
Hindawi Publishing Corporation
Advances in Fuzzy Systems
Volume 2012, Article ID 475894, 11 pages
doi:10.1155/2012/475894

Research Article

Designing High-Performance Fuzzy Controllers Combining IP
Cores and Soft Processors

Oscar Montiel-Ross, Jorge Quiñones, and Roberto Sepúlveda

Instituto Politécnico Nacional, CITEDI, Avenida del Parque 1310, 22510 Tijuana, B.C., Mexico

Correspondence should be addressed to Oscar Montiel-Ross, o.montiel@ieee.org

Received 5 May 2012; Accepted 3 June 2012

Academic Editor: Oscar Castillo

Copyright © 2012 Oscar Montiel-Ross et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents a methodology to integrate a fuzzy coprocessor described in VHDL (VHSIC Hardware Description Language)
to a soft processor embedded into an FPGA, which increases the throughput of the whole system, since the controller uses
parallelism at the circuitry level for high-speed-demanding applications, the rest of the application can be written in C/C++.
We used the ARM 32-bit soft processor, which allows sequential and parallel programming. The FLC coprocessor incorporates a
tuning method that allows to manipulate the system response. We show experimental results using a fuzzy PD+I controller as the
embedded coprocessor.

1. Introduction

Nowadays, the term System on Chip (SoC) gains terrain
since the trend towards the use of a highly efficient hardware
platform for real-time processing is increasing [1]. Modern
FPGA devices that allow to mix digital and analog signal
makes them a good choice to use them for SoC design [2].

FPGA platforms are designed to achieve higher inte-
gration levels in low-power low-cost electronic systems
by embedding processors with efficient architectures such
as DSP, RISC, multicore processor systems, buses, on-
chip memory blocks, peripheral devices [3]. FPGA-based
system architectures support the combination of user defined
synthesizable Intellectual Property (IP) blocks with IP blocks
and software drivers and libraries provided by the manu-
facturer [4]. The use of SoC allows total independence of
a desktop computer system, reducing costs, and increasing
performance of applications, avoiding communication inter-
face bottlenecks, latency, and data loss [5].

The SoC design based on modern FPGAs may incorpo-
rate dedicated processors embedded in the silicon known as
“Hard”, and programmable processors known as “Soft” that
are implemented in the programmable logic resources of the
FPGA, or a mixed of both.

The real-world problems are diverse and complex, treat-
ing many of them becomes difficult, because they make

us face many scientific and technological barriers, such as,
mathematical modeling and high-speed processing for data
processing and control applications [6].

For control applications, there exist many techniques and
strategies to make a system behaves according to a plan;
for example, to use a Fuzzy Logic Controller (FLC) that is
considered as a control strategy based on rules, which are
usually raised by the knowledge from an expert. This may
be crucial in control problems that could present difficulties
in constructing accurate mathematical models [7, 8].

There are two typical options to carry out applications of
FLC embedded into an FPGA.

(1) To describe the FLC in C language and then use a
specialized tool (compiler) to translate Handel C to
bitstream [9, 10].

(2) To use VHDL to describe the FLC, this can be used
as (a) standalone controller, (b) incorporated to a
hard/soft processor as a Soft Core connected to the
system bus, (c) incorporated to a hard/soft processor
through an internal input/output interface [11, 12].

The complexity of modern systems requires more design
efforts by increasing developing costs; so, to minimize them,
the reutilization of already tested circuits is a necessity.
Any functional component to be reused in the form of



2 Advances in Fuzzy Systems

Product requirements

System architecture

Hardware design Software design

Verification and validation

Hard/soft core processor
selection

Hardware and software
integration

Figure 1: Design process of an embedded system.

Input Output
Inference engine

Rule baseFu
zz

ifi
ca

ti
on

D
ef

u
zz

ifi
ca

ti
on

Figure 2: Fuzzy inference system.

an already-designed electronic component, or fabricated
hardware constitute an Intellectual Property Core (IP-Core).

This paper presents a methodology to integrate a FLC to
a SoC through an input/output internal port; the idea is to
use the FLC as a coprocessor. Furthermore, an experimental
study of high-performance computing using fuzzy modeling
implemented in FPGA-based systems is presented.

Other studies that have addressed the same subject with
a different focus are. In [13], the authors describe their
experiences designing real-time hardware/software for SoC
and they addressed the problem of data acquisition for
the ANTARES neutrino experiment, and for the problem
of a selective read-out processor for an electromagnetic
calorimeter. In [14, 15], the authors present the architecture

and VHDL code to implement a type-1 FLC, while in [16]
the architecture and VHDL code to implement a type-2 FLC
and experiments are presented.

In literature, there exist many interesting works that
deal with fuzzy controllers that can be embedded into an
FPGA, for example. [17] presents the genetic optimization of
Membership Functions (MFs) for an Incremental Fuzzy PD
Controller, [18] shows the optimization of MFs to regulate a
servomechanism with backlash.

The organization of this paper is as follows. Section 2
explains the design process of an embedded system, how to
integrate a fuzzy coprocessor into a SoC, and the debugging
process. In Section 3, the problem formulation, experimental
plant, control objective, and electromechanical limitations
concerning time are given. In Section 4, the generic archi-
tecture that integrates the ARM processor and the FLC
as Intellectual Property cores (IP core) is described. In
Section 5, the main characteristics of the FLC are described,
and the methodology to tune the FLC using one variable is
explained. In Section 6, the experiments’ sets and results are
explained. Finally, in Section 7, the conclusions of this work
are given.

2. Integrating a Fuzzy Coprocessor in a SoC

Figure 1 illustrates the design process of a SoC-embedded
system. It is a standalone dedicated hardware computer with
custom peripherals incorporated to the system as IP cores,
and specialized software to solve a specific problem.



Advances in Fuzzy Systems 3

Start

Synthesis

Place and route

Debug software in C

Start

Debug
software in C

Download
bitstream in the

FPGA

End

• Design the system architecture

ARM, I/O attributes, bus)

• Add FLC VHDL entity
(membership function, fuzzy I/O
variables, rules)

Set point

Measurement of the RPM

Compute error and change of error

Compute fuzzy inference

Read coprocessor result

• Set the GPIO (coprocessor)

Control signal (PWM)

Displays results (error, change of error,
K, output) in the OLED screen

Send data (error, change of
error, K) to fuzzy coprocessor

Hardware design

(IP CORES, soft-processor • Sets the PWM/TACH IPCORES
(mode = tach)

• Sets the PWM/TACH IPCORE
(mode = PWM, frequency = 1 khz,
duty cycle = 0%)

• Set interrupt
• Set IIC (display OLED)

Figure 3: Flow diagram of the debugging process of a C program executed in the FPGA base system.

2.1. Designing the FLC as IP Core. Figure 2 shows the typical
way of representing a FLC; it is composed of three stages: the
fuzzification stage, the inference engine that contains the rule
base and database, and defuzzification stage [19].

In general, the steps to incorporate into an FPGA Fusion
an FLC as Soft IP core using the Libero software are.

(1) Create the Entity Design of the FLC by using either
a Hardware Description Language (HDL), structural
schematic, or mixed-mode (schematic and Register
Transfer Logic “RTL”). We used VHDL (Very High
Speed Integrated Circuit HDL) to specify all the fuzzy
engine and parameters.

(2) Test the functionality of the FLC Entity Design using
a test bench program such as the Model Sim for
VHDL.

(3) Create the soft processor and incorporate the FLC IP
coprocessor [20] entity to the system bus trough the
GPIO IP.

(4) Edit and debug the ARM firmware in C language to
complement the controller’s design incorporating the
reading and conditioning of the process variables.

(5) Download the bitstream to the target FPGA develop-
ment board.

The obtained FLC is a portable, reusable, and nonen-
crypted Soft IP core. It was designed to be used through an
input/output interface, which is an advantage because many
of the commercial IP cores have the inconvenient that are not
compatible with all the system buses.

Figure 3 illustrates the hardware design and debugging of
the software written in C language.

3. Problem Formulation

The main target of this work is to give a methodology
to integrate a soft IP FLC to a SoC in order to develop
high-performance applications; whereas, the experiments



4 Advances in Fuzzy Systems

Figure 4: Inverted pendulum system.

are focused to demonstrate the advantages of using high-
performance FLC for real-life problems. To achieve the
objective paper, we are including two well-known problems.

In the first problem, we used a plant with the next
main components: a Pittman DC geared-motor model
GM9236S025-R1, a ±12 VDC power Supply, an H-bridge
board, and a PWM system to provide the motor with the
necessary average power to reach the desired speed with
and without load, and disturbances. Therefore, the control
objective is to reach the wanted speed as fast as possible
with the minimal overshoot, which is achieved by the correct
calculation of the relation TON/TOFF to fulfill the target.

Two important characteristics of this motor are the
electrical time constant τE and the mechanical time constant
τM whose values are 1.06 ms and 8.5 ms, respectively; so, we
can consider global response time constant of 9.16 ms. This
time is significant since it is the time required for the motor’s
speed to attain 63.2% of its final value for a fixed voltage level.

The DC motor alone is a linear plant since the no-load
speed is directly proportional to the DC supply voltage.
However, the system becomes nonlinear when a switching
supply is applied, in this case by using PWM; in addition, the
application of load and disturbances increases nonlinearities.

In the second problem, the plant is an inverted pendu-
lum; see Figure 4. The cart is mounted over an aluminum
frame; it is moved from one side to the other using a ball
screw controlled by a motor. The pole balancing is mounted

over the cart and coupled to a quadrature optical encoder
Model 121, which provides 300 counts per revolution (CPR).

4. SoC General Description

In Figure 5, the designed system architecture for FPGA
Fusion [21] of the Actel company is shown, embedded into
the FPGA are. The ARM processor, two memory blocks,
a general-purpose input output (GPIO) interface, timers,
interrupt controller (IRQ), IIC, serial port (UART), pulse
width modulator/tachometer block, and the FLC block [14,
15]; all the embedded components are IP cores. External to
the FPGA are a DC motor with a high-resolution quadrature
optical encoder, the plant’s power supply, an H-bridge for
power control, a personal computer, and a digital display.

The FPGA Fusion allows to incorporate the soft proces-
sor ARM cortex, as well as other IP Cores (IPCORE) to make
a custom configuration. The ARM cortex handles a 32-bit
bus for peripheral control named Advanced Peripheral Bus
(APB). Note in Figure 5 that the block FLC contains the
design of the fuzzy controller integrated to the system as a
soft IP CORE, similarly the rest of the IPCOREs are general
purpose devices from the catalog of cores provided by Actel
and the system board seller. In this system, the FLC IP core
has the advantage that it is not dependable of the bus system,
and it provides to the user the capacity of handling very easy
without the need of knowing the internal functionality; on
the other hand, because it is not encrypted, the content can
be read.

Figure 5 shows how to connect the FLC IP core to the
ARM processor through the GPIO. The FLC has seven inputs
and two output. The inputs are “clk”, “ce”, “rst”, “k”, “error”,
“c.error”, and “w”. The input “clk” is a 50 Mhz system clock,
the aim of the “ce” input is to enable or disable the FLC,
and the input “rst” restores all the internal registers of the
FLC, the input “w” working together with “ce” allows to
start a fuzzy inference cycle; all they are one-bit size. The
four-bit input “k” is for modifying the support of the input
membership functions to change the system response. The
eight-bit input “Error” and Change of Error “c.error” are the
controller inputs. The outputs are “Out” and “IRQ”. “Out”
is eight-bits wide and it is the crisp output value. “IRQ”
is the interrupt request FLC output. The system has five
membership functions (MFs) for each input and output. The
input and output MFs are trapezoidal at the extremes, and
the remaining are triangular. This FLC uses the simple tuning
algorithm for modifying the system’s response in an intuitive
way [14, 15]. Figure 6 shows the FLC entity and GPIO IP bus
connection.

The GPIO IP has two 32-bit wide ports; one for output
(write bus) and one for input (reading bus). The output bus
connects the GPIO IP to the ARM cortex using the 32-bit
bus APB. The input bus connects the FLC IP to the GPIO IP.
In this configuration, the FLC works as a coprocessor of the
ARM cortex processor.

The ARM processor writes a “k(3:0)” value for setting
up the input MFs, it provides the Error and Change of
error values for the “Error(7:0)” and “c.error(7:0)” FLC



Advances in Fuzzy Systems 5

Memory flash Memory sram

PC

ARM processor

OLED
display

AHB

APB

CLK

CLK

CLK

CLK

CLK

CLK

CLK

CLK

CLK

CLK

CLK

UART

IIC GPIO

FLC

IRQ

IRQ

IRQ

IRQ

IRQ

IRQ

IRQ

O

O O

O
O
O
O

O
O

O

I

II
I

I
I
I
I
IIRQ

OSC/PLL

FPGA

ce
rst
w

IRQ

E
n

co
de

r DC
power
supply

H-bridge

Timers
50 Mhz

I/O

I/O

PWM

P
W

M

PWM
/TACH

Out(7 : 0)

k(3 : 0)
Error(7 : 0)
c.error(7 : 0)

Figure 5: Overview of the general system.

Not connected w ce rst Error k

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Output bus

Input bus

Ground Out

ce
rst

w

FLC IRQ

clk

c.error

Out(7 : 0)

k(3 : 0)
Error(7 : 0)
c.error(7 : 0)

Figure 6: FLC entity and GPIO bus connection.

inputs, this is achieved using the output variables k[3:0],
Error[11:4], and c.error [19:12] of the GPIO IP. Similarly, the
ARM reads the FLC output “Out(7:0)” through the GPIO IP
using the 8 bit input variable Out(0:7).

5. FLC Characteristics

For each input of the FLC, Error and Change of error,
we defined five MFs: LN (large negative), N (negative), Z
(zero), P (positive), and LP (large positive). The universe
of discourse for these membership functions is in the range
[−80, 80].

For the output of the FLC, we have five MFs: LD (large
decrement), D (decrement), Z (zero), I (increment) and

LI (large increment), with the universe of discourse in the
interval [−100, 100].

Figure 7 shows the input/output membership functions,
and the rule matrix of the FLC, integrated by 25 rules, is
shown in Figure 8.

5.1. Tuning the Controller. The FLC IP has a three-bit input
to manipulate the MFs to improve the desired response by
using the method referred in literature as Simple Tuning
Algorithm (STA) [22, 23]. There are different methods to
tune a FLC, for example, evolutionary computation, Fuzzy
Knowledge Base Controllers, and so forth, where the aim is
to search the optimal solution in base of objective function,
gradient error, and others but in most of the cases these



6 Advances in Fuzzy Systems

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0

0 20 40 60
128 255

LN N Z P LP

−60 −40 −20

(rpm)

(a) Input Error

0 20 40 60
128 255

−60 −40 −20
0

LN N Z P LP

(rpm)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

(b) Input Change of error

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0
0

20 40 60
128 255

−60 −40 −20 80−80

Increment

LD D Z I LI

(c) Output MF

Figure 7: The FLC has two inputs: Error and Change of error, and one output. The output provides a value of increment/decrement to be
use by the integral part of the PD+I controller. The first scale [0, 255] are the real MFs bit values definition in the FLC. The second scale
[−80, 80] and [−100, 100] are the operation values for this application. The scale conversion is achieved by the ARM processor.

e
ce

LN

LN N

N

P

P

LP

LP

LD

LD

LD

LD

LDLDD

D

D

DLI

LI

LI

LI

LI

LI

Z

Z

Z

Z

ZZ

Z

I

I

I

I

Figure 8: Rule matrix of the FLC.

methodologies have convergence and mathematical repre-
sentation problems; furthermore, often they require many
system resources and have considerable big computational
complexity for online adaptation of real time systems.

The STA takes advantage of the typical characteristic of
error behavior around the set point, so it is possible to use a
predefined set of MFs and rules and modify their support
according to a very simple arithmetic expression. In this
example, the two inputs were modified using only a tuning
factor [23]; however, it is likely to modify both inputs using
two tuning factors [22]. In Figure 9, the normalized inputs
are shown; Figures 10(a) and 10(b) show how the MFs are

µ(x)

−1 −0.66 −0.33 0 0.33 0.66
a b c d

x1

Figure 9: Normalization of the input MFs. The tuning factor is
r = 1.

modified by the application of the STA algorithm and their
effect in the system behavior.
Considering all the points in the universe of discourse that
defines every MF of each input, a vector named VOPinitial , is
codified. The basic idea of the STA is to change this vector
using an exponential function r(k) named the tuning factor
such as VOPfinal = (VOPinitial )

r(k), that produces the changes
to the system which is shown in Figure 10. This leads us to
analyze the next three cases using Figure 9:

(1) r = 1: this is the case where the normalized MFs have
no change; that is, a− b = b − c = c − d,



Advances in Fuzzy Systems 7

u(x)
1

y

x

x

(a) The tuning factor is r < 1

1
u(x)

x

x

y

(b) The tuning factor is r > 1

Figure 10: Modifying the input MFs using the formula VOPfinal =
(VOPinitial )

r(k).

(2) r < 1: after the application of the tuning factor, the
distances between the middle MFs operation points
are larger than the external; so, ar − br > cr − dr ,
producing the expansion of the MFs, as illustrated in
Figure 10(a).

(3) r > 1: the opposite case of previous, after the appli-
cation of the tuning factor, the distances between the
two external MFs are larger than the others; that is,
ar − br < cr − dr . This produces the compression of
the MFs, this effect is shown in Figure 10(b).

Therefore, the STA consists basically in four steps.

(1) Tuning Factor Selection. A number k ∈ [0, 1] to define
the tuning adjustment level is used. k = 0 is the
biggest time, and k = 1 the smallest.

(2) Normalization of the Ranges of the Fuzzy Controller’s
variables. The range of each input fuzzy variable is
modified in order to have the lower and upper limits
equal to −1 and +1, respectively, see Figure 9.

(3) Tuning Factor Processing. Once the range is normal-
ized, the new vector of operation points will be given
by.

VOPfinal =
(
VOPinitial

)r(k), (1)

where VOPinitial are the normalized values of the MFs
in the x-axis and r(k) can be one of the following
polynomials:

(a) The value r ∈ [1/40, 3]

r(k) = 30k3 + 37k2 + 52k + 1
40

, (2)

(b) The value r ∈ [0, 4]

q(k) = 4k2. (3)

Both polynomials can be implemented into an
FPGA, the first one needs more calculation,
whereas the second option offers reduction of
the polynomial size, reducing computational
cost. However, using a lookup table the size is
not a problem.

(4) Renormalization of the Ranges of the Fuzzy Variables.
Convert the normalized range to the previous range
of the system.

The method can be applied to both inputs, as it was
shown in [22, 23]; in the first work, two different tune factors
were used, one for each fuzzy input. In the second work,
experiments modifying both inputs using the same tuning
value were shown. Results of both methods are satisfactory,
using [23, 24] requires fewer resources and is easier to tune
the system using just one variable.

6. Experiments and Results

With the aim of evaluating equivalent implementations
of high-performance FLC embedded into an FPGA; two
different systems were tested.

6.1. System 1: Speed Control of a DC Motor. For system
1, two sets of experiments were conducted. The first set
comprises six experiments using different development
platforms where the FLC was implemented to solve the
previously regulation of speed problem. In the second set,
the configuration of ARM soft processor with the FLC IP was
chosen, because it demonstrated to be the best for the target
of this work; therefore, we tested the controller using the STA
to tune the controller.

For All Experiments. We consider a complete fuzzy inference,
the process of fuzzification of crisp data, to infer a conclusion
using the Mamdani inference engine, and defuzzification to
obtain a crisp value.

Next, for each experiment, particular characteristics are
described. Table 1 summarized the results.



8 Advances in Fuzzy Systems

Figure 11: Actel development board for FPGA model “Embedded M1AFs1500 KIT.”

Table 1: Comparing performance of FLC implementation for different development platforms.

Experiment Platform CPU Clock frequency Runtime (ms)

1 PC Core 2 duo 2.66 GHz 20

2 Spartan 3 Microblaze 50 MHz 37

3 Virtex 5 Microblaze 100 MHz 16

4 Virtex 5 Power PC 100 MHz 12

5 Atmel AVR 8-bit Microcontroller 16 MHz 87

6 Fusion ARM with fuzzy coprocessor 50 MHz 0.000160

50
45
40
35
30
25
20
15
10

5
0

0 5 10 15 20 25 30 35 40

(ms)

k = 1
k = 0.8

k = 0.7
k = 0.6

(r
pm

)

Figure 12: System response for different tuning factors.

6.1.1. Set 1 of Experiments

Experiment 1. The PC system is based on an Intel Core
2 Duo, with 6 GB of RAM. The FLC was implemented
using the Fuzzy Logic Toolbox from Matlab-Simulink. The
FLC writes and read information of the control plant using
serial communication. A complete inference last 20 ms. We
did not consider in the calculus the time due to serial
communication.

Experiment 2. We used the Spartan 3 FPGA mounted in
the Starter kit of Xilinx. We implemented into the FPGA

50

40

30

20

10

0

−10
4035302520151050

(ms)

k = 1
k = 0.8

k = 0.7
k = 0.6

(r
pm

)

Figure 13: Plot of errors in the system response produced by
different k tuning values. Note that k = 0.8 produces less errors.

the 32-bit Microblaze soft-core with 1 MB of RAM; the
system clock is 50 Mhz. The FLC was implemented using
C language. As the operating system we used the kernel of
Xilinx standalone.

Experiment 3. In this test, a Virtex 5 FPGA mounted in the
experimental board “ML507 FPGA technology” from Xilinx
was used to embed a Microblaze soft-processor system,
with 16 MB of RAM, and 2 KB of cache memory; the
system clock is 100 Mhz. The FLC was implemented using



Advances in Fuzzy Systems 9

60
40
20

0
−20
−40
−60

80 60 40 20 0 −20−40−60−80 80
40

0
−40

−80

O
u

tp
u

t

Change of error “ce”
Error “e”

Figure 14: Surface control for a tuning factor k = 0.5.

LP

LP

R

R

R

R

R

R

RL

RL

RLRLRL

L

LL

L

L

Z

LL

LL LL

LL

LL

LLLN

e
LN

P

P

N

N Z

Z

Z

Z

ce

Figure 15: Rule matrix for the inverted pendulum on a cart system.

C language. As the operating system we used the kernel of
Xilinx standalone.

Experiment 4. The Power PC hard processor of the FPGA
Virtex 5 was used. The experimental board “ML507 FPGA”
provided us with 16 MB of RAM and 2 KB of cache memory;
and the system clock is 100 Mhz. The FLC was implemented
in C language. As the operating system we used the kernel of
Xilinx standalone.

Experiment 5. The idea behind this experiment is to evaluate
the FLC implemented in an 8-bit microcontroller system.
We used the Atmel AVR development platform with the
general-purpose microcontroller Atmel ATmega 16 running
at a frequency of 16 Mhz.

Experiment 6. We used the system architecture of Figure 5
implemented in the Actel development board for FPGA
model “Embedded M1AFS1500 KIT.” This board is based on
the FPGA Fusion of the same company; see Figure 11. This
implementation uses the ARM cortex soft-processor and
incorporates the FLC IP as a coprocessor. The FLC was coded
in VHDL. Figure 11 shows a simple test of the FLC, we chose
values with known output. The ARM soft-processor sent to
the FLC, through the GPIO IP the input values “Error = 69.3
(0 × EF)”, “change of error = −60.5 (0 × 1F)”, and “k = 0.5
(0 × 07)”. The output value of −60 (0 × 51) is read by the
ARM and sent to the OLED display (red rectangle).

6.1.2. Set 2 of Experiments. Several experiments for different
k values using the FPGA Fusion configured as in Figure 5
were achieved. The ARM soft processor handling the FLC IP

0
0 20 40 60 80 90

128 255
−90 −80 −60 −40 −20

Angle

LN N Z P LP
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

(a) Input error

0 128 255
18013590450

LN N Z P LP

−45−90−135−180

Angle

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

(b) Change of error

LL L Z R RL

Output

−100 −80 −60 −40 −20 0 20 40 60 80 100
0 128 255

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

(c) Output

Figure 16: The FLC has two inputs: Error and Change of error, and
one output. The output provides a value of increment/decrement
to be used by the integral part of the PD+I controller. The first scale
[0.255] are the real MFs bit values definition in the FLC. The second
scale [−90, 90], [−180, 180], and [−100, 100] are the operation
values for this application. The scale conversion is achieved by the
ARM processor.

was tested. The system response was modified using the STA.
The ARM processor modifies the k tuning factor though the
GPIO IP.

Results for k values of 0.5, 0.7, 0.8, and 1.0 are shown.
Figures 12 and 13 show the system response and errors, for
the mentioned tuning factors. Note that k = 0.8 provides the



10 Advances in Fuzzy Systems

60
40

0−20
−40
−60

O
u

tp
u

t

150
100

50
0−50−100−150

Error

20

−80−60−40−20 0 20 40 60 80
c.error

Figure 17: Surface control of the inverted pendulum system.

best system response; whereas k = 0.5 the slower response,
and k = 1.0 the faster response with an overshoot. Figure 14
shows the control surface of the controller for a k value of 0.5.
The sampling time for this set of experiments was 700 μs.

6.2. System 2: Inverted Pendulum on a Cart. For system 2 the
inverted pendulum on a cart system of Figure 4 was used.
We repeated all the experiments of Table 1 for this system;
in congruence with the results of this table, we obtained
practically the same running times in all the experiments.
Next, we show the experimental setup for the FPGA Fusion.
The membership functions were tuned using the STA.

The FLC has two inputs, “Error” and “Change of error”
and one output labeled as “output”. Figure 15 shows the rule
matrix for this system, in Figures 16(a), 16(b) and 16(c)
are the membership functions for the inputs and output
linguistic variables, and Figure 17 shows the surface control
of the inverted pendulum on a cart system.

7. Conclusions

The design and implementation of a High-Performance FLC
that incorporates an efficient and practical method to tune
the controller to the plant was explained. The tunable FLC
IP was integrated into a SoC based on the FPGA Fusion
jointly with an ARM soft processor and tested using two
electromechanical systems.

In the first system, the regulation of the speed of a DC
motor was the control objective, being the target of the paper
to evaluate the performance of hardware implementations of
fuzzy controllers used as IP Cores, two sets of comparative
experiments of the system performance were achieved.
The aim of the first set was to compare the FLC IP
coprocessor against other development platforms, including
a Core 2 Duo PC system, three implementations of the
FLC programmed in C language running on the Microblaze
soft-core processor mounted into the Spartan 3, and Virtex
5 FPGA systems. One C language implementation of the
FLC running into the Atmel AVR 8-bit Microcontroller,
and one implementation of the FLC coded using VHDL,
and mounted as IP into the FPGA Fusion. We achieved an

experimental evaluation of time computational complexity
of the above systems.

The worst performance system was the FLC implemented
using the Atmel AVR 8-bit Microcontroller, with this experi-
ment we got the worst-case bound.

In the average bound, we found the three software
prototypes of the FLC programmed in C language running
on FPGA platforms, together with the PC development.
Differences among FPGA systems are mainly due to systems
clock; this is more evident on the Spartan 3 running with half
of the frequency clock with respect to other FPGA systems.
In the PC, the problem was that the FLC was running on
Simulink controlling the plant using serial communication.
Due to the implementation characteristic, this was not a real
time system.

In the second system, the same set of tests were achieved
and the execution times were consistent with the results
obtained in the first system, some nonsignificant changes in
values of FLC implemented in C occurred. However; for the
case of study, the FLC IP Core, always last the same time, this
is because the execution time is tight to the system clock, the
FLC always last three clock cycles, and the GPIO IP last five
clock cycles, therefore the FLC IP last eight clock cycles.

The FLC IP was designed to work in real time, when the
FLC finish a whole inference cycle (fuzzification, inference,
defuzzification) it enables the IRQ output request that can be
sent to the interrupt controller for real time applications, or
latched to be read by an input/output port to work in polling
mode for applications that does not require real time.

The best-case SoC is the FLC IP combined with the
ARM soft-processor, the speed-up with respect to the other
development platform is 78, 125 times.

There are other interesting points to remark, for example,
the flexibility that FPGA based system provides to implement
SoC; this is important because it is possible to design inde-
pendent low-cost low-power consumption and inexpensive
systems that can mix digital and analogical signals. The use
of specialized software, the growing availability of resources
such as IP allow to simplify the development process of real
time systems. The FLC IP soft-core has the advantage that
it is not dependable on the bus system, and it provides to
the user an easy handling capability without the need of the
knowledge of the internal functionality; on the other hand,
because it is not encrypted, the content can be read.

Finally, the incorporation of specialized debugging and
testing modules into the SoC facilitates these complex and
tedious tasks.

At present time, we are developing the IP core a Type-2
FLC, we have simulated stage by stage, for example the type-
2 defuzzification stage [25]. The whole Type-2 FLC can be
tuned using the STA algorithm for type-2 [26].

Acknowledgments

The authors would like to thank the “Instituto Politécnico
Nacional (IPN)”, “Comisión de Operación y Fomento de
Actividades Académicas (COFAA)”, and the Mexican “Con-
sejo Nacional de Ciencia y Tecnologı́a (CONACYT)” for
supporting the research activities.



Advances in Fuzzy Systems 11

References

[1] M. J. Flynn and W. Luk, Computer System Design: System-on-
Chip, John Wiley & Sons, Hoboken, NJ, USA, 2011.

[2] L. Idkhajine, E. Monmasson, M. W. Naouar, A. Prata, and
K. Bouallaga, “Fully integrated FPGA-based controller for
synchronous motor drive,” IEEE Transactions on Industrial
Electronics, vol. 56, no. 10, pp. 4006–4017, 2009.

[3] F. Sun, H. Wang, F. Fu, and X. Li, “Survey of FPGA low
power design,” in Proceedings of the International Conference
on Intelligent Control and Information Processing (ICICIP ’10),
pp. 547–550, August 2010.

[4] D. Saha and S. Sur-Kolay, “SoC: a real platform for IP reuse,
IP infringement, and IP protection,” VLSI Design, vol. 2011,
Article ID 731957, 10 pages, 2011.

[5] L. Tian, H. Pan, and D. Li, “Efficient Memory Processors
Design of Multiple Applications for Multiprocessors Architec-
ture,” in Software Engineering and Knowledge Engineering: The-
ory and Practice in Advances in Intelligent and Soft Computing,
Y. Wu, Ed., pp. 693–697, Springer, Berlin, Germany, 2012.

[6] R. E. Precup and H. Hellendoorn, “A survey on industrial
applications of fuzzy control,” Computers in Industry, vol. 62,
no. 3, pp. 213–226, 2011.

[7] J. Kackprzyk, “Multistage fuzzy control: a model-based
approach to fuzzy control and decision making,” Journal of
Multi-Criteria Decision Analysis, vol. 7, no. 4, pp. 239–240,
1998.

[8] T. J. Ross, Fuzzy Logic With Engineering Applications, John
Wiley & Sons, Singapore, 3rd edition, 2010.

[9] L. Jim, Embedded Control Systems in C/C++, CMP Books,
Berkley, Calif, USA, 2004.

[10] V. Thareja, M. Bolic, and V. Groza, “Design of a fuzzy logic
coprocessor using handel-C,” in Proceedings of the 2nd IEEE
International Workshop on Soft Computing Applications (SOFA
’07), pp. 83–88, Oradea, Romania, August 2007.

[11] P. Sundararajan, Performance Computing Using FPGAs, Xilinx,
San Jose, Calif, USA, 2010, http://china.origin.xilinx.com/
support/documentation/white papers/wp375.

[12] R. Sass and A. G. Schmidt, Embedded Systems Design With
Platform FPGAs, Elsevier, New York, NY, USA, 2010.

[13] S. Anvar, O. Gachelin, P. Kestener, H. Le Provost, and I.
Mandjavidze, “FPGA-based system-on-chip designs for real-
time applications in particle physics,” IEEE Transactions on
Nuclear Science, vol. 53, no. 3, pp. 682–687, 2006.

[14] O. Montiel, J. Olivas, R. Sepúlveda, and O. Castillo, “Devel-
opment of an embedded simple tuned fuzzy controller,” in
Proceedings of the IEEE International Conference on Fuzzy
Systems (FUZZ ’08), pp. 555–561, June 2008.

[15] O. Montiel, Y. Maldonado, R. Sepúlveda, and O. Castillo,
“Simple tuned fuzzy controller embedded into an FPGA,” in
Proceedings of the Annual Meeting of the North American Fuzzy
Information Processing Society (NAFIPS ’08), pp. 1–6, May
2008.

[16] R. Sepúlveda, O. Montiel, O. Castillo, and P. Melin, “Embed-
ding a high speed interval type-2 fuzzy controller for a real
plant into an FPGA,” Applied Soft Computing Journal, vol. 12,
no. 3, pp. 988–998, 2012.

[17] Y. Maldonado, O. Castillo, and P. Melin, “Optimization of
membership functions for an incremental fuzzy PD control
based on genetic algorithms,” in Soft Computing For Intelligent
Control and Mobile Robotics, O. Castillo, J. Kacprzyk, and

W. Pedrycz, Eds., vol. 318, pp. 195–211, Springer, Berlin,
Germany, 2011.

[18] N. R. Cázarez-Castro, L. T. Aguilar, and O. Castillo, “Fuzzy
logic control with genetic membership function parameters
optimization for the output regulation of a servomechanism
with nonlinear backlash,” Expert Systems with Applications,
vol. 37, no. 6, pp. 4368–4378, 2010.

[19] I. S. Shaw, Fuzzy Control on Industrial Systems: Theory and
Applications, Kluwer Academic, New York, NY, USA, 2010.

[20] A. Stefano and C. Giaconia, “An FPGA-based adaptive fuzzy
coprocessor,” in Computational Intelligence and Bioinspired
Systems, Lecture Notes in Computer Science, C. Sandoval, J.
Cabestany, A. Prieto, and F. Sandoval, Eds., vol. 3512, pp. 1–
8, Springer, 2005.

[21] Actel, The Advantages of the 32-Bit Cortex-M1 Processor in
Actel FPGAs, Actel, 2007, http://www.actel.com/documents/
CortexM1 Advantages WP.pdf.

[22] H. A. Ortiz-De-La-Vega, E. Gomez-Ramirez, and J. C. Cortes-
Rios, “Simple Tuning Algorithm improvements for fuzzy logic
controllers,” in Proceedings of the 6th IEEE World Congress on
Computational Intelligence (WCCI ’10), pp. 1–8, July 2010.

[23] M. A. P. Garcı́a, I. M. M. Sanchez, O. Montiel, R. Sepúlveda,
and O. Castillo, “Simple tuning of a fuzzy pulse width mod-
ulation controller for a DC motor application,” in Proceedings
of the International Conference on Artificial. Intelligence (ICAI
’06), vol. 2, pp. 598–604, Las Vegas, Nev, USA, June 2006.

[24] O. Montiel, R. Sepúlveda, P. Melin, O. Castillo, M. Á. Porta,
and I. M. Meza, “Performance of a simple tuned fuzzy
controller and a PID controller on a DC motor,” in Proceedings
of the IEEE Symposium on Foundations of Computational
Intelligence (FOCI ’07), pp. 531–537, April 2007.

[25] R. Sepúlveda, O. Montiel, O. Castillo, and P. Melin, “Modelling
and simulation of the defuzzification stage of a type-2 fuzzy
controller using VHDL code,” Control and Intelligent Systems,
vol. 39, no. 1, pp. 33–40, 2011.

[26] E. Gómez-Ramı́rez, P. Melin, and O. Castillo, “Simple tuning
of type-2 fuzzy controllers,” in Soft Computing for Intelligent
Control and Mobile Robotics, Studies in Computational Intelli-
gence, O. Castillo, J. Kacprzyk, and W. Pedrycz, Eds., vol. 318,
pp. 103–123, Springer, Berlin, Germany, 2011.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


