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The fractional mapping method is proposed to solve fractional differential equations. To illustrate the effectiveness of the method,
we discuss the space-time fractional combined KdV-mKdV equation. Many types of exact analytical solutions are obtained. The
solutions include generalized trigonometric and hyperbolic functions solutions. These solutions are useful to understand the
mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some
are found for the first time.

1. Introduction

In the last two decades, a large class of fractional differential
equations (FDEs) have been derived and widely applied in
various branches of natural science such as chemistry, biol-
ogy,mathematics, communication, andparticularly in almost
all branches of physics. Numerical and analytical solutions
of FDEs play an important role in nonlinear phenomena;
especially in nonlinear physical problems since they can
provide much physical information, thus leading to further
applications. Seeking the numerical and analytical solutions
of FDEs has long been an interesting and hot topic in the non-
linear mathematical physics [1–7]. Many effective methods
for obtaining numerical and analytical solutions of FDEs have
been presented such as finite difference method [8, 9], finite
element method [10], Adomian decomposition method [11,
12], differential transform method [13], variational iteration
method [14–16], homotopy perturbation method [17, 18],
spectral methods [19, 20], discontinuous Galerkin method
[21], Kansa method [22], the fractional subequation method
[23], and generalized fractional subequation method [24].
Abdel-SalamandYousif [25] introduced the fractional Riccati

expansionmethod to obtain analytical solutions of FDEswith
constant coefficients. They solved the space-time fractional
KdV equation, regularized long-wave equation, Boussinesq
equation, and Klein-Gordon equation. In this research paper,
we introduce the fractional mapping method to obtain many
exact traveling wave solutions of nonlinear FDEs with the
Jumarie’s modified Riemann-Liouville derivative [26–28].
We apply the considered method to solve the space-time
fractional combined KdV-mKdV equation.

The structure of this paper is as follows: some basic
definitions of the fractional calculus and the description of
the fractional mapping method are introduced in Section 2.
In Section 3, we apply the fractional mapping method for
solving the space-time fractional combined KdV-mKdV
equation. Finally, we discuss the findings and conclude.

2. Description of the Fractional
Mapping Method

In this section we present the fractional mapping method
to construct exact analytical solutions of nonlinear FDEs

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 871635, 6 pages
http://dx.doi.org/10.1155/2015/871635

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205041214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Mathematical Problems in Engineering

with the modified Riemann-Liouville derivative defined by
Jumarie [26–28]:
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which has merits over the original one, for example, the 𝛼-
order derivative of a constant is zero. Some properties of the
Jumarie’s modified Riemann-Liouville derivative are
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where 𝑐 is constant. The formulas (4) and (5) follow from the
fractional Leibniz rule and the fractional Barrow’s formula
[29]. In addition, Kolwankar obtained the same formula (4)
by using an approach on Cantor space [30]. In addition,
Jumarie in [31] gave detailed proofs of the above formulas
(see Proposition 3.1 page 1746 and Section 4 (Some Basic
Formulae for Fractional Derivative and Integral) page 1748).
The above properties play an important role in the frac-
tional mapping method. The main steps of this method are
described as follows.

Step 1. Suppose that the nonlinear FDE, say in two variables
𝑥 and 𝑡, is given by

𝑃 (𝑢,𝐷
𝛼

𝑡
𝑢,𝐷
𝛼
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2𝛼
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𝑢, . . .) = 0, 0 < 𝛼 ≤ 1, (6)

where 𝐷
𝛼

𝑡
𝑢 and 𝐷

𝛼

𝑥
𝑢 are Jumarie’s modified Riemann-

Liouville derivatives of 𝑢, 𝑢 = 𝑢(𝑥, 𝑡) is an unknown
function, 𝑃 is a polynomial in 𝑢, and its various partial
derivatives.

Step 2. By using the traveling wave transformation

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝑘𝑥 + 𝜔𝑡, (7)

where 𝜔 and 𝑘 are constants to be determined later. The
nonlinear FDE (6) is reduced to the following nonlinear
fractional ordinary differential equation (FODE) for 𝑢(𝑥, 𝑡) =
𝑢(𝜉):
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Step 3. We assume that 𝑢(𝜉) can be expressed by a finite
power series of 𝐹(𝜉):

𝑢 (𝜉) = 𝑎
0
+

𝑛

∑

𝑖=1

𝑎
𝑖
𝐹
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, 𝑎
𝑛
̸= 0, (9)

where 𝑎
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑛) are constants to be determined

later, 𝑛 is a positive integer determined by balancing the
linear term of the highest order with the nonlinear term in
(8) and 𝐹 = 𝐹(𝜉) satisfies the fractional elliptic equation:

𝐷
𝛼

𝜉
𝐹 = √𝐴 + 𝐵𝐹2 + 𝐶𝐹4, 0 < 𝛼 ≤ 1, (10)

where 𝐴, 𝐵, and 𝐶 are constants. Using the Mittag-Leffler
function in one parameter 𝐸

𝛼
(𝑥) = ∑

∞

ℓ=0
(𝑥
ℓ

/Γ(1 + 𝛼ℓ)) (𝛼 >

0), (10) has different solutions, so we ought to discuss solution
of (10) in the following cases (detailed proof of these cases is
in the appendix).

Case 1. If 𝐴 = 1, 𝐵 = −2, and 𝐶 = 1, then (10) has the
following solution:

𝐹 = tanh (𝜉, 𝛼) , 𝐹 = coth (𝜉, 𝛼) . (11)

Case 2. If𝐴 = 0,𝐵 = 1, and𝐶 = −1, then (10) has the solution
𝐹 = sech(𝜉, 𝛼).

Case 3. If 𝐴 = 1/4, 𝐵 = −1/2, and 𝐶 = 1/4, then (10) has the
following solution:

𝐹 =
tanh (𝜉, 𝛼)

1 ± sech (𝜉, 𝛼)
,

𝐹 = coth (𝜉, 𝛼) + csch (𝜉, 𝛼) ,

𝐹 = tanh (𝜉, 𝛼) + 𝑖sech (𝜉, 𝛼) , 𝑖 = √−1.

(12)

Case 4. If 𝐴 = 0, 𝐵 = 1, and 𝐶 = 1 then (10) has the solution
𝐹 = csch(𝜉, 𝛼).

Case 5. If 𝐴 = 1, 𝐵 = 1, and 𝐶 = 0, then (10) has the solution
𝐹 = sinh(𝜉, 𝛼).

Case 6. If𝐴 = −1,𝐵 = 1, and𝐶 = 0, then (10) has the solution
𝐹 = cosh(𝜉, 𝛼).

Case 7. If𝐴 = 1,𝐵 = −1, and𝐶 = 0, then (10) has the solution

𝐹 = cos (𝜉, 𝛼) , 𝐹 = sin (𝜉, 𝛼) . (13)

Case 8. If𝐴 = 0,𝐵 = −1, and𝐶 = 1, then (10) has the solution

𝐹 = sec (𝜉, 𝛼) , 𝐹 = csc (𝜉, 𝛼) . (14)

Case 9. If 𝐴 = 1, 𝐵 = 2, and 𝐶 = 1, then (10) has the solution

𝐹 = tan (𝜉, 𝛼) , 𝐹 = cot (𝜉, 𝛼) , (15)
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where the generalized hyperbolic and trigonometric func-
tions are defined as
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(16)

Step 4. Substituting (9) into the FODE (8) and taking into
account (10), the left-hand side of (8) can be converted
into a polynomial in 𝐹(𝜉). Equating each coefficient of the
polynomial to zero yields system of algebraic equations for
𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
, 𝑘, and 𝜔.

Step 5. By solving the systemobtained in Step 4, the constants
𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
, 𝑘, and 𝜔 can be expressed by the parameters 𝐴,

𝐵, and 𝐶. Depending on the chosen values of 𝐴, 𝐵, and 𝐶
the function 𝐹(𝜉) possesses the traveling wave solutions as
given above, then the fractional mapping method (8) has the
traveling wave solution of the nonlinear FDE (6).

3. The Space-Time Fractional Combined
KdV-mKdV Equation

The Korteweg-de Vries (KdV) equation, together with its
extensions, has been used to describe the balance between
nonlinear wave steepening and linear wave dispersion. Also,
it is used as the model for nonlinear long waves in different
dynamical contexts, including the ion acoustic waves in plas-
mas, shallowwater waves in channels and oceans, pulse waves
in large arteries, and surface waves in nonlinear lattice [32].
On the other hand, as an extended form of the KdV equation,
the modified KdV (mKdV) equation has been applied to
describe the electromagnetic waves in size-quantized films,
Alfvén waves in collision less plasmas, interfacial waves in
two-layer liquids, and transmission lines in the Schottky
barrier. For certain environmental conditions, when the
quadratic nonlinear term is small, the cubic nonlinear term
becomes the major one and should be taken into account.
The corresponding equation is the space-time fractional
combined KdV-mKdV equation, for the internal solitary

waves in shallow seas and atmosphere dust-acoustic solitary
waves and ion acoustic waves in plasmas with negative ions:
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where 𝜇, 𝛿, and 𝜏 are constants, which is a transformed
generalization of the combined KdV-mKdV equation [33–
35]. In order to solve (17) by the fractional mapping method,
we use the traveling wave transformation 𝑢(𝑥, 𝑡) = 𝑢(𝜉),
𝜉 = 𝑘𝑥 + 𝜔𝑡, then, (17) is reduced to the following nonlinear
FODE:
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2

𝐷
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𝜉
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solution of (18) can be expressed as

𝑢 = 𝑎
0
+ 𝑎
1
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Substituting (19) into (18) using (10) and setting the coeffi-
cients of 𝐹 to zero, we get
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The general formula for the travelling wave solution of the
space-time fractional combined KdV-mKdV equation (17) is

𝑢 = −
𝜇

2𝛿
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By selecting the special value of 𝐴, 𝐵, 𝐶, and the correspond-
ing function 𝐹(𝜉), we get the following solutions of (17):

𝑢
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𝑢
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2
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1/𝛼
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(26)

The remaining solutions can be obtained in a similar manner.
With the best of our knowledge, the solutions (24) and (26)
are presented for the first time. Also, we can obtain the same
solutions (22) and (23) from the fractional Riccati expansion
method [25]. When 𝛼 = 1, we obtain the classical combined
KdV-mKdV equation

𝑢
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+ 𝜇𝑢𝑢

𝑥
+ 𝛿𝑢
2

𝑢
𝑥
+ 𝜏𝑢
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as special case of (17). Solutions given in (22)–(26) reduced
to the well known solutions of the combined KdV-mKdV
equation
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[

tanh (𝑘𝑥 + 𝜔𝑡)
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𝜇
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+
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2

2
) .

(28)

4. Conclusions and Discussions

In this paper, to construct exact analytical solutions of
nonlinear FDEs, the fractional mappingmethod is presented.
The space-time fractional combined KdV-mKdV equation
is chosen to demonstrate the power of the method. Many
exact solutions of the space-time fractional combined KdV-
mKdV equation are derived; these include the generalized
hyperbolic and trigonometric function solutions. To the best
of our knowledge, some of the solutions obtained in this
research paper have not been reported in literature. Mathe-
matical packages can be used to perform more complicated
and tedious algebraic calculations. The fractional mapping
method can be applied to other nonlinear FDEs. How to
extend other methods used for solving differential equations
such as Fan subequation method, auxiliary subequation
method, and the projective Riccati equation method to
handle FDEs is worthy to study.This is our task in the future.

Appendix

The product of two power series are given by
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𝑘=1
(𝑘𝑛−𝑚+𝑘)𝑎

𝑘
𝑐
𝑚−𝑘

[36].
For simplicity, we suppose that

𝐸
𝛼
(𝑥
𝛼

) 𝐸
𝛼
(−𝑥
𝛼

) = (

∞

∑

𝑘=0

𝑥
𝛼𝑘

Γ (1 + 𝛼𝑘)
)(

∞

∑

𝑘=0

(−𝑥
𝛼

)
𝑘

Γ (1 + 𝛼𝑘)
)

= 𝑀.

(A.3)

From the definition of cosh(𝑥, 𝛼) and sinh(𝑥, 𝛼), we can get
the following inequality:

cosh2 (𝑥, 𝛼) − sinh2 (𝑥, 𝛼)

=
1

4
[𝐸
𝛼
(𝑥
𝛼

)
2

+ 2𝐸
𝛼
(𝑥
𝛼

) 𝐸
𝛼
(−𝑥
𝛼

)

+ 𝐸
𝛼
(−𝑥
𝛼

)
2

− 𝐸
𝛼
(𝑥
𝛼

)
2

+ 2𝐸
𝛼
(𝑥
𝛼

) 𝐸
𝛼
(−𝑥
𝛼

) − 𝐸
𝛼
(−𝑥
𝛼

)
2

]

= 𝐸
𝛼
(𝑥
𝛼

) 𝐸
𝛼
(−𝑥
𝛼

) = 𝑀.

(A.4)

Dividing by cosh2(𝑥, 𝛼) and sinh2(𝑥, 𝛼), we have

1 − tanh2 (𝑥, 𝛼) = 𝑀sech2 (𝑥, 𝛼) ,

coth2 (𝑥, 𝛼) − 1 = 𝑀csch2 (𝑥, 𝛼) .
(A.5)
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Similarly, we suppose that

𝐸
𝛼
(𝑖𝑥
𝛼

)𝐸
𝛼
(−𝑖𝑥
𝛼

) = (

∞

∑

𝑘=0

(𝑖𝑥
𝛼

)
𝑘

Γ(1 + 𝛼𝑘)
)(

∞

∑

𝑘=0

(− 𝑖𝑥
𝛼

)
𝑘

Γ(1 + 𝛼𝑘)
)

= �̃�,

cos2(𝑥, 𝛼) + sin2(𝑥, 𝛼) = 𝐸
𝛼
(𝑖𝑥
𝛼

)𝐸
𝛼
(−𝑖𝑥
𝛼

) = �̃�,

1 + tan2(𝑥, 𝛼) = �̃�sec2(𝑥, 𝛼),

cot2(𝑥, 𝛼) + 1 = �̃�csc2(𝑥, 𝛼).
(A.6)

The fractional derivatives of the Mittag-Leffler function take
the form

𝐷
𝛼

𝑥
𝐸
𝛼
(𝑥
𝛼

) =

∞

∑

𝑘=0

𝐷
𝛼

𝑥
𝑥
𝛼𝑘

Γ(1 + 𝛼𝑘)

=

∞

∑

𝑘=1

Γ(1 + 𝛼𝑘)𝑥
𝛼𝑘−𝛼

Γ(1 + 𝛼𝑘)Γ(𝛼𝑘 + 1 − 𝛼)

=

∞

∑

𝑘=1

𝑥
𝛼(𝑘−1)

Γ(𝛼(𝑘 − 1) + 1)

=

∞

∑

𝑠=0

𝑥
𝛼𝑠

Γ(𝛼𝑠 + 1)

= 𝐸
𝛼
(𝑥
𝛼

),

(A.7)

𝐷
𝛼

𝑥
𝐸
𝛼
(−𝑥
𝛼

) =

∞

∑

𝑘=0

(−1)
𝑘

𝐷
𝛼

𝑥
𝑥
𝛼𝑘

Γ(1 + 𝛼𝑘)

=

∞

∑

𝑘=1

(−1)
𝑘

Γ(1 + 𝛼𝑘)𝑥
𝛼𝑘−𝛼

Γ(1 + 𝛼𝑘)Γ(𝛼𝑘 + 1 − 𝛼)

=

∞

∑

𝑘=1

(−1)
𝑘

𝑥
𝛼(𝑘−1)

Γ(𝛼(𝑘 − 1) + 1)

=

∞

∑

𝑠=0

(−1)
𝑠+1

𝑥
𝛼𝑠

Γ(𝛼𝑠 + 1)

= −𝐸
𝛼
(−𝑥
𝛼

),

(A.8)

𝐷
𝛼

𝑥
𝐸
𝛼
(𝑖𝑥
𝛼

) = 𝑖𝐸
𝛼
(𝑖𝑥
𝛼

), (A.9)

𝐷
𝛼

𝑥
𝐸
𝛼
(−𝑖𝑥
𝛼

) = −𝑖𝐸
𝛼
(−𝑖𝑥
𝛼

). (A.10)

From ((A.7)) and ((A.8)), we can get the derivatives of the
generalized hyperbolic functions

𝐷
𝛼

𝑥
[sinh(𝑥, 𝛼)] =

𝐷
𝛼

𝑥
[𝐸
𝛼
(𝑥
𝛼

)] − 𝐷
𝛼

𝑥
[𝐸
𝛼
(−𝑥
𝛼

)]

2

=
𝐸
𝛼
(𝑥
𝛼

) + 𝐸
𝛼
(−𝑥
𝛼

)

2
= cosh(𝑥, 𝛼),

𝐷
𝛼

𝑥
[cosh(𝑥, 𝛼)] =

𝐷
𝛼

𝑥
[𝐸
𝛼
(𝑥
𝛼

)] + 𝐷
𝛼

𝑥
[𝐸
𝛼
(−𝑥
𝛼

)]

2

=
𝐸
𝛼
(𝑥
𝛼

) − 𝐸
𝛼
(−𝑥
𝛼

)

2
= sinh(𝑥, 𝛼),

𝐷
𝛼

𝑥
[sin(𝑥, 𝛼)] =

𝐷
𝛼

𝑥
[𝐸
𝛼
(𝑖𝑥
𝛼

)] − 𝐷
𝛼

𝑥
[𝐸
𝛼
(−𝑖𝑥
𝛼

)]

2𝑖

=
𝐸
𝛼
(𝑖𝑥
𝛼

) + 𝐸
𝛼
(−𝑖𝑥
𝛼

)

2
= cos(𝑥, 𝛼),

𝐷
𝛼

𝑥
[cos(𝑥, 𝛼)] =

𝐷
𝛼

𝑥
[𝐸
𝛼
(𝑖𝑥
𝛼

)] + 𝐷
𝛼

𝑥
[𝐸
𝛼
(−𝑖𝑥
𝛼

)]

2

= −
𝐸
𝛼
(𝑥
𝛼

) − 𝐸
𝛼
(−𝑥
𝛼

)

2𝑖
= − sin(𝑥, 𝛼).

(A.11)

By using these inequalities, we proof the nine cases

Case A.1. If 𝐴 = 1, 𝐵 = −2, and 𝐶 = 1, then (10) has the
solution 𝐹 = tanh(𝑥, 𝛼).

L.H.S = 𝐷𝛼
𝑥
tanh(𝑥, 𝛼) = 𝐷𝛼

𝑥
[
sinh(𝑥, 𝛼)
cosh(𝑥, 𝛼)

]

= 𝐷
𝛼

𝑥
[cosh−1(𝑥, 𝛼) sinh(𝑥, 𝛼)]

= cosh−1(𝑥, 𝛼)𝐷𝛼
𝑥
[sinh(𝑥, 𝛼)]

+ sinh(𝑥, 𝛼)𝐷𝛼
𝑥
[cosh−1(𝑥, 𝛼)]

= cosh−1(𝑥, 𝛼)𝐷𝛼
𝑥
[sinh(𝑥, 𝛼)]

− sinh(𝑥, 𝛼)cosh−2(𝑥, 𝛼)𝐷𝛼
𝑥
[cosh(𝑥, 𝛼)]

=
cosh2(𝑥, 𝛼) − sinh2(𝑥, 𝛼)

cosh2(𝑥, 𝛼)

=
𝑀

cosh2(𝑥, 𝛼)
= 𝑀sech2(𝑥, 𝛼),

R.H.S = [1 − 2tanh2(𝑥, 𝛼) + tanh4(𝑥, 𝛼)]
1/2

= 1 − tanh2(𝑥, 𝛼) = 𝑀sech2(𝑥, 𝛼).

(A.12)

Then, the two sides are equal. By the same manner, the other
formulas can be derived.
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