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The water wave scattering by vertical thin porous barriers is accurately solved in this study. Two typical structures of a surface-
piercing barrier and a submerged bottom-standing barrier are considered. The solution procedure is based on the multi-term
Galerkin method, in which the pressure jump across a porous barrier is expanded in a set of basis functions involving the Chebychev
polynomials. Then, the square-root singularity of fluid velocity at the edge of the porous barrier is correctly modeled. The present
solutions have the merits of very rapid convergence. Accurate results for both the reflection and the transmission coeflicients and
wave forces are presented. This study not only gives a promising procedure to tackle wave interaction with vertical thin porous

barriers but also provides a reliable benchmark for complicated numerical solutions.

1. Introduction

Vertical thin plates have been used as simple breakwaters in
coastal engineering due to their merits of simple structure,
constructing convenience, and low engineering cost. In some
cases, a vertical barrier (plate) can play an important role
in protecting coast from erosion as well as various activities
along the coastline from wave attack. The practical vertical
barriers are often surface-piercing and supported on piles
or submerged below the ocean surface and bottom-standing
[1-5].

An abundance of analytical studies for linear water wave
scattering by vertical thin solid barriers have been conducted.
Ursell [6] carried out an early study on normally incident
wave transmission by a vertical thin barrier in deep water.
Evans [7] developed expressions for the first- and second-
order forces and moments on a submerged vertical thin wall
based on linear potential theory. Morris [8] developed a
variational approach to normally incident water interaction
with two nonsymmetric vertical thin barriers. Losada et al.
[9] and Abul-Azm [10] used matched eigenfunction expan-
sion method to develop analytical solutions for obliquely and
normally incident wave scattering by vertical thin barriers

with different configurations, respectively. Kriebel and Boll-
mann [11] compared the transmission coeflicients of surface-
piercing solid barriers calculated by the wave power theory
(an approximate method) and the matched eigenfunction
expansion method. Porter and Evans [1] investigated oblique
wave scattering by various partial solid barriers using a multi-
term Galerkin method and obtained the upper and lower
boundaries of reflection and transmission coeflicients with
extremely high accuracy. Banerjea et al. [12] also used the
multi-term Galerkin method to obtain accurate solutions
for oblique wave scattering by single and double submerged
vertical solid barriers with gaps. Moreover, the multi-term
Galerkin method has been used by Evans and Porter [13],
Martins-Rivas and Mei [14], and Chang et al. [15] for three-
dimensional vertical thin walls. Compared with matched
eigenfunction expansion method, the beauty of multi-term
Galerkin method is that it can correctly model the square-
root singularity of fluid velocity near the edge of vertical plate.
Then, extremely accurate results of hydrodynamic quantities
can be obtained.

Besides good shelter function with required transmission
coefficient, smaller wave force acting on a barrier is expected
in engineering design for ensuring the safety of the structure.
Thus, porous barriers have been proposed and used as
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(a) A surface-piercing porous barrier (Type 1)

(b) A submerged bottom-standing porous barrier (Type 2)

FIGURE 1: Idealized sketch of water wave scattering by vertical porous barriers.

breakwaters in coastal engineering. After generalizing the
study of Tuck [16] for permeable thin barriers in deep water,
Macaskill [17] examined normally incident wave interaction
with a permeable thin barrier in finite water depth by
solving integral equations. Sahoo [18] applied a perturbation
analysis to study water wave scattering by porous barriers
with small porosity effect in deep water. Isaacson et al. [2]
used matched eigenfunction expansion method to develop
an analytical solution for normally incident wave interaction
with a partially immersed porous barrier and validated
their solution using experimental data. Lee and Chwang
[19] examined wave scattering and radiation by vertical
thin porous barriers with four different configurations based
on the eigenfunction expansion and least square methods.
They found that due to the energy dissipation by holes,
the reflection coeflicient and wave force of a porous barrier
are smaller than those of a solid barrier. Sahoo et al. [20]
generalized the solution of Lee and Chwang [19] to obliquely
incident waves. Recently, Karmakar and Guedes Soares [21]
developed analytical solution for wave transformation due
to multiple bottom-standing flexible porous barriers using
eigenfunction expansion method. Gayen and Mondal [22]
studied normally incident wave reflection and transmission
by a submerged inclined porous barrier by solving a second
kind hypersingular integral equation.

As mentioned above, a variety of solutions with respect
to vertical thin porous barriers have been developed. But
rapidly convergent solutions for thin porous barriers are
still lacking. In particular, for multiple barriers, a rapidly
convergent solution is of great significance for parameter
studies. Also, an accurate analytical solution can serve as a
reliable benchmark for complicated numerical potential flow
solutions. Thus, we will develop extremely accurate solutions
for vertical thin porous barriers in this study. As a first step,
we will consider water wave scattering by two simple and
typical thin porous barriers, that is, a surface-piercing barrier
and a submerged bottom-standing barrier. We use the multi-
term Galerkin method [1] to incorporate the square-root
singularity of fluid velocity near the edge of porous barrier
into the solution. The present solution procedure can be easily
extended to more complicated structures, such as various
multiple porous barriers.

The governing equation and boundary conditions of
the present problem are given in the following section. In
Section 3, the solving procedure using multi-term Galerkin
method is detailed. In Section 4, the rapid convergence and
high accuracy of the present solution are shown by comparing
with matched eigenfunction expansion solution. Then, we
present some typical curves of hydrodynamic quantities to
show the effects of major barrier parameters. Finally, the main
conclusions of this study are drawn.

2. The Boundary Value Problem

The idealized sketch of water wave scattering by vertical
porous barriers is given in Figurel. The vertical porous
barrier is surface-piercing (Type 1) or totally submerged
and bottom-standing (Type 2). The thickness of the porous
barrier is assumed to be zero, as it is very small compared
with the incident wavelength. The water depth is d. We use
I' to denote the area of barrier and A to denote the fluid area
of gap. A Cartesian coordinate system with the z-axis taking
vertically upwards along the barrier and the x-axis along the
still water level is used for mathematical descriptions. The
incident waves propagate along the positive x-direction.

It is assumed that the fluid is inviscid and incompressible,
the fluid motion is irrotational, and the incident harmonic
wave is of small amplitude with angular frequency w. Then, a
velocity potential ®(x, z,t) can be used to describe the fluid
motion. We separate out the time factor e *“* and then write
the velocity potential and the dynamic pressure as

®(x,z,t) = Re [—%4,(% 2) e—iwt] ’
i (1
P(x,Z, t) = Re [—%p (X, Z) e—iwt] i

where Re denote the real part of function; i = V~1; g is the
gravitational acceleration; A is the incident wave amplitude;
t is the time; ¢(x, z) and p(x, z) are, respectively, the spatial
velocity potential and dynamic pressure.

For the convenience of study, the whole fluid domain is
divided into two sub-regions: left sub-region Q; (-d < z <
0, —0co < x < 0) and right sub-region Q, (-d <z <0, 0 <
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X < +00). The spatial velocity potential in each sub-region
satisfies the Laplace equation:

*p. (x,z2) 0%¢;(x,2)
J J _ s
ox? 02 0, j=12 @

where the subscript j denotes variables in sub-region j.
The velocity potentials also satisfy the following boundary
conditions on the free surface, the water bottom, and the far
fields:

op;  w?
% g "
z g (3)
z=0, j=1,2,
=0, z=-d, j=12, (4)
0z ¢ J
. o .
i (52 ko) <o ©
. o .
xk}f&,(a +1k0>(¢1 ~ o) =0, (6)

where k, is the incident wave number and ¢, is the velocity
potential of incident waves.

At the edge of the porous barrier, the gradient of the
velocity potential has a square-root singularity ([23, Eq.
(2.85)] and [24, Eq. (1e)]):

|V¢| =0 (r_l/z) asr — 0, (7)

where r = +/x?+(z+a)? for Type 1 barrier and r =
Va2 + (z + d — b)? for Type 2 barrier. In order to develop an
accurate solution for the present problem, the square-root
singularity of fluid velocity must be correctly modeled. This
will be detailed in the following section.

Besides preceding boundary conditions, the velocity
potentials satisfy the transmission boundary conditions at the
interface of two sub-regions:

o, ¢,
9@ _ 9% _ 8
% = o © 0, z€A, (8)
$1=¢ x=0,z€A, )
op, _ ¢,

a a = lkOG ((/51 - ¢2) , x=0, zeT, (10)
where G is a complex effect parameter of the porous barrier
[25]. Equations (8) and (9) denote, respectively, that the
horizontal fluid velocities and the dynamic pressures are con-
tinuous at the gap. Equation (10) is the boundary condition
on the porous barrier, which was developed by Yu [25] based
on the classical porous medium model of Sollitt and Cross
[26]. The first equals sign in (10) denotes that the normal fluid
velocity is continuous at the porous barrier. The second equals
sign in (10) denotes that the normal fluid velocity through the
porous barrier is proportional to the pressure jump across the
barrier. Then, wave energy dissipation is introduced by (10).

According to Yu [25], the complex porous effect parame-
ter G can be estimated by G = ¢/[k 0(f — is)], where ¢, f, s,
and & are the porosity, the linearized resistance coefficient,
the inertial coefficient, and the thickness of the porous plate
(porous medium), respectively. The value of the inertial
coefficient s may be simply treated as unity [27, 28]. The
value of the linearized resistance coefficient f must be
determined by experimental tests. Suh et al. [28] proposed
an empirical formula for the resistance coefficient: f =
0.0584(¢8/d)™°7. The real and imaginary parts of G denote
the linearized resistance effect and the inertial effect of a
porous plate, respectively. The resistance effect brings wave
energy dissipation, and the inertial effect produces the phase
shift of wave motion. When |G| equals zero, the barrier is
impermeable. If |G| tends to infinity, the barrier becomes
entirely transparent (no porous barrier). This can be observed
by rewritten (10) as: ¢, — ¢, = Gog,/dx = GO¢, /dx, where
G = 1/(iky,G). In our computations, a very large value of
G = 10" is adopted for entirely transparent wall.

3. Methods of Solution

3.1. Expressions of Velocity Potentials. By the separation of
variables, the velocity potentials satisfying the governing
equation in (2) and the relevant boundary conditions in (3)-
(6) can be written as

o0
¢y = (" + Re¥) Zy (2) + Y A, 77, (2),
m=1

(11)
¢, = Te™*Z, () + Z B,e "7, (2),

m=1

where R, A,,, T, and B,, are unknown expansion complex
coefficients. The wave numbers k, and k,,, are the positive real
roots of the following dispersion relation:

W’ = gkytanhkyd = —gk,, tank, d, m=1,2,.... (12)

In (11), the vertical eigenfunctions Z,,(z) are given by

coshk, (z +d) 0
coshk,d ’
Zm (2) = cosk,, (z+d) I (13)
cosk,d S

It is noted that the eigenfunctions Z,,(z) are orthogonal over
[-d, 0]:

JO Z,(2)Z,(2)dz =0, m#n, (14)
d



and integrals of their own square over [—d, 0] are
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0 1 d sinh2kyd
ZZ = . 0 ) > =y
J-—d () dz cosh?k,d (2 " ak, m=0
N,, = (15)
jo 72 (2)dz = — <E+Sin2kmd) m=1,2
am " costk,d\2 4k, )’ o

Then, applying the transmission boundary conditions in
(8)—(10), the unknown expansion coeflicients in (11) can be
determined. For convenience, these transmission conditions
are rewritten as

94, _ 9¢y

"o 0 d<z<0, (16)
0
% _ikG(d-), x=0,zer ()
Ox
b=¢,, x=0,z€A. (18)

Substituting the expressions for the velocity potentials in
(11) into (16), we have

ik, (1-R) Z, (z) + i k,A,Z, (z)
m=1

19)
= ikyTZ, (2) = Y Kk, B2, (2), -d<z<0.

m=1

Multiplying both sides of (19) by Z, (z) and integrating with
respect to z over [—d, 0] and then using (14), we obtain

(20)
m=12,....

We note that the two conditions in (17) and (18) are
known as dual series relations [29]. They can be com-
bined into a mixed boundary condition along the whole
water depth (see (A.1)), which can be solved by a least
square method [30-32]. Here we use a similar procedure
as that for (16) to transform (17) and (18) into a system
of linear equations, and then determine all the unknown
coeflicients. This is just the traditional matched eigenfunc-
tion expansion method and is introduced in the Appendix.
However, the square-root singularity of fluid velocity is not
incorporated into such a solution procedure. As a result,
the convergence of the solution is slow. In order to obtain
extremely accurate analytical solution, we use the multi-
term Galerkin method [1], instead of traditional matched
eigenfunction expansion method, to solve the present
problem.

3.2. Multi-Term Galerkin Methods. Following Porter and
Evans [1, Egs. (2.52) and (2.63)], we expand the jump of
velocity potentials, that is, the pressure jump, at the porous
barrier as

0, z €A,

(¢1 = P2)|0 = (21)

Zappp (z), ze€l,
p=0

where a, (p = 0,1,...) are unknown expansion coefficients,
and p,(z) is given by

2

~ w” (*
B @ =5, @~ | ppwar (22)
with
o 2(-DPVar-22 z
Py () = WUZ‘D <—5> , —a<z<0, (23)

for Type 1 barrier, and

C2(-D? Vb2 - (d + 2)? U

@) <d + z)
P& = e ed *\ b ) (24)
-d<z<b-d,
for Type 2 barrier. In (23) and (24), U,(x) = sin((n +

1) arccos x)/ sin(arccos x) is the nth order Chebychev poly-
nomial of the second kind. According to the expressions of
pp(z), (22) satisfies the free surface condition in (3) and the
square-root singularity at the lower edge of Type 1 barrier.
Equation (24) satisfies the water bottom condition in (4) and
the square-root singularity at the upper edge of Type 2 barrier.

Substituting the expressions for the velocity potentials in
(11) into (21) and multiplying both sides of the obtained new
equation by Z, (z) and then integrating with respect to z over
[—d, 0] and using (14) and (15), we have

(e}
-1
R=(2Ng)" Y a,Fpy,
p=0
(25)
,1 X
A, =(2N,)" Y aF,, m=12..,
p=0

where
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0 (-DPI koa
J pp(Z)Zo(Z)dZ=$(O), m=0,
Fom=1"4 ’ (26)
o 0 0 ~ I2p+1 (kma)
J pp(z)Zm(z)dz=J pp(z)coskmzdz:T, m=1,2,...,

for Type 1 barrier, and

Fp
b-d (-1)? IZp+1 (kob)
L, PR 2@ de= = a0 (27)
B b-d ]2p+1 (kmb)
z - 2 T -L2...,
L Py @ Zn @z = e ™"

for Type 2 barrier. In (26) and (27), J, and I, denote the
Bessel function and the modified Bessel function of order
n, respectively. Substituting (11) with (20) and (25) into (17),
multiplying both sides of the obtained new equation by p, (),
and then integrating with respect to z over I', we obtain

& 1+2G
a,| ————F,Fy
;Op[ p,

(28)

& k
+ Y N, <2G - f) Fmenm] =2F,.
0

m=1

We solve (28) by truncating n and p after N terms and
obtain the values of a, (p = 0,1,...,N). Then, all the
expansion coefficients R, A, T, and B,, in velocity potentials
are determined using (20) and (25).

3.3. Hydrodynamic Quantities. The reflection and transmis-
sion coefficients of the vertical porous barrier are calculated,
respectively, by

N
-1
Kp =Rl =|(2N,)" Y a,Fyp|,
p=0 (29)
Kyp=|1-R]|.
The energy loss coefficient is defined as
K, =1-(Kz+K7). (30)

The energy dissipation is introduced by the porous boundary
condition in (10), which brings pressure loss on the porous
barrier. If the barrier is impermeable (G = 0), the energy loss
coeflicient is always zero.

The dynamic pressure jump on the porous barrier is cal-
culated by the linear Bernoulli equation p(x,z) = pgA(¢, —
¢,), where p is the water density. Integrating the dynamic

pressure jump along the porous barrier, we get the magnitude
of horizontal wave force acting on the barrier:

F=pga [ [9(022)-4,(0"2)] =
(31)
=2pgA

N
RJ Z,(2)dz + ZAmJ Zm(z)dz] :
r = r
where

L Z, (z)dz

[sinh k,d — sinh k, (d — a)]
ko cosh kyd

[sink,,d —sink,, (d - a)]
k,, cosk,,d

, m= 0, (32)

, m=12,...,N,

for Type 1 barrier, and

sinh kb
ko cosh k,d’
sink,,b
k,, coshk,d’

m =0,

J Z,,(2)dz = (33)
r

m=12,...,N,

for Type 2 barrier. The dimensionless wave force on the
barrier is defined as
F
K,
Fy
(34)

2pgA
F, = i—g tanh kyd,
0

where F is the wave force acting on per-unit width in an
impermeable vertical wall extending from seabed to the still
water level.

4. Results

The second part in the left hand side of (28) is still an infinite
series after truncating n and p. Thus, the values of F,,, and
F,,, need to be estimated by truncating m. Porter and Evans
[1] have detailed the computation method of this type of series
for solid barriers. In this study, all the series are first computed
taking 800 terms, and then they are improved by applying the
asymptotic values of Bessel functions as those used in Porter
and Evans [1]. In order to obtain the required accuracy, we
use 10® terms in computations of the improvements.



TABLE 1: Results of Ky, Ky, and K, for Type 1 barrier at kya = 0.5
and G = 0.

The present results Porter and Evans (1995) [1]

ald

KR KT KL KR KT
0.1 0.439284 0.898348 0 0.43928 0.89835
0.4  0.349212 0.937044 0 — —
0.5 0.353987 0.935250 0 0.35399 0.93525
0.8 0.493434 0.869783 0 — —
0.9 0.602548 0.798083 0 0.60255 0.79808

4.1. Special Cases of Solid Barriers. We first consider the spe-
cial cases of solid barriers when the porous effect parameter G
is zero. The calculated results of K, K, and K; for two types
of barriers are given in Tables 1 and 2. Here, the truncated
number of N is 7. It can be seen from Tables 1 and 2 that the
wave energy conservation (K; = 0) is well satisfied for solid
barriers. For comparisons, the results obtained using Tables
1 and 2 and (2.25) and (2.26) in Porter and Evans [1] are also
added in these tables. For solid barriers, the fluid velocity at
the gap A can also be expanded using a similar method to that
in (21). The two approaches based on expanding the pressure
jump at I and the fluid velocity at A for solid barrier can
give the lower and upper bounds of hydrodynamic quantities,
respectively. Thus, the results of Porter and Evans [1] for solid
barriers can be treated as the exact solution. It can be seen
from Tables 1 and 2 that the present results are the same as
that of Porter and Evans [1] for five-figure accuracy.

4.2. Convergence Examination for Porous Barriers. The main
purpose of the results presented below is to demonstrate the
high accuracy and rapid convergence of the present multi-
term Galerkin solution for porous barriers. The computed
results of the reflection coefficient, the transmission coeffi-
cient, and the wave force, K, K, and K, for the surface-
piercing porous barrier (Type 1) and the submerged porous
barrier (Type 2) at different truncated number N are listed in
Tables 3 and 4, respectively. It can be seen from these tables
that for both barriers with different sizes, the convergence of
the solution is very rapid. Results with six-figure accuracy can
be generally obtained using the truncating number of N = 6.
Results with higher accuracy can also be obtained using larger
truncated numbers. Besides results shown in Tables 3 and
4, our extensive numerical experiments indicate that other
values of wave numbers and barrier sizes produce equally
accurate results for Ky, K, and Kj. The high accuracy of
the present solution is due to the fact that the nature of the
square-root singularity near the edge of the porous barrier
is correctly modeled. We note that results with six-figure
accuracy are presented to show the rapid convergence of the
solution. One may adopt less Galerkin terms to obtain results
with two- or three-figure accuracy.

For comparisons, the corresponding results calculated
by the matched eigenfunction expansion solution (see the
Appendix) for porous barriers are listed in Tables 5 and 6.
It can be seen from these tables that, after using a large
truncated number of M = 600, the matched eigenfunction
expansion solution can only give results with three-figure
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FIGURE 2: Variations of K, K, and K versus k,d for a surface-
piercing porous barrier (Type 1) at G = 1 + 0.2i and different a/d.

accuracy at best. If we adopt larger M, the convergence is
still slow. The reason is that, for the matched eigenfunction
expansion solution, fluid velocity singularity near the edge of
the porous barrier is not considered.

4.3. Theoretical Curves of Hydrodynamic Quantities. Figure 2
gives the variations of Ky, Ky, and K, for a surface-piercing
porous barrier (Type 1) with dimensionless wave number k,d
at a fixed porous effect parameter G = 1 + 0.2i. It is observed
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TABLE 2: Results of Ky, K, and K for Type 2 barrier at G = 0.

b/d kb The present results Porter and Evans (1995) [1]
Ky Ky Ky Ky Ky
0.1 0.1 0.005598 0.999984 0 — —
0.2 0.05 0.007817 0.999969 0 0.00782 0.99997
0.5 0.2 0.082591 0.996584 0 — —
0.6 0.3 0.150706 0.988579 0 0.15071 0.98858
0.9 1.8 0.542662 0.839951 0 0.54266 0.83995

TABLE 3: Results of the multi-term Galerkin solution for Type 1 porous barrier at kga = 0.6 and G = 1 + 0.25i.

a a a

Truncated - =01 - =05 = =09
d d d

number N Ky Ky K, Ky K, K, Ky Ky K,

0 0.222895  0.808722 0139259 0201558  0.835137 0173011 0267398 0768831  0.261473
1 0223158  0.809090 039902  0.202015  0.835583 0174000 0271319 0766307  0.266388
2 0223145 0809113 039885 0201999  0.835609 0173977 0271375 0766303  0.266405
3 0223144  0.809114 0139884 0201998 0835611 0173976 0271376 0766305  0.266409
4 0223144  0.809114 0139884 0201998 0835611 0173976 0271376 0766305  0.266408
5 0223144 0809114 0139884 0201998 0835611 0173976 0271376 0766306  0.266408
6 0223143 0.809114 0139884 0201998  0.83561l  0.73975 0271376 0766306  0.266408
7 0223143 0809114 0139884 0201998  0.835611 073975 0271376 0766306  0.266408
9 0223144 0809114 0139884 0201998 0835611 0173975 0271376 0766306  0.266408
10 0223144 0809114 0139884 0201998 0835611 0173975 0271376 0766306  0.266408

TABLE 4: Results of the multi-term Galerkin solution for Type 2 porous barrier at kb = 0.2 and G = 1 + 0.251.

Truncated g =0.1 Z =0.5 g =0.9

number N Kq K, K, Ky Ky K, Ky Ky K,

0 0.003551 0998938  0.007621  0.069920 0975171  0.071480  0.75771 0905392  0.176347
1 0.003548  0.998943  0.007614  0.069879 0975289  0.071435 0177309  0.905034  0.177850
2 0.003548 0998943  0.007614  0.069878 0975290  0.071434 0177348 0905026  0.177889
3 0.003548 0998943  0.007614  0.069878 0975290  0.071434  0.177349 0905026  0.177891
4 0.003548  0.998943  0.007621  0.069878 0975290  0.071434 0177349 0905026 0177891
5 0.003548  0.998943  0.007614  0.069878 0975290  0.071434 0177349 0905026 0177891
6 0.003548 0998943  0.007614  0.069878 0975290  0.071434 077349 0905026 0177891
7 0.003548 0998943  0.007614  0.069878 0975290  0.071434  0.177349 0905026  0.177891
9 0.003548  0.998943  0.007614  0.069878 0975290  0.071434 0177349 0905026 0177891

TABLE 5: Results of the matched eigenfunction expansion solution for Type 1 porous barrier at kya = 0.6 and G = 1 + 0.25i.

Truncated g =0.1 g =0.5 Z =09

number M Ky Ky Ky Ky Ky K, Ky Ky K,

20 0252275 0771745 0152222 0209811 0826342 0180059 0280401 0754224 0274120
50 0238389 0789733 0147991 0205739  0.831183% 077159 0275419 0760897 0270155
100 0232320 0797420  0.45332 0204131 0833086 0175876 0273561 0763391  0.268507
200 0228312 0802531 0143226 0203180  0.834212 0175066 0272607 0764665  0.267320
400 0226035 0805435 0141870 0202652  0.834837 0174594 0272048 0765411  0.267082

600 0.225193 0.806507 0.141332 0.202457 0.835067 0.174415 0.271847 0.765679 0.266885




8 Mathematical Problems in Engineering
TABLE 6: Results of the matched eigenfunction expansion solution for Type 2 porous barrier at k,b = 0.2 and G = 1 + 0.25i.

Truncated g =0.1 g =0.5 Z =0.9

number M Ky Ky Ky Ky Ky K Ky Ky K

20 0.005142 0.998193 0.009922 0.076300 0.971694 0.077025 0.193357 0.889137 0.192532

50 0.004270 0.998621 0.008808 0.072877 0.973634 0.074184 0.184363 0.898210 0.1814523

100 0.003963 0.998760 0.008348 0.071573 0.974358 0.073031 0.181097 0.901417 0.181488

200 0.003774 0.998844 0.008036 0.070812 0.974778 0.072333 0.179449 0.903013 0.179928

400 0.003672 0.998889 0.007855 0.070393 0.975008 0.071937 0.178491 0.903934 0.179007

600 0.003636 0.998905 0.007815 0.070239 0.975092 0.071790 0.178149 0.904262 0.178675

—- 0.6

(a) The reflection and transmission coeflicients, Kz and Kr

—- 0.6

(b) The dimensionless wave force Kp

FIGURE 3: Variations of Ky, K, and K, versus kyd for a submerged porous barrier (Type 2) at G = 1 + 0.2i and different b/d.

that for a fixed relative barrier height a/d, K and K increase
and K decreases with the increasing value of kyd. When
the value of kyd is large enough, Ky, Ky, and Kj all tend
constants. It can also be observed from Figure 2 that, for a
fixed kyd, the reflection coeflicient and the wave force both
decease with the decreasing relative barrier height a/d, while
the transmission coefficient increases with the deceasing
ald.

Figure 3 shows the variations of Ky, K, and K for a
submerged porous barrier (Type 2) with dimensionless wave
number k,d at a fixed porous effect parameter G = 1 + 0.2i.
It can be seen that the variations of the dimensionless wave
force Ky of Type 2 barrier with the relative barrier height b/d
are similar to those of Type 1 barrier. However, the reflection
and transmission coefficients attain, respectively, a maximum
value and a minimum value with the increasing wave number

kod. This is in fact a common feature for wave motion over
submerged barriers.

Finally, we examine the effects of the porous effect
parameter G on Ky, K, and K. For Type 1 porous barrier,
we fix the relative barrier height at a/d = 0.5 and illustrate
the results of Ky, Ky and Ky at different values of G in
Figure 4. When the porous effect parameter G increases at
a fixed kyd, the reflection coefficient and the wave force on
the barrier both decrease significantly. When G = 1 and
koyd < 1.2, the transmission and reflection coefficients of
porous barrier are both smaller than those of impermeable
barrier. This is due to the additional wave energy dissipation
caused by the holes in porous barrier. For Type 2 porous
barrier, we fix the relative barrier height at b/d = 0.5 and
give the results of Ky, K, and Ky at different values of G
in Figure 5. It can be seen that the effects of G on the K
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FIGURE 4: Variations of K, K, and K, versus kyd for a surface-piercing porous barrier (Type 1) at a/d = 0.5 and different G.

and K of Type 2 barrier are similar to those of Type 1
barrier.

5. Conclusions

This study has developed accurate solutions for water wave
scattering by two types of thin vertical porous barriers based
on the linear potential theory. The multi-term Galerkin
method has been used to take into account the square-root
singularity near the edge of the porous barrier. We have
shown that the multi-term Galerkin method worked very
well for porous barriers. The convergence of the present
solution was very rapid in comparison with the traditional
matched eigenfunction expansion solution. Accurate results
of various hydrodynamic quantities have been presented.
The reflection and transmission coeflicients of porous barrier
may be both smaller than those of impermeable barrier.
The wave force acting on a porous barrier is significantly
reduced compared to the corresponding solid barrier. This
should be favorable in some coastal engineering applications.

2RZ, (z) +2 i A,Z,(z)=0

m=1

H(z) =

The present study gives a reliable benchmark for other
numerical solutions with respect to porous thin walls.
Most of all, this study provides a promising procedure for
solving wave interaction with vertical thin porous barriers.

Appendix

Matched Eigenfunction Expansion Solution

According to (17) and (18), we define a new function:

H(2)

z €N,

(‘l51 - ¢2)|x:o =0,
|2 ks -4 o

x=0

(A1)

zel.

Substituting the expressions for the velocity potentials in (11)
with (20) into (A.1), we have

z €A,

(A.2)

iky [1 - 2G+ )R] Zy (2) + Y (k,, - 2ik,G) A,,Z,, (2) =0, z€T.

Multiplying both sides of (A.2) by Z,(z), integrating with
respect to z over [—d, 0], and then truncating »n and m after
M terms, we have

{[anm](Mﬂ)x(MH) + [bnm](M+1)><(M+1)} {Am}(M+1)

= {fn}(M+1) >

(A3)



10

0.2 -

(a) The reflection coefficient Ky

0.5

Mathematical Problems in Engineering

Xon _
\:\ ‘__,—:“"—
- NN P Tt
NN P -7
\\.\. /”’,r.’ . - -
0.95F R I e
09
=
\ L
0.85
0.8
0.75 L | L | L | L | L | L
0 0.5 1 1.5 2 2.5 3
kod
-0 . 2
-=-1 ---3

(b) The transmission coeflicient K-

KF
T

0.2

0.1

(c) The dimensionless wave force Kp

FIGURE 5: Variations of Ky, K, and K, versus k,d for a submerged porous barrier (Type 2) at b/d = 0.5 and different G.

where

f) :ikOJ. 7o) Z,(2)dz, n=0,1,..., M,
T

am=ZJ Z,(2)2,(z)dz, mmn=0,1,..., M,
A

by = iky (1+2G) f,, n=0,1,...,M,

b, = (k, - 2ik,G) J 7, ()7, (2)dz,
T

m=12,....M, n=0,1,..., M,
Ay=R.
(A4)
The unknown coefficients A,, are obtained after solving

(A.3). Then, the velocity potentials and various hydrody-
namic quantities are determined.
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