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Two different methods for deriving the density and isobaric heat capacity of liquids in the subcritical pressure range, from the speed
of sound, are recommended. In each method, corresponding set of differential equations relating these properties is solved as the
initial boundary value problem (IBVP). The initial values are specified at the lowest pressure of the range and the boundary values
along the saturation line. In the first method, numerical integration is performed along the paths connecting the Chebyshev points
of the second kind between theminimumandmaximum temperature at each pressure. In the secondmethod, numerical integration
is performed along the isotherms distributed in the same way, with the temperature range being extended to the saturation line
after each integration step. The methods are tested with the following substances: Ar, N

2
, CO
2
, and CH

4
. The results obtained

for the density and isobaric heat capacity have the average absolute deviation from the reference data of 0.0005% and 0.0219%,
respectively. These results served as the initial values for deriving the same properties in the transcritical pressure range up to the
pressure approximately twice as large as the critical pressure. The results obtained in this pressure range have respective deviations
of 0.0019% and 0.1303%.

1. Introduction

The relations between the thermodynamic speed of sound
(i.e., the mechanical disturbance of a small amplitude and
a low frequency) and other thermodynamic properties (e.g.,
the density and heat capacity) comprise the set of nonlinear
partial differential equations of the second-order (Trusler
[1]). A general solution to this set of equations is available only
for dilute imperfect gases (i.e., gases at low pressures) where
the pressure effect on density may be satisfactorily described
by the virial expansion truncated after the second virial
coefficient, which may be obtained from the speed of sound
through a model of the intermolecular potential energy.
While the virial expansion does not work when applied to
liquids (Allen and Tildesley [2]), it is still possible to obtain
a particular solution if appropriate initial/boundary values
are available from corresponding direct measurements (e.g.,
volumetric and caloric). In an open literature one can find
several different approaches for deriving the thermodynamic
properties of liquids (e.g., the density, heat capacity, isother-
mal compressibility, isentropic compressibility, and isobaric
thermal expansivity) from the speed of sound. The majority

of them are based on numerical integration of corresponding
differential equations connecting these properties (Muringer
et al. [3] and Sun et al. [4–6]). Other approaches include
an iterative method of calculation (Petitet et al. [7]), a grid
algorithm (Khasanshin et al. [8]), and a heuristic approach
(Scalabrin et al. [9]).

Deriving the density and heat capacity of liquids from
the speed of sound is usually performed by solving the set
of differential equations, which relates these properties, as
the initial value problem (IVP) for the set of ordinary dif-
ferential equations. The initial values are usually specified at
the lowest pressure of the range considered (Benedetto
et al. [10]). This approach is applicable only to rectangular
𝑝-𝑇 domain, that is, the one where the temperature range
is constant across the entire pressure range (e.g., the super-
critical pressure range). Since the IVP is highly sensitive to
the initial values and since the experimental uncertainty of
direct measurement of these properties is decreasing with
increasing the pressure, it is preferable to specify them
at pressure as close as possible to the atmospheric one.
However, by decreasing the lowest pressure of the range
the temperature range between a minimum temperature
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and that at the saturation also decreases. This may be
partly overcome by imposing the initial values at the highest
pressure of the range and performing the integration down
to the lowest pressure along lines having similar shape to
that of the saturation line. While this approach may give
satisfactory results (Bijedić andNeimarlija [11]), it may not be
suitable for substances with relatively high critical pres-
sures.

In this paper an attempt is made to reconcile these two
opposites, that is, to specify the initial values at the lowest
pressure and, at the same time, to cover the maximum
temperature range possible (i.e., to the saturation line). This
lower pressure limit is chosen so as to enable sufficiently wide
temperature range to accommodate a reasonable number
of integration paths. Unfortunately, as it turned out, there
is a compromise which has to be done. Namely, in order
for the solution to be stable across the whole pressure
range, the boundary values must be specified along the
saturation line. Still, the majority of these values are specified
at pressures which are considerably below the upper limit of
the pressure range. Two differentmethods based on the initial
boundary value problem (IBVP) are recommended.Themain
difference between them is in the paths of integration. In one
method, these paths change their shape progressively from
that of an isotherm to that of the saturation line, while in the
other one they follow isotherms which are modified in each
integration step to suit consecutively broader temperature
ranges. To ensure that the results obtained are reliable enough
they are not only compared to respective reference data but
also used as the initial values for deriving the same properties
in the transcritical domain up to the pressure twice of that in
the critical point.

2. Theory

When the density and heat capacity are derived from the
speed of sound in rectangular 𝑝-𝑇 domain, the following set
of equations may be used (Benedetto et al. [10]):
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where 𝑝 is the pressure, 𝑇 is the temperature, 𝑢 is the
speed of sound, 𝜌 is the density, 𝑐

𝑝
is the specific heat

capacity at constant pressure, and𝛼
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However, if the domain is not of rectangular shape
(e.g., in the subcritical pressure range), the following

set of equations is suitable (Bijedić and Neimarlija
[11]):

(
𝜕𝜌

𝜕𝑝
)

𝜙

=
𝑇𝛼
2

𝑝

𝑐
𝑝

+
1

𝑢2
+ (
𝜕𝜌

𝜕𝑇
)
𝑝

(
𝜕𝑇

𝜕𝑝
)

𝜙

(4)

(
𝜕𝑐
𝑝

𝜕𝑝
)

𝜙

= −
𝑇

𝜌
[𝛼
2

𝑝
+ (
𝜕𝛼
𝑝

𝜕𝑇
)

𝑝

] + (
𝜕𝑐
𝑝

𝜕𝑇
)

𝑝

(
𝜕𝑇

𝜕𝑝
)

𝜙

, (5)

where 𝜙 represents a path connecting the points with temper-
ature

𝑇
𝑗
= 𝑇min +

𝑗

𝑛
(𝑇max − 𝑇min) (𝑗 = 0, 1, 2, . . . , 𝑛) , (6)

where 𝑇min is the lowest temperature of the range and 𝑇max
is the highest temperature at observed pressure (e.g., the
saturation temperature). Using 𝜙 instead of 𝑇 as a path of
integration enables one to shape the domain arbitrarily.

The set of (4) and (5) may be solved simultaneously for 𝜌
and 𝑐
𝑝
if their initial values are specified at the lowest pressure

of the range. However, for the solution to be stable across the
whole pressure range, the boundary values of 𝜌 and 𝑐

𝑝
need

to be specified along 𝜙 connecting the points with the highest
temperatures at each pressure (i.e., along the saturation line).
If all the temperature derivatives are estimated, say, from an
interpolation polynomial, the set of equations may be solved
as the initial boundary value problem (IBVP) for the set of
ordinary differential equations. In order to ensure that the
temperature derivatives are estimated as accurate as possible,
the lines of constant 𝜙 should be distributed so as to avoid
Runge’s phenomenon (e.g., at the Chebyshev knots).

While the set of (1) and (2) is suitable for the supercritical
pressure range, it may be used for the subcritical one as well,
if the temperature range is being extended to the saturation
line after each integration step.This set of equations may also
be solved as the IBVP with the same set of initial/boundary
values. However, the procedure of solution is more robust
because the results from the current pressure have to be inter-
polated to a new set of temperatures in a wider temperature
range at the next pressure.

3. Results and Discussion

The methods described are tested with several different
substances. Their list, along with the 𝑝-𝑇 ranges covered,
are given in Tables 1 and 2 for the subcritical and transcrit-
ical domain, respectively. These domains are also presented
graphically in 𝑝-𝑇 coordinates at Figure 1. While this graph
is given for CO

2
, respective graphs for other substances are

qualitatively the same.
The lowest pressure of the subcritical domain is chosen

so as to enable a reasonable temperature range, and the
highest one corresponds to the saturation pressure for the
temperature approximately 10 K below the critical point. The
lowest temperature is constant across both the domains, while
the highest one in the subcritical domain corresponds to the
saturation temperature at each pressure.
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Table 1: p-T ranges covered in the subcritical domain.

Substance 𝑝, MPa 𝑇, K
min max min max(1)

Ar 0.70 3.40 100.00 110.78/141.69
N
2

0.20 2.20 70.000 83.626/117.41
CO
2

1.00 6.00 220.00 233.03/295.13
CH
4

0.10 3.40 100.00 111.51/181.05
(1)At the lowest/highest pressure of the domain.

Table 2: p-T ranges covered in the transcritical domain.

Substance 𝑝, MPa 𝑇, K
min max min max

Ar 3.40 10.0 100.00 141.69
N
2

2.20 7.00 70.000 117.41
CO
2

6.00 15.0 220.00 295.13
CH
4

3.40 10.0 100.00 181.05

The lowest pressure of the transcritical domain coincides
with the highest pressure of the subcritical domain, and the
highest one is approximately twice as large as the critical
pressure. The highest temperature is constant across the
domain and corresponds to the saturation temperature at the
lowest pressure of the domain or to the highest temperature
of the subcritical domain.

Four sets of calculations are performed for each sub-
stance. Two of them cover the subcritical domain and the
other two the transcritical domain. The calculations are
performed first in the subcritical domain, and the results
obtained along the highest pressure of the domain served as
the initial values for the transcritical domain.

For both methods to be implemented in both domains,
the reference values of the density and heat capacity, as well
as the speed of sound, are specified along several mainly
equidistant isobars, at temperatures distributed along each
isobar according to the Chebyshev points of the second kind
(Berrut and Trefethen [12]):

𝑇
𝑗
=
𝑇min + 𝑇max
2
+
𝑇max − 𝑇min
2

cos
𝑗𝜋

14

(𝑗 = 14, 13, 12, . . . , 0) .

(7)

Increasing the number of these temperatures, the number of
differential equations to be solved increases aswell (two equa-
tions per temperature), but the temperature derivatives are
estimated more accurately, and vice versa. It has been proved
(by trial and error on a number of different substances and
conditions) that the optimum number of these temperatures
is 15. In all the cases numerical integration is performed by the
Runge-Kutta-Verner (RKV) fifth-order and six-ordermethod
with adaptive step-size (Hull et al. [13]).

In the first method (IBVP-1) the initial values of 𝜌 and
𝑐
𝑝
, as well as 𝑢, are specified along the lowest pressure 𝑝

0
(see

Table 3) at temperatures calculated from (7).The temperature
derivatives of 𝜌, 𝛼

𝑝
, and 𝑐

𝑝
and the pressure derivatives of 𝑇

are estimated from the Lagrangian interpolation polynomial
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Figure 1:The domains of integration for CO
2
: (red line): the boiling

line, (blue line): the melting line, C.P.: the critical point, and T.P.: the
triple point.

Table 3: Number of initial/boundary data-points of 𝜌 and 𝑐
𝑝
and of

𝑢.

Substance Initial/boundary values Speed of sound
At lowest 𝑝 At saturation Subcritical Transcritical

Ar 30 18 150 105
N
2

30 20 165 120
CO
2

30 20 165 135
CH
4

30 28 225 105

Table 4: The Lagrange polynomial orders used in the subcritical
domain.

Substance
Interpolation with

respect to
Derivation with

respect to
p T p T

Ar 9 14, 15(1) 9 2(2), 11(3)

N
2

10 14, 15 10 2, 11
CO
2

10 14, 15 10 2, 11
CH
4

14 14, 15 14 2, 11
(1)Polynomial of 15th degree is used only when the temperature range is
extended.
(2)Polynomial of 2nd degree is used for 3 lowest temperatures.
(3)Polynomial of 11th degree is used for 12 highest temperatures.

(see Table 4). After that, there is enough information to
calculate the pressure derivatives of 𝜌 and 𝑐

𝑝
from (4) and

(5), respectively. Then, new values of 𝜌 and 𝑐
𝑝
are calculated

by the RKV method at the pressure 𝑝
1
= 𝑝
0
+ Δ𝑝, where

Δ𝑝 is the integration step chosen so as to control the norm
of the local error such that the global error is proportional to
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Table 5: The Lagrange polynomial orders used in the transcritical
domain.

Substance
Interpolation with

respect to
Derivation with

respect to
𝑝 𝑇 𝑝 𝑇

Ar 7 14 — 2, 11
N
2

8 14 — 2, 11
CO
2

9 14 — 2, 11
CH
4

7 14 — 2, 11

Table 6: The average step-size and number of steps taken in the
subcritical domain.

Substance Average step-size, MPa Number of steps taken
IBVP-1(1) IBVP-2(2) IBVP-1 IBVP-2

Ar 0.073 0.01 37 270
N
2 0.056 0.01 36 200

CO
2 0.114 0.01 44 500

CH
4 0.065 0.001 51 3300

(1)Calculated as (𝑝max–𝑝min)/number of steps taken.
(2)Constant step-size is used across the domain.

the tolerance for error control (see Table 6). The procedure is
repeated until the highest pressure of the domain is reached.
The values of 𝑢 are obtained in each integration step by
interpolation along 𝜙s with respect to the pressure (see
Table 4).

In the second method (IBVP-2) the initial values of 𝜌
and 𝑐

𝑝
, as well as 𝑢, are also specified along the lowest

pressure 𝑝
0
(see Table 3) at temperatures calculated from

(7). The temperature derivatives of 𝜌 and 𝛼
𝑝
are estimated

from the Lagrangian interpolation polynomial (see Table 4).
After that, there is enough information to calculate the
pressure derivatives of 𝜌 and 𝑐

𝑝
from (1) and (2), respectively.

Then, new values of 𝜌 and 𝑐
𝑝
are calculated by the RKV

method at the pressure 𝑝
1
= 𝑝
0
+ Δ𝑝, where Δ𝑝 is the

integration step chosen so as to satisfy both the integration
and interpolation/derivation (see Table 6). The temperature
range is extended to the saturation line and new temperatures
are calculated from (7). Next, 𝜌 and 𝑐

𝑝
are interpolated to

these new temperatures (see Table 4), and the procedure is
repeated until the highest pressure of the domain is reached.
The values of 𝑢 are obtained in each integration step also
by interpolation along 𝜙s with respect to the pressure (see
Table 4).

In the transcritical domain, the set of (1) and (2) is
solved as the initial value problem (IVP). The initial values
of 𝜌 and 𝑐

𝑝
are obtained from the IBVP methods at the

highest pressure of the subcritical domain. The integration is
performed along the same set of temperatures at which the
IBVP procedures terminated (see Tables 5 and 7).

The results obtained are assessed by the average absolute
deviation (AAD) from corresponding reference data (Tegeler
et al. [14], Span et al. [15], Span and Wagner [16], and
Setzmann and Wagner [17]). In the subcritical domain, both
methods predict the density with almost the same AADs,

Table 7: The average step-size and number of steps taken in the
transcritical domain.

Substance Average step-size, MPa Number of steps taken
IBVP-1(1) IBVP-2(2) IBVP-1 IBVP-2

Ar 0.471 0.440 14 15
N
2 0.369 0.343 13 14

CO
2 0.529 0.500 17 18

CH
4 0.471 0.413 14 16

(1)Initial values obtained from the IBVP-1 method.
(2)Initial values obtained from the IBVP-2 method.

Table 8: The average absolute deviation (AAD) in the subcritical
domain.

Substance
AAD, %

𝜌 𝑐
𝑝

IBVP-1 IBVP-2 IBVP-1 IBVP-2
Ar 0.0001 0.0001 0.0084 0.0042
N
2

0.0003 0.0003 0.0066 0.0064
CO
2

0.0004 0.0002 0.0903 0.0175
CH
4

0.0010 0.0010 0.0260 0.0154
Average 0.0005 0.0004 0.0328 0.0109

Table 9: The average absolute deviation (AAD) in the transcritical
domain.

Substance
AAD, %

𝜌 𝑐
𝑝

IBVP-1 IBVP-2 IBVP-1 IBVP-2
Ar 0.0003 0.0003 0.0418 0.0367
N
2

0.0005 0.0016 0.0346 0.1078
CO
2

0.0029 0.0032 0.2815 0.2264
CH
4

0.0016 0.0046 0.0955 0.2178
Average 0.0013 0.0024 0.1134 0.1472

while the results for the heat capacity obtained by the IBVP-
2 method have AAD three times lower than that of the
IBVP-1 method (see Table 8). However, comparing the AADs
with the uncertainty of corresponding reference data (see
Table 10) it is obvious that these formers are two orders of
magnitude lower. Therefore, the uncertainty of the results
obtained in the subcritical domain is practically the same
as that of the reference data. The relative deviations of the
results at the highest pressure of the subcritical domain
are presented graphically as a function of temperature at
Figures 2–9.

In order to test accuracy of the results additionally, their
values along the highest pressure (the most unfavorable
conditions) served as the initial values for deriving the same
properties in the transcritical domain. Here, the results for
the heat capacity obtained with the initial values from both
methods have almost the same AADs, while the results for
the density obtained with the initial values from the IBVP-1
method have AAD two times lower than that of the IBVP-
2 method (see Table 9). However, comparing the AADs with
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𝑝
of Ar versus tempera-

ture at the highest pressure of the subcritical domain:I I I: IBVP-
1; ◻ ◻ ◻: IBVP-2.

the uncertainty of corresponding reference data (see Table 10)
it is obvious that these formers are an order of magnitude
lower. Therefore, the uncertainty of the results obtained in
the transcritical domain is practically the same as that of the
reference data (Tegeler et al. [14], Span et al. [15], Span and
Wagner [16], and Setzmann and Wagner [17]).

Influence of uncertainties of the initial and boundary
values and speed of sound values on the results is investigated
as well. Corresponding AADs of the results obtained after
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Figure 4: Relative deviation of calculated 𝜌 of N
2
versus tempera-

ture at the highest pressure of the subcritical domain:I I I: IBVP-
1; ◻ ◻ ◻: IBVP-2.
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of N
2
versus tempera-

ture at the highest pressure of the subcritical domain:I I I: IBVP-
1, ◻ ◻ ◻: IBVP-2.

changing these values in the limits of their uncertainties (see
Table 10) are given in Tables 11–13. One can see that these
AADs are in the limits of corresponding uncertainties from
Table 10.

4. Conclusions

The density and heat capacity of a liquid may be derived
from the speed of sound in the subcritical pressure range
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for the temperatures up to the saturation line. This may be
accomplished by the use of a standard numerical procedure
for solving an initial boundary value problem (IBVP) for the
set of ordinary differential equations and an interpolation
polynomial. The initial values are specified along the lowest
pressure of the range and the boundary values along the
saturation line. For the results to have uncertainty not higher
than that of corresponding direct measurements, numerical
derivatives must be estimated as accurately as possible prior
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Figure 8: Relative deviation of calculated 𝜌 of CH
4
versus tempera-

ture at the highest pressure of the subcritical domain:I I I: IBVP-
1; ◻ ◻ ◻: IBVP-2.
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Figure 9: Relative deviation of calculated 𝑐
𝑝
of CH

4
versus tempera-

ture at the highest pressure of the subcritical domain:I I I: IBVP-
1; ◻ ◻ ◻: IBVP-2.

to each integration step. This precondition may be difficult
to fulfill for two reasons. The first one emerges from the
fact that the set of equations is of the second-order with
respect to the temperature, and the second one is that the
density and heat capacity (whose temperature derivatives are
estimated) change with temperature abruptly in the vicinity
of the saturation line. For this to be overcome the number
of these temperatures should be optimal and they have to
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Table 10: The uncertainty of the reference data.

Substance Uncertainty, %
𝜌 𝑐

𝑝
𝑢

Ar 0.02 2.0 1.0
N
2

0.02 0.8 1.0
CO
2

0.04 1.5 0.5
CH
4

0.03 1.0 0.3
Average 0.03 1.3 0.7

Table 11: Influence of the uncertainty of the initial and boundary
values of 𝜌 on AAD.

Substance
AAD, %

𝜌 𝑐
𝑝

IBVP-1 IBVP-2 IBVP-1 IBVP-2
Ar 0.0199 0.0199 0.0085 0.0043
N
2

0.0200 0.0200 0.0066 0.0064
CO
2

0.0398 0.0160 0.0904 0.0036
CH
4

0.0299 0.0299 0.0260 0.0154
Average 0.0274 0.0215 0.0329 0.0074

Table 12: Influence of the uncertainty of the initial and boundary
values of 𝑐

𝑝
on AAD.

Substance
AAD, %

𝜌 𝑐
𝑝

IBVP-1 IBVP-2 IBVP-1 IBVP-2
Ar 0.0076 0.0076 2.0425 2.0427
N
2

0.0018 0.0018 0.8087 0.8087
CO
2

0.0061 0.0007 1.5357 0.6034
CH
4

0.0028 0.0028 1.0133 1.0134
Average 0.0046 0.0032 1.3501 1.1171

Table 13: Influence of the uncertainty of the speed of soundonAAD.

Substance
AAD, %

𝜌 𝑐
𝑝

IBVP-1 IBVP-2 IBVP-1 IBVP-2
Ar 0.0042 0.0042 0.0090 0.0058
N
2

0.0038 0.0038 0.0067 0.0069
CO
2

0.0030 0.0030 0.0905 0.0183
CH
4

0.0019 0.0019 0.0261 0.0154
Average 0.0032 0.0032 0.0331 0.0116

be distributed so as to avoid Runge’s phenomenon (e.g.,
according to the Chebyshev knots).

Appendix

See Figures 1, 2, 3, 4, 5, 6, 7, 8, and 9 and Tables 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13.
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