 ) fl [1 − (1 − 𝑞) (𝐸 + 𝜇)𝑇 ]1/(1−𝑞) , (16)

where the part of the base should be larger than 0: 1 − (1 −𝑞)((𝐸 + 𝜇)/𝑇) > 0; namely,

𝑞 > 1 − 𝑇(𝐸 + 𝜇) . (17)

Thus some upper limitation of energy of the integral in (7)
should be given in case of divergence when 𝑞 < 1. On the
other hand, too much smaller values of 𝑞 are not necessary
to be computed physically during our investigation on the
nonextensive effects on the phase transition. Therefore, here
we just list the results of 𝑞 = 1.1, 1.05, 0.95 and 𝑞 = 1 as
baseline.

We start our discussions with presenting in Figure 1 the
resulting thermodynamical potential Ω as a function of 𝑀,
the constituent (anti)quarkmass. Different 𝑞 evidently results
in a large change of the thermodynamical potential which
shows that the effects caused by nonextensivity are quite
strong whether the quark chemical potential vanishes or not.

In Figure 1(a), the potentials with different 𝑞 are shown
for 𝑇 = 148MeV and 𝜇 = 0. Locations of its minimum
become smaller when 𝑞 gets larger. This means that, in
the case of high temperature and low density, correlations
with the nonextensive 𝑞-version shift the chiral condensation
toward smaller 𝑀. On the other hand (in Figure 1(b)), at
low temperature but high density (𝑇 = 40MeV and 𝜇 =286.8MeV), the gap of potential between local (near𝑀 = 0)
and global (far from 𝑀 = 0) vacuum also increases as 𝑞
increases. It is worthy to note that, as seen in Figure 1(b),
different 𝑞 nearly does not affect the position of global
vacuum which should have nothing to do with the model
itself.

It is instructive to plot the 𝑞-effects on the constituent
(anti)quark mass 𝑀 under the temperature dependencies
as well as the chemical potential dependencies, which are
clearly shown in Figure 2. For the 𝑇-dependence (𝜇 = 0),
the values of 𝑀 change continuously with the temperature𝑇, which describes a typical crossover transition, while, for
the 𝜇-dependence (where we set 𝑇 = 40MeV), it shows a
jump over the values of𝑀, demonstrating a first-order phase
transition.

Figure 2(a), at low density, indicates that the temperature
dependence of𝑀 for 𝑞 ̸= 1 is quite similar to the case of 𝑞 = 1,
the usual BG situation. Both the minimum and maximum
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Figure 1: The thermodynamical potentials Ω (cf. (14) and (7)), with respect to the constituent (anti)quark mass𝑀. (a) 𝑇 = 148MeV and𝜇 = 0. (b) 𝑇 = 40MeV and 𝜇 = 286.8MeV. We compare our results using the parameters near the phase boundaries. Both of them are
analysed for 𝑞 = 1.1, 𝑞 = 1.05, and 𝑞 = 0.95 with the case of 𝑞 = 1 as comparisons.
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Figure 2: The constituent (anti)quark mass𝑀 as functions of the temperature 𝑇 at 𝜇 = 0 (a) and the chemical potential 𝜇 at 𝑇 = 40MeV (b)
for different 𝑞as follows: q = 1.1, q = 1.05, and q = 0.95 as well as q = 1.

of 𝑀 keep the same values for different 𝑞. Nevertheless,
the behaviour of all curves tells us that high temperature is
required to restore the chiral symmetry for small 𝑞, which
agrees with the results of [13, 14].

At the same time, for the low temperature case, Fig-
ure 2(b) illustrates the 𝜇-dependence of the constituent
(anti)quark mass in the nonextensive linear sigma model for
different nonextensive parameter 𝑞, which is not done in [13,
14]. One easily observes an analogous pattern characteristic
to the above, while, for the 𝜇-dependence, increasing 𝑞 will
also increase the value of phase transition chemical potential
when 𝑇 = 40MeV is fixed. Moreover, for both of the cases,
it is deserved to be mentioned that only the system near

the chiral phase transition is well affected by nonextensive
statistics.

In statistical physics, the critical properties of a thermo-
dynamic system can be explored by studying the fluctuations
of various observables. Particularly, the fluctuations of the
order parameter probe the order of the phase transition and
the position of a possible critical end point.

Then the negative partial derivative of 𝑀 with respect
to temperature 𝑇 holding chemical potential 𝜇 constant, the
susceptibility𝜒, is also investigated in this nonextensive linear
sigma model, which describes the fluctuation of constituent
(anti)quark mass. From the results seen in Figure 3, one can
expect that, at the low density (𝜇 = 0), the location of peak
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of 𝑞 with the vicinity of the 𝑞-dependent CEP and the low temperature part of the curves enlarged in the inset. For more details, the dashed
line stands for crossover transition and the solid one the first-order transition. CEPs are shown as star points.

of susceptibility 𝜒, as well as its own value, moves to the
lower values of temperature𝑇 for larger 𝑞.This indicates that,
with larger 𝑞, the critical temperature 𝑇𝑐 gets smaller, which
supports the fact that the nonextensive parameter 𝑞 describes
the departure of system from the conditions of BG situation.

Here we add a few remarks to better understand the
results. Nonextensive dynamics develop the linear sigma
model through the (anti)quark number distribution func-
tions.These functions are connected with the thermal poten-
tial Ω𝜓𝜓(𝑇, 𝜇, 𝑞) of (14), which modifies the fluctuations
of fermions. The 𝑞-dependent chiral condensation can be
obtained after solving out the gap equation in (15). From
Figure 2(a), we can see that its shape with respect to 𝑇

is strongly affected by the nonextensive parameter 𝑞. More
specifically, 𝑞 introduces differences of system itself from
the usual BG one which decrease the values of critical
temperature 𝑇𝑐, seen in Figure 3.

In order to explore the chiral phase transition in the 𝑞-
linear sigma model more specifically, we also present the
phase diagrams (seen in Figure 4) based upon the analysis
above. It is easily seen that, indeed, at high temperature
and low density region, it exhibits a crossover transition
in the (𝑇 − 𝜇) plane for different nonextensive parameters
of 𝑞, with smaller nonextensive parameter 𝑞 expanding the
relative values of critical temperature and chemical potential.
Meanwhile, a first-order phase transition is shown at low
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temperature but high density region. And all the critical lines
correspondingly develop differently, where larger 𝑞 increases
the position of 𝑇𝑐 at the same 𝜇𝑐.

As for the critical endpoint (CEP), which is located
between the two kinds of phase transition, larger 𝑞 occurs
at higher chemical potential but lower temperature, which is
also seen in the results of 𝑞-NJLmodel [16, 17].This is because
systems from fewer particles will encounter a larger value of𝑞, whose phase transition takes place with higher number
density in turn.

4. Summary and Outlook

To summarize, we have calculated the nonextensive ther-
modynamics of the chiral phase transition in the linear
sigma model, to account for the sensitivity of the mean-
field theory of the linear sigma model to the departure from
the usual BG statistics. By the 𝑞-version, we have obtained
generalized relations of the grand canonical potential Ω, the
chiral condensation𝑀, and susceptibility 𝜒. Before that, we
also analysed the values of nonextensive parameter 𝑞 and
reasonably considered the cases of 𝑞 = 1.1, 1.05, 0.95 as well
as 𝑞 = 1.

Furthermore, we have investigated two scenarios, 𝜇 ̸= 0
and 𝜇 = 0, respectively, which, as mentioned, correspond
to different physical situations: a first-order and a crossover
transition. For the studies of 𝜇 = 0, it is found to be in
agreement with the results obtained in [13, 14]. Besides, we
discover that different values of 𝑞 only influence the quantities
near the phase boundary. This also proves that it is valuable
and desirable to discuss the nonextensive effects on the chiral
phase transition.

As expected, the observed nonextensive effects of both
the potential Ω and the mass 𝑀 lead to the fact that
higher values of 𝑞 shift all to an earlier state with other
parameters fixed. In other words, the internal divergence
from the classical thermal equilibrium really impacts the
chiral phase transition. This is more illuminated in the phase
diagrams of (𝑇, 𝜇) plane correspondingly. The CEP (see
Figure 4) reveals a clear variation with different nonextensive
parameters of 𝑞, namely, holding higher chemical potential
but lower temperature with 𝑞 increasing, which agrees with
[16, 17]. As for the critical line in the diagram, as shown
in Figure 4, 𝑞-effects derive different trends of it on the
first-order and crossover phase transitions, whose physical
mechanism needs from us more attention and investigations
next.

Finally, it is worthy to mention that since CEP is still
indistinct experimentally, our work may provide a possible
intensive study of locating the CEP in high-energy physics
[6]. Meanwhile, by comparing the results with experimental
data, our researches could be of help to deeply understand the
physical explanation of the Tsallis nonextensive parameter 𝑞,
which is also what we will pay attention to in the future.
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