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We deal with the design problem of minimum entropy # , filter in terms of linear matrix inequality (LMI) approach for linear
continuous-time systems with a state-space model subject to parameter uncertainty that belongs to a given convex bounded
polyhedral domain. Given a stable uncertain linear system, our attention is focused on the design of full-order and reduced-order
robust minimum entropy %, filters, which guarantee the filtering error system to be asymptotically stable and are required to
minimize the filtering error system entropy (at s, = co0) and to satisfy a prescribed # ., disturbance attenuation performance.
Sufficient conditions for the existence of desired full-order and reduced-order filters are established in terms of LMISs, respectively,
and the corresponding filter synthesis is cast into a convex optimization problem which can be efficiently handled by using standard
numerical software. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design

method.

1. Introduction

Estimation is the process of inferring the value of a quantity
of interests from indirect, inaccurate, and uncertain obser-
vations [1]. State estimation of dynamic systems with both
process and measurement noise inputs is a very important
and challenging problem in engineering applications. In
the past decades, quite a few attention has been devoted
to estimation methods that are based on the minimization
of the variance of the estimation error, that is, the well-
known Kalman filtering approach [2, 3]. Unfortunately, it
is recognized soon that the performance of Kalman filter
can deteriorate significantly when the process parameters
are subjected to relatively small modeling errors. In order to
cope with this problem, over the past few years interest has
been devoted to the design of robust estimators. There are
essentially two approaches to the robust estimation problem.
The first is robust &, filtering, which minimizes the upper
bound of the estimation error variance for all possible
parametric uncertainties under the assumption that the noise

processes have known power spectral densities [4, 5]. In many
practical situations, however, we may not be able to have
exactly known information on the spectral densities of the
noise processes. In such cases, an alternative is to reformulate
the estimation problem in an % _ filtering framework, which
has been well recognized to be most appropriate for systems
with noise input whose stochastic information is not precisely
known. It minimizes the worst-case energy gain from the
noise inputs to the estimation error [6-8]. There are many
results reported on the problem of # , filtering; for example,
it has been addressed for linear systems [9], linear systems
with uncertain parameters [10, 11], delay systems [6, 12], and
stochastic systems [8]. Although the # , filter is known to be
less sensitive to modeling errors than 7, filter, it is generally
so conservative as to lead to a large intolerable estimation
error variance when the system is driven by white noise
signals.

Similar to %, control problem, in the # ., filtering
problem [13-17], the family of filters that satisfy a filtering
error system with an # ' -norm bound is characterized by



alinear fractional transformation of a “ball in # ;" and then
a natural question is which element of this ball to choose.
One choice that has been considered in a closely related
problem in mathematics is to choose that which minimizes
an entropy integral; that is, the filter is well selected such that
not only the filtering error system is asymptotically stable and
the # .,-norm of its transfer function is below a prescribed
level, but also the entropy of the filtering error system at
infinity is minimized. This kind of optimal filters is referred
to as minimum entropy # ., filters in the present paper. In
fact, minimum entropy 7, filtering provides a means of
trading off some of the features of other filtering problems,
namely, %, filtering and # ., filtering. As for the minimum
entropy #, control problem, there are many important
results that have been reported in the literature; for example,
controllers which minimize the entropy of the closed-loop
transfer function have been studied extensively for linear
time-invariant (LTI) systems, both in the continuous and
discrete-time cases [18-20]. Minimum entropy control for
time-varying systems has been investigated in [21]. To the
best of our knowledge, however, there is not any result
reported on minimum entropy %, filtering problem in the
literature; research in this area should be important and
challenging; this motivates us to carry out the present study.

In this paper, we make an attempt to investigate the
design of minimum entropy 7, filters by using linear
matrix inequality (LMI) approach for linear continuous-
time systems with a state-space model subject to param-
eter uncertainty that belongs to a given convex bounded
polyhedral domain. Given a stable uncertain linear system,
our attention is focused on the design of full-order and
reduced-order robust minimum entropy # ., filters, which
guarantee the filtering error system to be asymptotically
stable and are required to minimize the filtering error system
entropy (at s, = 00) as well as to satisfy a prescribed 7,
disturbance attenuation performance. Sufficient conditions
for the existence of desired full-order and reduced-order
filters are established in terms of LMIs, respectively, and
the corresponding filter synthesis is cast into a convex opti-
mization problem which can be efliciently handled by using
the well-known interior-point algorithms [22]. A numerical
simulation example is provided to show the usefulness and
effectiveness of the proposed design method.

The rest of this paper is organized as follows. In Section 2,
the minimum entropy 7, filtering problem is formu-
lated. Section 3 presents our main results of the full-order
and reduced-order minimum entropy # ., filters design.
Section 4 provides an illustrative example. Finally, conclu-
sions are drawn in Section 5.

Notations. The notation used here is fairly standard except
where otherwise stated. A” represents the transpose of A; R"
and R™ denote, respectively, the n dimensional Euclidean
space and the set of all n x m real matrices. the notation
P > 0 means that P is a real symmetric and positive definite
matrix; trace(P) represents the trace of P; diag{F,,F,,...}
stands for a block-diagonal matrix whose diagonal blocks are
given by F,, F,, .. .. I and 0 represent identity matrix and zero
matrix; | - | refers to the Euclidean vector norm and | - ||,
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denotes the &, norm of a differential signal; The signals that
are square integrable over [0, 00) are denoted by Z,[0, c0)
with the norm | - ||,; the symbol * in a matrix means that
the corresponding term of the matrix can be obtained by
symmetric property.

2. Problem Formulation

Consider the following linear time-invariant (LTI) system

(2):

% (t) = Ax () + Bw (t),
(Z): 9y @) =Cx(t) + Dw(t), 1)
Z(t) = Lx (1),

where x(t) € R" is the state vector; y(t) € R™ is the
measured output; z(f) € R? is a linear combination of the
state variables to be estimated; w(t) € R’ is the disturbance
input which belongs to £,[0,00); A, B, C, D, and L are
constant real matrices of appropriate dimensions, where L is
a known matrix and A, B, C, D are unknown matrices such
that the system matrix

e[t )

belongs to a given polytope & described by

9%*?|?:Z}Aj?j;z;lj:1,/\j20}; (3)

that is, any admissible system matrix & can be written as
an unknown convex combination of n vertices &, j
1,2,...,n,, given by

S 2 -
“(¢ o) )

where A, B;, Cj, and D, j = 1,2,...,n, are given matrices.
Clearly, n, = 1 corresponds to the case where the system (%)
is perfectly known.

Before formulating the problem of this paper, we first give
some definitions and existing results of the minimum entropy
problem. Consider the following LTT system (IT):

[5(6) = Ax(6) + Ba (1),
(I : {y () = Lx (1), ©)

where y(t) is the output; the other notations are defined as in
(1), and let G denote its transfer function.

Definition 1 (entropy at s, € (0,00)). Let G € RZ, and
y > 0 be a real scalar such that |G|, < y. Then the entropy
of G at s is defined by

2 roo
I (Gsyssy) 2 _;’_n L)O In|det (T - 76" (j@) G (ja))|

do.

50
X3 2
Spt+ @

(6)
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When s, — 00, we obtain the entropy at infinity of the
system, which has the following definition.

Definition 2 (entropy at infinity). Let G € L, andy > 0
be a real scalar such that |G|, < y. Then the entropy of G at
infinity is defined by

F (Gs y;00)
(7)

2

B _2V_n Lo In|det (I - 6" (j@) G (j@))| de.

It is well known that for LTT system (II) in (5), we have
the following results for the #°, optimization problem:

||G||§ = trace (BTQB) R (8)
where Q = Q" > 0 is the solution to the Lyapunov equation
ATQ+QAa+1L'L=o. 9)

In fact, Q is just the controllability Gramian.

Now, considering the # ., optimization problem of LTI
system, we knew that |G|, < y if there exists a stabilizing
solution P = P* > 0 to the algebraic Riccati equation

A"P+PA+y?PBB'P+L"L =0, (10)

and it is easy to prove that any P solving (10) overbounds the
controllability Gramian Q; that is, P > Q. To evaluate the
entropy cost, we define the following auxiliary cost.

Definition 3 (auxiliary cost). Let G € < andy > Obea
real scalar such that |G|, < y. Then the auxiliary cost with
G is defined by

J (G;y) 2 trace (BTPB) , (11)

where P is a positive symmetric matrix with the smallest
possible maximum singular value among all solutions of the
algebraic Riccati equality (10).

The following lemma gives the equivalence between
the auxiliary cost and the entropy defined in (7) and (11),
respectively, which plays a key role in deriving our main
results subsequently.

Lemma4 (see [20]). LetG € RL, andy > 0 be a real scalar
such that |G|l o, < y. Then the entropy equals the auxiliary cost;
that is,

I (Gsy;00) = 7 (Gsy). (12)

Moreover, according to the result in [22], the minimum
entropy # ., optimization problem for the LTI system (IT)
can be formulated as follows:

. R),
Pg)l)erLOtrace (R) (13)

subject to

ATp+pPA PB LT
* -y’ 0 | <0,
* * —I (14)
T
[—R B P] <0,
*x =P

The objective of this paper is to design a full-order (or
reduced-order) minimum entropy # ', filter the system (Z)
in (1) of the following form:

s\ [x®O =A@+ By (), %(0)=0,
(2): {z ()= Lz (1), )

where X(t) € R* is the filter state vector, A ;€ Rka, B ;€

RF™ and C, € RT* are filter parameters to be determined
later. In the case where k = n, the filter will be referred to as a
full-order filter and as a reduced-order filter when k < n.

Augmenting the model of (1) to include the state of the
filter (), we obtain the filtering error system as

<. JE®) = AE(t) + Bw (t),
(%): {e(t) ~TE®). 16)

where £(t) 2 [xT(OFT D], e(t) = 2(t) - 2(t) and

a

— A 0 ~ B _
A:[ ] Bé[ ] L[l -L,].
B;C Ay BD [ /]

17)

Our aim in this paper is to determine the matrices A,
By, and L f of the full-order (or reduced-order) minimum

entropy ¥, filter (£) in (15) such that the filtering error
system (2) in (16) is asymptotically stable with a prescribed
X ., disturbance attenuation level y > 0 and a guaranteed
minimum entropy at infinity; that is, J(E;y;00) is mini-
mized for a given scalar y > 0 (where E is defined as the
transfer function of the filtering error system (2) in (16)).

3. Main Results

3.1 Full-Order Robust Filter Design. In this section, we will
first study the design of a full-order filter. In order to pave the
way for deriving the robust filter, initially we consider the case
where the system matrix & is perfectly known; that is, n, = 1.
We first give the following result which will play a key role in
deriving our subsequent results. Since the result can be easily
obtained according to the analysis in Section 2, we omit the
proof.



Theorem 5. The filtering error system (%) in (16) is asymptoti-
cally stable with an o, disturbance attenuation level y > 0
and a guaranteed minimum entropy, if there exist matrices
P > 0 and R > 0 such that the following optimization problem
has feasible solution:

P>0, R>r0r’1}&r})BPLftrace (R), (18)
subject to
ATp+PA PB LT
* —yZI 0|<0, (19)
* * =1
-R B'p
[ N _P] <0. (20)

Notice that the inequalities constraints of (19)-(20) are
not convex on the decision variables P, A £ Bp and L £
In what follows, we will present the design method of
the minimum entropy # ., filter, and give the following
result.

Theorem 6. Consider the system (X) with perfectly known
system matrix G. There exists a full-order minimum entropy
o, filter of the form of (15) such that the filtering error system
(2) in (16) is asymptotically stable with an ¥, disturbance
attenuation level y > 0 and a guaranteed minimum entropy,
if there exist matrices % > 0 and 7" > 0 and matrices &/ ¢,
By, and L ¢ such that the following optimization problem has
feasible solution:

min trace (R),
0,750, 1, B 1, L (R (21
subject to
UA+ATU+ B C+C B oA+ ATV +C' B UB+BD LT
T T
* Ay+dy 7B+ %D -Z5
* * —yZI 0
* * * -1

<0,
(22)
-R B"u + D?%f? By + D?%?
* ~9 7 <0. (23
* * -

Moreover, a desired full-order minimum entropy 7 ., filter can
be computed from

A Bl . [z ' ol[d, &
[LJ{ of]:[ 0 1] [Effc of]‘ (24)

Proof. According to Theorem 5, P is nonsingular if the
optimization problem of (18)-(20) has feasible solutions since
P > 0. Now, partition P as

2 Pl P3
paff 2], -
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where P, and P, are n X n symmetric positive definite matri-
ces. Without loss of generality, we assume that P; is nonsin-
gular. To see this, let the matrix Q £ P + aW, where « is a

positive scalar and
& 0 I S Ql Q3
wello]ee[R )l e

* 0
Observe that, since P > 0, we have Q > 0 for « > 0 in
a neighborhood of the origin. Thus, it can be easily verified
that there exists an arbitrarily small « > 0 such that Q,
is nonsingular and inequalities (19)-(20) are feasible with P
replaced by Q and such that the objective function of (18)
will be increased only by an arbitrarily small quantity. Since
Q5 is nonsingular, we thus conclude that there is no loss of
generality to assume the matrix P; to be nonsingular.
Define the following matrices which are all nonsingular:

I 0
re|

a a -1 T
0P{1P3T]’ u2p, 7:2pP'P, (27)

'Q(f 'ggf 2 P 0 Af Bf P2_1P3T 0 (28)
gf 0 0 I Lf 0 0 Il

Performing congruence transformations to (19)-(20) by
diag(T, I, I) and diag(I, T'), respectively, we have

rT’ATpr + rTPAT 17PB TTLT
* - 0 |<0, (29)
* * -1
-R B'pr
[ . —FTPF] <0. (30)
Considering (17) and (25)-(28), we have
— UA+ RB,C o —  [%B+%,D
T 2 f f Tpp s f
FPAF‘[%A+93fc df]’ rPB_[%B+9?fD]’
T A |U V =
FPI‘:[* %], Ir=(L -2;.
(31

Substituting (31) into (29)-(30) yields (22)-(23), respectively.
On the other hand, (28) is equivalent to

Ay Be] _ [Pyt o] [y Bs][PTP, 0
L; 0 o 1|7 o 0 I

_ -1 _ _
_{(B"R) 7" 0 [ﬂf %f] [PSTPZ o]‘
0 I11Zy 0 0 I

(32)

Note that the filter matrices of (15) can be written as (32),
which implies that P;"P, can be viewed as a similarity
transformation on the state-space realization of the filter and,
as such, has no effect on the filter mapping from y to Z.
Without loss of generality, we can set P; TP, = I and thus
obtain (24). This completes the proof. O
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Now, we will consider the design of a full-order robust
filter. To this end, consider the system (Z) in (1) and the
uncertainty domain & in (3). According to the previous
arguments, we have the following result.

level y > 0 and a guaranteed minimum entropy, if there exist
matrices % > 0 and 7" > 0 and matrices o ;, B, and
Zy such that, for j = 1,2,...,n,, the following optimization
problem has a feasible solution:

Theorem 7. Consider the system (X) with system matrix & € min trace (R), 3
D. There exists a full-order minimum entropy  , filter of U070, 1, B L s (33)
the form of (15) such that the filtering error system (%) in (16)
is asymptotically stable with an ., disturbance attenuation  subject to
T T 5T T T 5T T
UA;+ AU+ BCi+C By Ay +Aj7+$j=%’f UB;+%:D; L .
* A+ oy 7Bj+BD; -Z; <0,
* * —yZI 0
* * * -1 (34)
T T T gT T 5T
R B;%+D;%; B;7 +D;RB
N _ — <0.
* * -V

Moreover, a desired full-order minimum entropy % ., filter can
be computed from (24).

Proof. Employing the same arguments as in the proof of
Theorem 6, it follows that the optimization problem of (33)-
(34) is equivalent to

min

trace (R),
P>0,R>0,A;, By, L, (R) (35)

subjectto j=1,2,...,n,,

j
* T 0
* * =1

ZTP+PZj PB; ZT]
07

(36)

=T

R
* =P

where A i and B ; are as in (17) with A, B, C, and D replaced

by Aj, Bj, Cj, and D, respectively.

Now, in view of the convexity of the uncertainty domain
and considering that the inequalities (36) are affine in the
matrices Aj, B;, Cj, and D, we have the result that the
optimization problem of (35)-(36) is equivalent to that of
(18)-(20) with system matrix & € 2. This completes the
proof. O

3.2. Reduced-Order Robust Filter Design. In this section, we
will consider the design of reduced-order robust filter, that
is, the case where the order of the filter k is smaller than
the order # of the original system model. As the former, we
first consider the case where the system matrix & is perfectly
known, that is, n; = 1, which have the following result.

Theorem 8. Consider system (X) with perfectly known system
matrix . There exists a reduced-order minimum entropy F
filter of the form of (15) such that the filtering error system

() in (16) is asymptotically stable with an ., disturbance
attenuation level y > 0 and a guaranteed minimum entropy,
if there exist matrices M/l > 0 and N > 0 and matrices & ¢,
By, and L ; such that the following optimization problem has
feasible solution:

min trace (R),
M0N0, (B L s (R) (37)

subject to

0y, Hdp+A'HN+C' By MB+HBD L'

* dyp+dy N H'B+BD -Z
2
* * -y°I 0
* * * -1 (38)
<0,

-R BT + DT%§ B' %W + DT BT

* - M —FZN <0, (39)
* * -
where K = O(fi))((l){xk] and T1,, = MA + A" +

HKRB fC + C?%};% T Moreover, a desired reduced-order
minimum entropy # ., filter can be computed from

A N R A B
Ly 0 0 I]|Z r 0
Proof. The proof is along the same lines as in the proof of
Theorem 6. According to Theorem 5, P is nonsingular if the
optimization problem of (18)-(20) has feasible solutions since
P > 0. Now, partition P as

!

0¢1-kyxk

where P, € R™ and P, € R¥* are symmetric positive
definite matrices and P, € R**. Without loss of generality,



we assume that P, is nonsingular; to see this, let the matrix
@ 2 P + a7/, where « is a positive scalar and

2 Onxn ‘% & @1 @3
W_[ * kak]) @_[* @2]’
42)
Q
02| @ ]
3 [O(n—k)xk

With the same principle as in the proof of Theorem 6, it can
be seen that there exists an arbitrarily small & > 0 such that
@, is nonsingular and (18)-(20) have feasible solutions with
P replaced by @; thus, we can conclude that there is no loss of
generality to assume the matrix P, to be nonsingular.

Define the following matrices:

MEP, N 2PPP], (43)

=, I 0
F‘[o PfPZ]’

iRt i

= L (49
Zr 0 0 IJ[L; 0] 0 I

Performing congruence transformations to (19) and (20) by
diag(f, I, 1) and diag(1, ), respectively, we have

[TATPT +T"PAT T"PB T'L"

* —*T 0 |[<0, (45)
* * -1
-R B'PT
Considering (17) and (41)-(44), we have
T\ HAv B Cod) |
—r MB+ H B D
TpB 2 f 47
b B [WT%TB+%fD]’ “
<ro=as | M KN == 4
T PF:[* " ] If2[L -2,
Substituting (47) into (45)-(46), we obtain (38)-(39), respec-
tively.
The remainder of the proof follows along the same lines
as in the proof of Theorem 6. O

Now, considering the design of reduced-order robust
filter, we give the following result without proof, which can
be obtained by employing the same techniques used as those
in Theorems 7 and 8.

Theorem 9. Consider the system (X) with system matrix & €
D. There exists a reduced-order minimum entropy I o, filter of
the form of (15) such that the filtering error system () in (16)
is asymptotically stable with an J ., disturbance attenuation
level y > 0 and a guaranteed minimum entropy, if there exist
matrices M > 0 and N > 0 and matrices o ;, B, and
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L such that, for j = 1,2,...
problem has feasible solution:

, g, the following optimization

min trace (R),
M0, 150,50 1, B, F (R) (48)

subject to

My, Hedy+A\HN +C[B; MBj+HBD; L'

* o+ gf} N H"B; + BD; —3}"

* * 7)/21 0

* * * —I

<0,
—R Bj M +D;BH" B{HN +D;RB;
* - - FZN <0,
* * s
(49)

where L, 2 MA; + ATM + HB,C; + CLBLH" and H
is defined in (38). Moreover, a desired reduced-order minimum
entropy ¥ ., filter can be computed from (40).

4. Numerical Example

In this section, we present an illustrative example to demon-
strate the effectiveness of the proposed algorithm. Consider
the linear continuous-time system (%) in (1) with parameter
matrix & belonging to polyhedral domain &, and assume
n, = 3, then the system data &, (j = 1,2,3) are given as
follows:

[-23 02 -03] 0.6
A, =|-04 06 0.0 |, B,=|03],
| 00 05 -1.3] -0.9
C, =[1.0 03 1.0], D, =02,
[—25 0.0 0.6 ] -0.4
A,=100 -13 -02], B,=| 06 |,

|02 05 -1.6] -0.3 |
(50)
C,=[04 12 -07], D, =0.8,
-1.6 0.5 -0.2 -0.1
A;=|03 -16 02 |, By=|-03],
02 0.0 —-0.6 0.6
C,=[03 -1.5 08], D; = -0.5,

L=[03 0.5 0.8].

First, we consider the full-order filter design; solving the LMIs
condition in Theorem 7 by applying the well-developed LMI
Toolbox in the MATLAB environment directly, we obtain that
the minimum y is y* = 0.4666, the minimum entropy of
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0.08
0.07 F 1!
0.06 [ i
0.05 |
0.04 ! .
0.03 |
0.02

State responses of filter

0.01 |

-0.01

-0.02
0

FIGURE 1: States of the designed full-order filter.

Error response

-0.8

0 5 10 15 20 25 30
t(s)

FIGURE 2: Filtering error of the full-order filtering.

the filtering error system is 7 (E;y*; 00) = 0.3618 (where E
denotes the transfer function of filtering error system), and

—-0.3015 -0.0948 -0.0196

Ay =1-0.3450 -1.0629 -0.6874 |,
-0.2279 -0.4217 -0.4166
0.0125 (51)
By =|-0.569% |,
—-0.2754

L= [-0.3007 -0.5002 —0.8002].

With A, = 0.7, A, = 0.1, and A; = 0.2 in (3), the states
of the full-order designed filter are given in Figure 1, where
the initial condition is [1.0 —0.5 —1.0]", and the exogenous
disturbance input w(t) is given as w(t) = 1/(0.5+ 1.8¢), ¢t > 0.
Figure 2 shows the error response of e(t).

Now, we consider the reduced-order filter design, and two
cases of such filters are considered.

0.02

0.01

(=}

| |
e 2
o o
I

|
o
=3
@

State responses of filter

| |

o o
o [}
o3 =

-0.06 |

-0.07

0 5 10 15 20 25 30
t(s)

FIGURE 3: States of the designed reduced-order filter (with the order
of k =2).

-0.1

—-02 F

-03

-0.4

Error response

-0.5

-0.6 -

-0.7

-0.8

0 5 10 15 20 25 30
t(s)

FIGURE 4: Filtering error of the reduced-order filtering (with the
order of k = 2).

Case 1. Set k = 2; that is, the order of the reduced filter is
k = 2; solving the LMIs condition in Theorem 9, we obtain
that the minimum y is y* = 0.5069, the minimum entropy of
the filtering error system is .7 (E; y*; 00) = 0.9401, and

Af

_[—1.9483 0.5354 B. = 0.6662
~ 105302 -0.1546 " 7 1-0.1850

] NG
L =[1.1058 -0.3003].

Under the same conditions as in the full-order filter design,
the states of the designed reduced-order filter are given in
Figure 3. Figure 4 shows the error response of e(t).

Case 2. Set k = 1; that is, the order of the reduced filter is
k = 1; by solving the LMIs condition in Theorem 9, we obtain



0.02

0.01

State responses of filter
I I I
f=] (=} f=]
S [=] (=}
w [ S} —

-0.04

-0.05

—0.06 . . . . .
0 5 10 15 20 25 30

t(s)

FIGURE 5: States of the designed reduced-order filter (with the order
ofk=1).

-0.1r

=02

=03

—-04

Error response

-0.5

-0.6

-0.7

-0.8

0 5 10 15 20 25 30
t(s)

FIGURE 6: Filtering error of the reduced-order filtering (with the
order of k = 1).

that the minimum y is y* = 0.5148, the minimum entropy of
the filtering error system is F(E; y*; 00) = 0.8677, and

Ay =-1.8368, By =0.4853, Ly=12617. (53)
The states and the filtering error of the designed reduced-

order filter are given in Figures 5 and 6, respectively.

5. Conclusion

In this paper, the robust minimum entropy %, filter has
been designed for linear continuous-time systems with poly-
topic parameter uncertainty. Sufficient conditions have been
established for the existence of general full- and reduced-
order minimum entropy # ., filters in terms of LMIs, which
guarantee the filtering error system to be robustly asymptoti-
cally stable and to have a prescribed 7, performance as well
as a guaranteed minimum entropy. The filler design could

Mathematical Problems in Engineering

be cast into a convex optimization problem and a numerical
example has been provided to demonstrate the effectiveness
of the proposed design method.
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