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Multiple model iterative learning control (MMILC) method is proposed to deal with the continuous-time nonlinear system with
uncertain and iteration-varying parameters. In this kind of control strategy,multiplemodels are established to cover the uncertainty
of system; a switchingmechanism is used to decide themost appropriatemodel for system in current iteration. For system operating
iteratively in a fixed time interval with uncertain or jumping parameters, this kind of MMILC can improve the transient response
and control property greatly. Asymptotical convergence is demonstrated theoretically, and the control effectiveness is illustrated by
numerical simulation.

1. Introduction

Data-driven techniques, which can extract and utilize useful
information from huge amount of available process data to
realize the control of complex system, have been one of
the hottest research focuses [1, 2]. As one of the most rep-
resentative data-driven methods, iterative learning control
(ILC) can use the information of measured state error and
control input to realize desired control performance through
iterative refinement of control signal [3]. Just relaying on
the process measurements without prior knowledge of the
controlled plant, ILC is an effective control strategy to realize
the uniform tracking of desired trajectory, even for systems
with uncertainties like imprecise parameters and unmodeled
dynamics.

However, it should be noted that, for traditional ILC
methods since Arimoto et al. [4], strict iteration-invariant
identical conditions on initial states and process dynamics,
as well as the desired trajectory, must be satisfied [5]. ILC
has been applied to robot manipulator [6], chemical process
[7], and semiconductor manufacturing [8] based on these
identical conditions. However, in practical control process,
the strict conditions are always difficult to be guaranteed and
hinder the further applications of ILC.

Recently, how to improve ILC to deal with iteration-
varying factors has been an important research focus [9].

As we know, iterative learning control is a 2-dimensional
problem working on the time axis and iteration axis; model
uncertainty in the iteration domain will increase the diffi-
culty in the 2D scheme, while traditional ILC is based on
the iteration-invariant premise. Meanwhile, as the system
dynamic will be changed due to iteration-variance in param-
eters, it is a relatively difficult problem compared with other
kinds of nonrepetitiveness [10–12].

The first representative approach dealing with iteration-
varying parameters in ILC is the norm-based method. For
global Lipschitz continuous system, the 2D problem can be
formulated into a contraction mapping problem, and the
convergence is analyzed by the norm-based theory. Paper
[13] supposes that the freeway system is global Lipschitz con-
tinuous about all iteration-varying parameters—free speed
and jam density. Further, based on the norm-based theory,
the proposed ILC learning law is proved convergent to
track the desired traffic density despite the existence of
iteration-varying parameters. It should be noted that the
global Lipschitz condition is the key condition for norm-
based method.

Another representative method is the super-vector anal-
ysis approach. For discrete-time interval system, the super-
vector scheme can transform the 2D dynamic system into
a 1D MIMO static plant with a Markov matrix only in
iteration dimension [9].This framework provides us a unified
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method to design and analyze ILC for the system with model
uncertainty in the iteration domain. The design problem
of ILC for system with iteration-varying parameters will be
converted into a Markov representation problem [14–18]. In
[16], the varying range of Markov parameters was assumed
to be known, and it proved that the convergence of ILC can
be guaranteed by the vertex point of the Markov parameters.
Optimal method was utilized to update the control input to
handle the iteration-varying parameter uncertainty in [17].
The super-vector method greatly simplifies the design and
analysis of ILC, and the global Lipschitz condition is no
longer needed. However, due to the matrix transform, this
method is not applicable for continuous-time system.

The composite energy function (CEF) is the third
method. Derived from Lyapunov stability theory, the CEF
method is a systematic way for learning law design and
convergence analysis of the ILCof continuous-timenonlinear
system without requiring global Lipschitz condition [19].
For the systemwith periodically iteration-varying parameter,
[20] incorporated adaptive control into ILC and the conver-
gence was proved in the CEF way. The CEF analysis method
has also been successfully applied to automatic train oper-
ation ILC control despite the existence of iteration-varying
parameters such as temperatures [21]. The CEF method does
not require the global Lipschitz continuous condition, but it
is restricted for continuous-time system. Due to the different
applications of the above three design and analysis methods,
they are complementary in the design procedure of ILC for
the system with iteration-varying parameters.

In this paper, we focus on continuous-time nonlinear
systems with uncertain or jumping parameters. In practice,
many factors can cause the abrupt changes of system’s
structure and parameter, for example, faults in system,
abrupt disturbances, failures of sensor and actuator, and load
changes. These abrupt changes in dynamic parameters cause
the operation of controlled plant in multiple environments.
Traditional single model ILC can no longer handle this kind
of systemperfectly. Single fixed controller is established based
on the unchanged model, but when parameters jump, it
cannot learn from previous operation because the model is
no longer the same in the iteration domain and the learning
process has to start all over again. As the model is fixed and
the plant is changing, mismatch between model and system
is inevitable, so that the learning process gets relative long.
We incorporate multiple model adaptive control (MMAC)
[22, 23] to cover parameter uncertainty withmultiplemodels,
detect which situation the plant is in at every iteration,
and launch the corresponding ILC controller. Thus, we
can improve transient response performance (in this paper,
transient response performance means the iteration trails
before system output converges to the desired trajectory) and
control property for the system with uncertain parameters.
Further, by the norm-based method, we prove that the
proposed ILC method can achieve asymptotic convergence.

This paper is organized as follows. Section 2 introduces
the model algorithmic ILC and formulates the dynamic
system with iteration-varying jumping parameters. Section 3
presents the MMILC algorithm in detail and Section 4
analyzes its convergence for system with unknown constant

parameters and system with jumping parameters. Numerical
simulations are conducted in Section 5 and Section 6 con-
cludes this work.

2. Model Algorithmic ILC and
Problem Formulation

2.1. Model Algorithmic ILC. Consider the following continu-
ous-time nonlinear system:

ẋ𝑘 (𝑡) = f (x𝑘 (𝑡) , 𝑡) + B (x𝑘 (𝑡) , 𝑡) u𝑘 (𝑡) , (1)

where the subscript 𝑘 = 0, 1, 2, . . . denotes the 𝑘th iteration.
u𝑘(𝑡) ∈ R𝑟 and x𝑘(𝑡) ∈ R𝑛 are accessible control input vector
and system state vector, respectively, at the 𝑘th iteration. The
system operates iteratively on the fixed time interval; that is,
𝑡 ∈ [0, 𝑇]. f and B are global Lipschitz continuous about x, B
is of full column rank and upper bounded onR𝑛×[0, 𝑇]; that
is, for all 𝑡 ∈ [0, 𝑇], x, x1, x2 ∈ R𝑛,
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‖B (x, 𝑡)‖ ⩽ 𝑏B,

(2)

where 𝑘f and 𝑘B are the lipschitz coefficients of functions f
and B, respectively, and 𝑏B is the upperbound of B.

In this paper, we denote ‖a‖ as the infinite norm of vector
a ∈ R𝑚 with its entries 𝑎𝑖; that is, ‖a‖ = ‖a‖∞ = max1⩽𝑖⩽𝑚|𝑎𝑖|.
And the notation of 𝜆-norm of vector function N(𝑡) ∈ R𝑛 is
given as

‖N(𝑡)‖𝜆 = sup
𝑡∈[0,𝑇]

{𝑒

−𝜆𝑡
‖N (𝑡)‖} , (3)

where 𝜆 > 0.
For the nonlinear dynamic plant described by (1), suppose

that its model is obtained as

̇x̃𝑘 (𝑡) = ̃f (x̃𝑘 (𝑡) , 𝑡) + ̃B (x̃𝑘 (𝑡) , 𝑡) u𝑘 (𝑡) , (4)

where {̃f , ̃B} is the model of {f ,B} and x̃(𝑡) ∈ R𝑛 is the model
state vector.

Paper [24] proposed the model algorithmic ILC learning
scheme:

u𝑘+1 (𝑡) = u𝑘 (𝑡) + ̃B+ (x𝑑 (𝑡) , 𝑡) [ẋ𝑑 (𝑡) − ̃f (x𝑑 (𝑡) , 𝑡)]

−

̃B+ (x𝑘 (𝑡) , 𝑡) [ẋ𝑘 (𝑡) − ̃f (x𝑘 (𝑡) , 𝑡)] ,
(5)

where ̃B+ is the generalized inverse of ̃B; that is, ̃B+ =

[

̃BT
̃B]−1̃BT. Suppose that ̃B+ is bounded and ̃B+ and ̃B+̃f are

global Lipschitz continuous about x.
As the system state x𝑘(𝑡) is accessible, it is reasonable to

replace x̃𝑘(𝑡)with x𝑘(𝑡) in ILC learning law (5). If learning law
(5) is applied to system (1), we have the following lemma.

Lemma 1 (see [24, 25]). If the ILC system andmodel described
by (1) and (4), respectively, satisfy
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(1) 󵄩󵄩󵄩
󵄩

󵄩

I − ̃B+(x(𝑡), 𝑡)B(x(𝑡), 𝑡)󵄩󵄩󵄩
󵄩

󵄩

⩽ 𝜌 < 1 (x, 𝑡 ∈ R𝑛 × [0, 𝑇]),
(2) x𝑘(0) = x𝑑(0) (𝑘 = 0, 1, 2, . . .),

then, for arbitrarily given and achievable desired trajectory
x𝑑(𝑡) (𝑡 ∈ [0, 𝑇]), ILC learning law (5) can generate a control
sequence which guarantees x𝑘(𝑡) to converge to x𝑑(𝑡); that is,

lim
𝑘→∞

󵄩

󵄩

󵄩

󵄩

x𝑑 (𝑡) − x𝑘 (𝑡)
󵄩

󵄩

󵄩

󵄩

= 0 (𝑡 ∈ [0, 𝑇]) . (6)

The proof of Lemma 1 is attached at the end of this paper
as the Appendix. Further, from the proof, we can draw the
following conclusion.

Corollary 2 (see [24]). Denote Δx𝑘(𝑡) = x𝑑(𝑡) − x𝑘(𝑡),
Δu𝑘(𝑡) = u𝑑(𝑡) − u𝑘(𝑡), L(x, 𝑡) =

̃B+(x, 𝑡), and h(x, 𝑡) =

L(x, 𝑡)[ẋ𝑑(𝑡) −̃f(x, 𝑡)]. As ̃B+ and ̃B+̃f are Lipschitz continuous
about x; h satisfies the Lipschitz condition; that is, for all 𝑡 ∈

[0, 𝑇], and x1, x2 ∈ R𝑛,
󵄩
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, (7)

where 𝑘h is the Lipschitz coefficient of h.
For single model ILC, the proof of Lemma 1 gives that
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Δu𝑘
󵄩
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󵄩𝜆
, (8b)

where 𝑏1 = 𝑘h + 𝑏L(𝑘f + 𝑘B𝑏u𝑑), 𝑏2 = 𝑘f + 𝑘B𝑏u𝑑, 𝜆𝑏
2

=

(1 − 𝑒

(𝑏
2
−𝜆)T

)/(𝜆 − 𝑏2), 𝑏L = sup
𝑡∈[0,𝑇]

‖L(x(𝑡))‖, 𝑏u𝑑 =

sup
𝑡∈[0,𝑇]

‖u𝑑(𝑡)‖, and 𝜆 is a arbitrarily given positive value.

Remark 3. From the above definition of different elements,
𝑏B, 𝑏2, and 𝜆𝑏

2

are only related to the dynamic system (f ,B),
while 𝜌, 𝑏1 are decided by both dynamic system (f ,B) and
model (̃f , ̃B). Consequently, (8a) is related to the dynamic
system while (8b) is decided by both dynamic system and
model.

Remark 4. Most ILC methods just use the information of
process measurements, so corresponding control strategies
are always date-based and lack mechanism analysis. In
practice, a priori knowledge about the process is more or
less known. The model algorithmic ILC is not a model free
or a pure data-driven method; it is a model-data integrated
method which also takes the estimated system model into
account, so that the known information can be fully used to
perfect the actual performance [26].

2.2. Problem Formulation. In this paper, we consider nonlin-
ear system with iteration-varying jumping parameters in the
form of

ẋ𝑘 (𝑡) = f (x𝑘 (𝑡) , 𝛼𝑘 (𝑡) , 𝑡) + B (x𝑘 (𝑡) , 𝛽𝑘 (𝑡) , 𝑡) , (9)

where 𝛼𝑘(𝑡) and 𝛽𝑘(𝑡) are unknown piecewise-continuous
parameters which are constant at first and then change
abruptly to other constant values; this change may happen at

any time and in any iteration. For 𝑘 = 0, 1, . . . ,∞, 𝑡 ∈ [0, 𝑇],
uncertain parameters vary in finite convex set Π; that is,

(𝛼𝑘 (𝑡) , 𝛽𝑘 (𝑡)) ∈ Π = {(𝛼𝑖
𝛼

, 𝛽𝑖
𝛽

) | 𝑖𝛼 = 1, 2, . . . , 𝑑𝛼;

𝑖𝛽 = 1, 2, . . . , 𝑑𝛽} ,

(10)

where 𝑑𝛼 and 𝑑𝛽 are finite integers.
The control objective is for system described as (9), to

find such an appropriate control input u(𝑡), that the generated
state output x(𝑡) can be guaranteed to track the desired
trajectory x𝑑(𝑡) as precisely and quickly as possible. In other
words, the track error converges to zero as the iteration
approaches infinity; that is,

lim
𝑘→∞

󵄩

󵄩

󵄩

󵄩

x𝑑 (𝑡) − x𝑘 (𝑡)
󵄩

󵄩

󵄩

󵄩

󳨀→ 0. (11)

To achieve this target, we suppose that system (9) satisfies
the following assumptions.

Assumption 5. Specific values of varying parameters 𝛼𝑘(𝑡)

and 𝛽𝑘(𝑡) are unknown, but the probable varying scope is
known as

̃

Π = {(𝛼, 𝛽) | 𝛼 ∈ (𝛼𝑙, 𝛼𝑢) , 𝛽 ∈ (𝛽𝑙, 𝛽𝑢)} ,
(12)

where 𝛼𝑙 and 𝛽𝑙 are the lower bound and 𝛼𝑢 and 𝛽𝑢 are the
upper bound of 𝛼 and 𝛽, respectively.

Assumption 6. Consider the time variant system as (9); the
parameters of systemwill be piecewise constant, and the time
between two adjacent parameter jumps is relatively long.

Assumption 7. Nonlinear functionB(x, 𝛽) is full column rank
and upper bounded on R𝑛 × [0, 𝑇]; that is, for all 𝑡 ∈ [0, 𝑇],
𝛽 ∈ Π𝛽 = {𝛽𝑖

𝛽

| 𝑖𝛽 = 1, 2, . . . , 𝑑𝛽}, x ∈ R𝑛,

󵄩
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B (x, 𝛽, 𝑡)󵄩󵄩󵄩
󵄩

⩽ 𝑏

󸀠

B. (13)

Assumption 8. Functions f(x, 𝛼) andB(x, 𝛽) satisfy the global
Lipschitz condition about x, that is, for all {𝛼, 𝛽} ∈ Π, 𝑡 ∈

[0, 𝑇], x1, x2 ∈ R𝑛,
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(14)

where 𝑘󸀠f and 𝑘

󸀠

B are Lipschitz parameters.

Considering Lemma 1, model algorithm ILC can some-
how handle model imprecision and mismatch; however, this
is based on the condition that controlled plant as (1) must
be strictly repetitive along the iteration axis. For plant in the
form of (9), the dynamic system will change as parameter
jumps, model mismatch may get more serious, and the ILC
method cannot learn from previous iterations and has to
restart the learning process. Consequently, transient response
will deteriorate and long time will be needed before the
output tracks the desired trajectory for the relearning process.



4 Abstract and Applied Analysis

To handle this problem, we introduce multiple model adap-
tive control to ILC. Multiple models are established to cover
the parameter uncertainty, an adaptive switching scheme will
be proposed to accommodate the dynamic system change, so
that the transient response can be improved.

3. Multiple Model Iteration Learning Control

For system described by (9), the iteratively jumping parame-
ters cause the plant to operate amongmultiple environments.
Our goal is to detect the specific environment at current itera-
tion, serve this environment appropriately, and finally realize
fast and precise trajectory tracking inmultiple environments.
In this section, we discuss the establishment of multiple
models according to the iteration-varying parameters, the
establishment of ILC controllers, introduction of switching
index function and the design of multiple model iteration
learning control algorithm.

3.1. The Establishment of Multiple Models. Multiple param-
eter set P can be established manually to cover the varying
scope of (𝛼, 𝛽) described as (12):

P = {(𝑎𝑖
𝑎

, 𝑏𝑖
𝑏

) | 𝑖𝑎 = 1, 2, . . . , 𝑑𝑎; 𝑖𝑏 = 1, 2, . . . , 𝑑𝑏} , (15)

where 𝑑𝑎 and 𝑑𝑏 are finite integers.
Correspondingly, multiple models can be set up as

𝑀 = {𝑀i = {

̃f𝑖
𝑎

(x (𝑡) , 𝑎𝑖
𝑎

, 𝑡) ,

̃B𝑖
𝑏

(x (𝑡) , 𝑏𝑖
𝑏

, 𝑡)} | i ∈ Ω} ,

(16)

whereΩ = {i = (𝑖𝑎, 𝑖𝑏) | 𝑖𝑎 = 1, 2, . . . , 𝑑𝑎; 𝑖𝑏 = 1, 2, . . . , 𝑑𝑏}.
For notational simplify, let ̃f𝑖

𝑎

(x(𝑡), 𝑡) = ̃f𝑖
𝑎

(x(𝑡), 𝑎𝑖
𝑎

, 𝑡) and
̃B𝑖
𝑏

(x(𝑡), 𝑡) =

̃B𝑖
𝑏

(x(𝑡), 𝑏𝑖
𝑏

, 𝑡). Suppose that multiple models
{

̃f𝑖
𝑎

,

̃B𝑖
𝑏

} satisfy the following assumption.

Assumption 9. ̃B+
𝑖
𝑏

is bounded and ̃B+
𝑖
𝑏

and ̃B+
𝑖
𝑏

̃f𝑖
𝑎

satisfy the
Lipschitz continuous condition about x; that is, for all 𝑡 ∈

[0, 𝑇], x, x1, x2 ∈ R𝑛,
󵄩

󵄩

󵄩

󵄩

󵄩

̃B+
𝑖
𝑏

(x, 𝑡)󵄩󵄩󵄩
󵄩

󵄩

⩽ 𝑏𝑖
𝑏

,

󵄩

󵄩

󵄩

󵄩

󵄩

̃B+
𝑖
𝑏

(x1, 𝑡) − ̃B+
𝑖
𝑏

(x2, 𝑡)
󵄩

󵄩

󵄩

󵄩

󵄩

⩽ 𝑘𝑖
𝑏

󵄩

󵄩

󵄩

󵄩

x1 − x2
󵄩

󵄩

󵄩

󵄩

,

󵄩

󵄩

󵄩

󵄩

󵄩

̃B+
𝑖
𝑏

(x1, 𝑡) ̃f𝑖
𝑎

(x1, 𝑡) − ̃B+
𝑖
𝑏

(x2, 𝑡) ̃f𝑖
𝑎

(x2, 𝑡)
󵄩

󵄩

󵄩

󵄩

󵄩

⩽ 𝑘i
󵄩

󵄩

󵄩

󵄩

x1 − x2
󵄩

󵄩

󵄩

󵄩

,

(17)

where ̃B+
𝑖
𝑏

= [

̃BT
𝑖
𝑏

̃B𝑖
𝑏

]

−1
̃BT
𝑖
𝑏

, 𝑏𝑖
𝑏

is the bound of ̃B+
𝑖
𝑏

, and 𝑘𝑖
𝑏

and
𝑘i are the Lipschitz coefficients of ̃B+

𝑖
𝑏

and ̃B+
𝑖
𝑏

̃f+
𝑖
𝑎

, respectively.

Though ILC can deal with systemwithmodel uncertainty,
the more accurate the model is, the faster the transient
response will be. Based on this idea, multiple models are
built to cover the parametric uncertainty, so that at each
iteration the most approximate model to current system
will be selected and finally the performance of transience
response can be improved.

3.2. The Establishment of Controllers. For model algorithmic
ILC, learning law (5) is based on the established model of
the controlled plant. Corresponding to established multiple
models, we present multiple controllers according to ILC
learning law (5); that is,

𝐶 = {𝐶i | i ∈ Ω} , (18)

where

𝐶i : u𝑘+1 (𝑡) = u𝑘 (𝑡) + ̃B+
𝑖
𝑏

(x𝑑 (𝑡) , 𝑡) [ẋ𝑑 (𝑡) − ̃f𝑖
𝑎

(x𝑑 (𝑡) , 𝑡)]

−

̃B+
𝑖
𝑏

(x𝑘 (𝑡) , 𝑡) [ẋ𝑘 (𝑡) − ̃f𝑖
𝑎

(x𝑘 (𝑡) , 𝑡)] .
(19)

Remark 10. For system (9), if parameters 𝛼𝑘(𝑡) and 𝛽𝑘(𝑡)

finally stop jumping at a group of fixed values, every single
controller 𝐶𝑖 can guarantee output to converge to desired
trajectory according to Lemma 1. However, the learning
process has to restart as the single model may be far away
from the plant when parameters change, and the process to
convergent will be relatively long.

In this section, we have established multiple controllers
according to the uncertainty of parameters and we hope that
the most approximate model and corresponding controller
will be switched into control system before every iteration
so that the transient response time can be greatly reduced.
Though the controller set is based on model algorithmic ILC
learning law (5) and every single controller can guarantee
system convergence according to Remark 10, how to keep the
integrated system convergent with infinite switching times
among multiple controllers is essential to MMILC.

3.3. Switching Index Function. When parameters jump, orig-
inal model is no longer suitable. From this perspective, the
switching scheme focuses on finding the most appropriate
model for current environment from model set, further
activating the corresponding controller.Theultimate purpose
is to improve the transient response of the adaptive system
with the least prior knowledge. The switching index function
is given as

𝐽i,𝑘 = 𝜇

󵄩

󵄩

󵄩

󵄩

󵄩

ei
𝑘
(𝑇)

󵄩

󵄩

󵄩

󵄩

󵄩

2

2
+ ]∫
𝑇

0

𝑒

−𝛾(𝑇−𝜏)󵄩
󵄩

󵄩

󵄩

󵄩

ei
𝑘
(𝜏)

󵄩

󵄩

󵄩

󵄩

󵄩

2

2
d𝜏, (20)

where ei
𝑘
(𝑡) denotes the error between system state and the

state of model𝑀i at the 𝑘th iteration:

ei
𝑘
(𝑡) = x𝑘 (𝑡) − x̃i

𝑘
(𝑡) ,

̇x̃i
𝑘
(𝑡) =

̃f𝑖
𝑎

(x̃i
𝑘
(𝑡) , 𝑡) +

̃B𝑖
𝑏

(x̃i
𝑘
(𝑡) , 𝑡) u𝑘 (𝑡) .

(21)

𝜏 > 0 is the forgetting factor; 𝜇 > 0 and ] > 0 are
parameters to adjust the weights of current and past errors
in the calculation of switching index.

At the end of 𝑘th iteration, switching index function 𝐽i,𝑘
of every model𝑀i (i ∈ Ω) is calculated and the most suitable
model for the 𝑘th iteration is decided by minimum 𝐽i,𝑘; that
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is, model 𝑀l(𝑘+1) will be selected if the following equation is
satisfied:

l (𝑘 + 1) = argmin
𝑖∈Ω

𝐽i,𝑘 (22)

and l(0) = (𝑙𝑎(0), 𝑙𝑏(0)), where 𝑙𝑎(0) = random{1, 2, . . . , 𝑑𝑎}

and 𝑙𝑏(0) = random{1, 2, . . . , 𝑑𝑏}. Corresponding controller
𝐶l(𝑘+1) will be immediately selected as the controller for the
next iteration.

3.4. Multiple Model ILC Control Algorithm. Based on the
above discussion, the main procedures for multiple model
ILC control algorithm are provided.

Algorithm 11. (1) According to varying scope of 𝛼𝑘(𝑡) and
𝛽𝑘(𝑡), multiple model set will be established as follows:

𝑀 = {𝑀i = {

̃f𝑖
𝑎
(x (𝑡) , 𝑡) , ̃B𝑖

𝑏
(x (𝑡) , 𝑡)} | i ∈ Ω} , (23)

whereΩ = {i = (𝑖𝑎, 𝑖𝑏) | 𝑖𝑎 = 1, 2, . . . , 𝑑𝑎; 𝑖𝑏 = 1, 2, . . . , 𝑑𝑏}.
(2) Based onModel Algorithmic Learning law (5), multi-

ple controllers responding to the model set 𝑀 will be set up
as

𝐶 = {𝐶i | i ∈ Ω} , (24)

where

𝐶i: u𝑘+1 (𝑡) = u𝑘 (𝑡) + ̃B+
𝑖
𝑏

(x𝑑 (𝑡) , 𝑡) [ẋ𝑑 (𝑡) − ̃f𝑖
𝑎

(x𝑑 (𝑡) , 𝑡)]

−

̃B+
𝑖
𝑏

(x𝑘 (𝑡) , 𝑡) [ẋ𝑘 (𝑡) − ̃f𝑖
𝑎

(x𝑘 (𝑡) , 𝑡)] .
(25)

(3) At the initial iteration, controller 𝐶l(0) is randomly
selected,

l (0) = (𝑙𝑎 (0) , 𝑙𝑏 (0)) , (26)

where 𝑙𝑎(0) = random{1, 2, . . . , 𝑑𝑎}, 𝑙𝑏(0) = random{1, 2,

. . . , 𝑑𝑏}.
(4) At the 𝑘th iteration, controller 𝐶l(𝑘) is selected as the

current controller. At the end of 𝑘th iteration, switching index
function of every model 𝐽i,𝑘 will be calculated and the𝑀l(𝑘+1)
is selected if

l (𝑘 + 1) = argmin
𝑖∈Ω

𝐽𝑖,𝑘. (27)

(5) 𝑘 = 𝑘 + 1; go to step 4.

4. Convergence Analysis

Convergence is the essential condition of controller design.
Though every single model and corresponding controller can
keep the convergence of system, how to guarantee that the
entire MMILC is stable even with infinite switching among
model set is the key problem for the proposed algorithm.
Conditions for convergent MMILC and its detailed proof are
given here.

4.1. System with Unknown Constant Parameter. For system
(9), if parameters 𝛼𝑘(𝑡) and 𝛽𝑘(𝑡) are unknown constant
values irrelative with 𝑡 and 𝑘, we have the following theorem.

Theorem 12. For iteratively operating system depicted as (9)
but with unknown constant parameters 𝛼𝑘(𝑡) and 𝛽𝑘(𝑡) which
are irrelative with 𝑡 and 𝑘, if Assumptions 7–9 and the following
conditions are satisfied,

(1) ∀𝑖𝑏 ∈ 1, 2, . . . , 𝑑𝑏,

󵄩

󵄩

󵄩

󵄩

󵄩

I − ̃B+
𝑖
𝑏

(x, 𝑡)B (x, 𝑡)󵄩󵄩󵄩
󵄩

󵄩

⩽ 𝜌

󸀠
< 1, (28)

(2) ∀𝑘,

x𝑘 (0) = x𝑑 (0) , (29)

then, for any given reachable desired trajectory x𝑑(𝑡) (𝑡 ∈

[0, 𝑇]), the proposed MMILC learning algorithm will generate
a control sequence, which can guarantee that the system state
is convergent to the desired trajectory; that is, lim𝑘→∞‖x𝑑(𝑡) −
x𝑘(𝑡)‖ = 0 (𝑡 ∈ [0, 𝑇]).

Proof. According to the MMILC method, multiple models
𝑀i = {

̃f𝑖
𝑎

(x(𝑡), 𝑡), ̃B𝑖
𝑏

(x(𝑡), 𝑡)} (i = (𝑖𝑎, 𝑖𝑏) ∈ Ω) will
be established based on the parameters’ varying scope. For
notational simplify, we denote L𝑖

𝑏

(x, 𝑡) =

̃B+
𝑖
𝑏

(x, 𝑡) and
hi(x, 𝑡) = L𝑖

𝑏

(x, 𝑡)[ẋ𝑑(𝑡) −

̃f𝑖
𝑎

(x, 𝑡)]. As ̃B+
𝑖
𝑏

and ̃B+
𝑖
𝑏

̃f𝑖
𝑎

are
Lipschitz continuous about x byAssumption 8, hi satisfies the
Lipschitz condition; that is, ∀x1, x2 ∈ R𝑛, 𝑡 ∈ [0, 𝑇],

󵄩

󵄩

󵄩

󵄩

hi (x1, 𝑡) − hi (x2, 𝑡)
󵄩

󵄩

󵄩

󵄩

⩽ 𝑘hi
󵄩

󵄩

󵄩

󵄩

x1 − x2
󵄩

󵄩

󵄩

󵄩

. (30)

From the switch index function (27) of MMILC algo-
rithm, model𝑀l(𝑘) = (

̃f𝑙
𝑎
(𝑘),

̃B𝑙
𝑏
(𝑘)) will be selected at the 𝑘th

iteration. So focusing on every single iteration, the proposed
MMILC can be viewed as single model ILC. As parameters
𝛼𝑘(𝑡) and 𝛽𝑘(𝑡) are both constant, dynamic system is strictly
iteration-time invariant, and the system Assumptions 7 and
8 can be easily guaranteed. As model Assumption 9 is also
satisfied, according to Corollary 2, at the 𝑘th iteration, for
every single element model𝑀i, i ∈ Ω, we have

󵄩

󵄩

󵄩

󵄩

Δx𝑘
󵄩

󵄩

󵄩

󵄩

⩽ 𝑏

󸀠

B ∫
𝑡

0

𝑒

𝑏
󸀠

2
(𝑡−𝜏) 󵄩

󵄩

󵄩

󵄩

Δu𝑘
󵄩

󵄩

󵄩

󵄩

d𝜏, (31a)

󵄩

󵄩

󵄩

󵄩

Δu𝑘+1
󵄩

󵄩

󵄩

󵄩𝜆
⩽ (𝜌

󸀠
+ 𝑏1i𝑏

󸀠

B𝜆𝑏󸀠
2

)

󵄩

󵄩

󵄩

󵄩

Δu𝑘
󵄩

󵄩

󵄩

󵄩𝜆
, (31b)

where 𝑏

󸀠

2
= 𝑘

󸀠

f + 𝑘

󸀠

B𝑏u𝑑, 𝑏1i = 𝑘hi + 𝑏𝑖𝑏𝑏
󸀠

2
, and 𝜆𝑏󸀠

2

= (1 −

𝑒

(𝑏
󸀠

2
−𝜆)𝑇

)/(𝜆 − 𝑏

󸀠

2
).

Further, if we denote 𝑘

󸀠

h = max𝑖∈Ω𝑘h
𝑖

, 𝑏

󸀠

L =

max𝑖
𝑏
∈{1,2,...,𝑑

𝑏
}𝑏𝑖
𝑏

, and 𝑏

󸀠

1
= 𝑘

󸀠

h + 𝑏

󸀠

L𝑏
󸀠

2
, for arbitrary model

switching among the model set𝑀, (31b) can be written as

󵄩

󵄩

󵄩

󵄩

Δu𝑘+1
󵄩

󵄩

󵄩

󵄩𝜆
⩽ (𝜌

󸀠
+ 𝑏

󸀠

1
𝑏

󸀠

B𝜆𝑏󸀠
2

)

󵄩

󵄩

󵄩

󵄩

Δu𝑘
󵄩

󵄩

󵄩

󵄩𝜆
. (32)
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Since 𝜌󸀠 < 1, it is possible to find 𝜆 > 0 large enough so
that 𝜌󸀠 + 𝑏

󸀠

1
𝑏

󸀠

B𝜆
󸀠

𝑏
2

< 1. Therefore, ‖Δu𝑘+1‖𝜆 → 0 as 𝑘 → ∞.
Since

sup
𝑡∈[0,𝑇]

󵄩

󵄩

󵄩

󵄩

Δu𝑘 (𝑡)
󵄩

󵄩

󵄩

󵄩

= sup
𝑡∈[0,𝑇]

{𝑒

𝜆𝑡
𝑒

−𝜆𝑡 󵄩
󵄩

󵄩

󵄩

Δu𝑘 (𝑡)
󵄩

󵄩

󵄩

󵄩

}

⩽ 𝑒

𝜆𝑇 sup
𝑡∈[0,𝑇]

{𝑒

−𝜆𝑡 󵄩
󵄩

󵄩

󵄩

Δu𝑘 (𝑡)
󵄩

󵄩

󵄩

󵄩

}

= 𝑒

𝜆𝑇󵄩
󵄩

󵄩

󵄩

Δu𝑘 (𝑡)
󵄩

󵄩

󵄩

󵄩𝜆
,

(33)

therefore, we have sup
𝑡∈[0,𝑇]

‖Δu𝑘(𝑡)‖ → 0 as 𝑘 → ∞;
that is to say, u𝑘(𝑡) → u𝑑(𝑡) for 𝑡 ∈ [0, 𝑇] when 𝑘 →

∞. Furthermore, combing (31a), we have x𝑘(𝑡) → x𝑑(𝑡)
uniformly on [0, 𝑇].

4.2. System with Unknown Jumping Parameter

Corollary 13. For iteratively operating system with jumping
parameters described as (9), in addition to systemAssumptions
5–8 and model Assumption 9, if the following conditions are
also satisfied,

(1) for 𝑖𝑏 ∈ {1, 2, . . . , 𝑑𝑏},
󵄩

󵄩

󵄩

󵄩

󵄩

I − ̃B+
𝑖
𝑏

(x, 𝑡)B (x, 𝑡)󵄩󵄩󵄩
󵄩

󵄩

⩽ 𝜌

󸀠󸀠
< 1, (34)

(2) for all 𝑘,

x𝑘 (0) = x𝑑 (0) , (35)

then, for any given reachable desired trajectory x𝑑(𝑡) (𝑡 ∈

[0, 𝑇]), the proposed MMILC learning algorithm will generate
a control sequence, which can improve the control property for
this kind of system.

We just consider the time variant system with piece-
wise constant parameters. According to Assumption 6, the
jumping parameters will be kept for relatively long time,
and the system in two adjacent parameter jumpings can be
regarded as a time-invariant system. Due to the existence
of multiple model, the transient response will be improved
greatly, so the state of system will converge to the desired
trajectory rapidly, and the control property of piecewise-
constant jumping system will be improved greatly.

5. Simulation Results

Consider a single-link roboticmanipulatorwith the following
dynamic system:

𝐼

̈

𝜃𝑘 + 𝑑 (𝑡)

̇

𝜃𝑘 + 𝑚𝑔𝑙 cos 𝜃𝑘 = 𝜏𝑘
(36)

which operates iteratively on the fixed time interval; that
is, 𝑡 ∈ [0, 10], and 𝑘 denotes the iterations. 𝜃, ̇

𝜃, and ̈

𝜃

are the joint angle, angular velocity, and accelerated velocity,
respectively. 𝐼 = 0.75𝑚𝑙

2 kg ⋅ m2 is the moment of inertia of
the manipulator, 𝑙 = 1.25m is the length of the manipulator,
𝑚 = 1.0 kg is the mass of the joint, 𝑔 = 9.8m/s2 is the gravity,

𝑑𝑘(𝑡)N ⋅ m ⋅ s/rad is the viscous friction coefficient which is
decided by the shape and size of the link and the viscidity
of the lubricant, and 𝑑𝑘(𝑡) is unknown parameter varying in
[0, 5]. 𝜏𝑘 is the control input.

Let 𝑥1𝑘(𝑡) = 𝜃 and 𝑥2𝑘(𝑡) =
̇

𝜃; the above dynamic system
can be rewritten in the form of state equation:

[

𝑥̇1𝑘 (𝑡)

𝑥̇2𝑘 (𝑡)
] =

[

[

𝑥2𝑘 (𝑡)

−

𝑑𝑘 (𝑡)

𝐼

−

𝑚𝑔𝑙

𝐼

cos𝑥1𝑘 (𝑡)
]

]

+ [

0

1

𝐼

] 𝜏𝑘 (𝑡)

=

[

[

𝑥2𝑘 (𝑡)

−

4𝑑𝑘 (𝑡)

3

−

49

3

cos𝑥1𝑘 (𝑡)
]

]

+ [

0

4

3

] 𝜏𝑘 (𝑡) .

(37)

The manipulator is controlled to fulfil repeated transfer
task. Correspondingly, the control target is to manipulate the
control input 𝜏𝑘(𝑡) to guarantee the control state to track the
desired trajectory:

x𝑑 (𝑡) = [

cos (𝜋𝑡)
−𝜋 sin (𝜋𝑡)] . (38)

In the simulation, we consider two cases in which param-
eter 𝑑𝑘(𝑡) is unknown constant or jumping varying in the
prior known scope [0, 5]. First, 6 different values 𝑑𝑖 = 𝑖 −

5/6 (𝑖 = 1, 2, . . . , 6) are selected to cover the varying scope;
that is,

𝑑1 =

1

6

; 𝑑2 =

7

6

; 𝑑3 =

13

6

;

𝑑4 =

19

6

; 𝑑5 =

25

6

; 𝑑6 =

31

6

.

(39)

Consequently, 6 models will be established as

𝑀𝑖 = {

̃f𝑖, ̃B𝑖} , (40)

where ̃f𝑖 = [

𝑥
2𝑘
(𝑡)

−4𝑑
𝑖
/3−(49/3) cos𝑥

1𝑘
(𝑡)
], ̃B𝑖 = [

0

4/3 ], and 𝑖 =

1, 2, . . . , 6.
As an illustrative example, there is jumping parameter

only in the f part; the following can be verified:

df
dxT

=

[

[

0 1

49 sin x1𝑘 (𝑡)
3

0

]

]

⩽ [

0 1

49

3

0

] (41)

so it can been seen apparently that the system and established
multiple models satisfy all the Lipschitz and norm bounded
conditions. So the proposed MMILC algorithm can be
applied to the controlled system according toTheorem 12 and
Corollary 13.

5.1. Plant with Unknown Time-Invariant Parameter. If plant
(37) contains unknown time-invariant parameter, control
results by using single model ILC algorithm (5) and proposed
multiple model ILC Algorithm 11 can be obtained as follows.



Abstract and Applied Analysis 7

x
1
(t
)

(r
ad

)

t (s)

1

0.5

0

−0.5

−1

0 0.2 0.4 0.6 0.8 1

xd1(t)

x1(t)

(a) Actual and desired output of state one

xd2(t)

x2(t)

1

0

−1

−2

−3

−4

t (s)
0 0.2 0.4 0.6 0.8 1

x
2
(t
)

(r
ad

/s
)

(b) Actual and desired output of state two

e
k

k

70

60

50

40

30

20

10

0

0 2 4 6 8 10

(c) State error with iteration

Figure 1: Single model ILC when 𝑑𝑘(𝑡) = 3/7.

5.1.1. Single Model ILC. Suppose that the established model
of plant (37) is {̃f , ̃B}, where ̃f = [

𝑥
𝑘2

−(𝑑/𝐼)𝑥
𝑘2
−(𝑚𝑔𝑙/𝐼) cos𝑥

𝑘1

], ̃B =

[

0

1/𝐼 ], and ̃

𝑑 = 1/6. When the unknown system parameter is
𝑑𝑘(𝑡) = 3/7 and 𝑑𝑘(𝑡) = 33/7, respectively, corresponding
control results are shown in Figures 1 and 2, where 𝑒𝑘 =

∫

1

0
𝑥

2

𝑘1
(𝑡)d𝑡 + ∫

1

0
𝑥

2

𝑘2
(𝑡)d𝑡.

When model parameter ̃

𝑑 = 1/6 is close to actual
unknown plant parameter 𝑑𝑘(𝑡) = 3/7, single model ILC can
track the desired trajectory with about 6 iterations shown as
Figure 1(c). However, when there is relative great mismatch
between model parameter ̃

𝑑 = 1/6 and plant parameter
𝑑𝑘(𝑡) = 33/7, it takes more than 30 iterations before the
desired state output is obtained as shown in Figure 2.

5.1.2. Multiple Model ILC. In this part, when unknown
system parameter is 𝑑𝑘(𝑡) = 33/7, multiple models are
established as (40), and the multiple model ILC control
Algorithm 11 is applied to the plant, control result can be
found in Figure 3.

As in Figure 2, when there is relatively great mismatch
between model parameter and system parameter, single
model ILC cannot track the desired trajectory within rea-
sonable iterations. However, in multiple model ILC control
scheme, multiple models are established to cover the param-
eter’s varying scope; in Figure 3(b), MMILC can identify that
𝑀1 with 𝑑1 = 1/6 is not the best one for plant, and the
most appropriatemodel𝑀6 withmodel parameter 𝑑6 = 31/6

is selected immediately since the second iteration. Since the
introduced multiple model set and switching mechanism,
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Figure 2: Single model ILC when 𝑑𝑘(𝑡) = 33/7.

iterations are decreased greatly to about 6 as shown in
Figure 3(a) compared with single model ILC with ̃

𝑑 = 1/6

shown in Figure 2.

5.2. Plant with Jumping Parameter. For plant (37), if 𝑑𝑘(𝑡) is
a piece-wise constant jumping parameter in the form

𝑑𝑘 (𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

3

7

if 𝑘 < 30, 0 ⩽ 𝑡 ⩽ 10, 𝑘 = 30, 0 ⩽ 𝑡 < 6

33

7

if 𝑘 = 30, 6 ⩽ 𝑡 ⩽ 10,

30 < 𝑘 < 60, 0 ⩽ 𝑡 ⩽ 10,

𝑘 = 60, 0 ⩽ 𝑡 < 3

23

7

if 𝑘 = 60, 3 ⩽ 𝑡 ⩽ 10, 𝑘 < 90, 0 ⩽ 𝑡 ⩽ 10,

(42)

This parameter jumping process is shown as in
Figure 4(b) in which the length of each iteration is equal to
the fixed time interval.

If single model ILC with parameter ̃

𝑑 = 1/6 and multiple
model ILC with multiple models as (40) are adopted to
control the plant, respectively, state errors respective to each
iteration of these two methods are shown in Figure 4(a).

When parameter jumping happens, as the dynamic sys-
tem will change at the same time, no matter single model or
multiple model ILC, the learning process has to restart. In the
first 30 iterations, ̃

𝑑 = 1/6 in single model ILC is close to
system parameter 𝑑(𝑘) = 3/7, so the control effect looks as
well as the effect of MMILC. However, for single model ILC,
when the parameter deviates far from model parameter, the
approaching process gets relatively long, as in Figure 4(a); it
takes about more than 30 and 20 iterations before the state



Abstract and Applied Analysis 9

e
k

k

0 2 4 6 8 10

100

80

60

40

20

0

(a) State error with iteration

k

0 2 4 6 8 10

6

5

4

3

2

1

M
od

el
 in

de
x

(b) Model switching process
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Figure 4: Control results of single and multiple model ILC dealing with plant with jumping parameter.

output converges to the desired track after the second and
third parameter jumpings.

According to the MMILC strategy, multiple models
are established to cover the parameter uncertainty; at the
end of each iteration, the index functions showing the
matching degree between each model and the current plant
are calculated. In the next iteration, the closest matching
model and corresponding controller will be selected. The
parameter jumping and model switching process are shown
in Figure 4(b). In the 30th iteration, there is a parameter
jumping, consequently, model 𝑀6 is selected at the 31st
iteration; parameter change in the 60th iteration is also
identified and the most closest model 𝑀4 is switched to

system. Taking this model switching scheme, convergent
processes after each parameter jumping are reduced greatly
to about 5 iterations as shown in Figure 4(a).

6. Conclusion

In this paper, we have incorporated multiple model adaptive
control into model algorithm iterative learning control for
nonlinear repetitive operating system with jumping param-
eters. In order to reduce the iterations before the control
state converges to the desired trajectory when there is model
mismatch, multiple models are set up to cover the parameter
uncertainty; model index function has been established
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to evaluate the matching degree between each model and
plant in current iteration, a switching mechanism has also
been proposed so that the closest model and corresponding
controller will be selected at every iteration. Further, the
multiple model ILC algorithm is given and it has been proved
that the generated control signal by MMILC can guarantee
the output convergent to desired trajectory. Two numerical
simulations show that the proposedMMILC can improve the
transient response greatly.

Appendix

The Proof of Lemma 1 [24, 25]

Proof. For notational simplify, let

L (x, 𝑡) = ̃B (x, 𝑡) , h (x, 𝑡) = L (x, 𝑡) [ẋ𝑑 (𝑡) − ̃f (x, 𝑡)]

x𝑘 = x𝑘 (𝑡) , x̃𝑘 = x̃𝑘 (𝑡)

f𝑘 = f (x𝑘 (𝑡) , 𝑡) , ̃f𝑘 = ̃f (x𝑘 (𝑡) , 𝑡)

f𝑑 = f (x𝑑 (𝑡) , 𝑡) , ̃f𝑑 = ̃f (x𝑑 (𝑡) , 𝑡) .
(A.1)

For (5), let Δu𝑘 = u𝑑 − u𝑘, Δx𝑘 = x𝑑 − x𝑘; we have

u𝑘+1 = u𝑘 − L𝑘 (ẋ𝑘 − ̃f𝑘) + h𝑑

= u𝑘 + L𝑘 (ẋ𝑑 − ẋ𝑘) + h𝑑 − h𝑘

= u𝑘 + L𝑘 {f𝑑 − f𝑘 + (B𝑑 − B𝑘) u𝑑 + B𝑘Δu𝑘}

+ h𝑑 − h𝑘.

(A.2)

Further,

Δu𝑘+1 = [I − L𝑘B𝑘] Δu𝑘 − L𝑘 {f𝑑 − f𝑘 + (B𝑑 − B𝑘) u𝑑}

− (h𝑑 − h𝑘) .
(A.3)

For above equation, taking norms of both sides gives
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(A.4)

where 𝑏L is the norm bound of matrix L, 𝑏u𝑑 =

sup
𝑡∈[0,𝑇]

‖u𝑑(𝑡)‖, and 𝑏1 = 𝑘h + 𝑏L(𝑘f + 𝑘B𝑏u𝑑).
Now, since x𝑘(0) = x𝑑(0), for all 𝑘, from (1), we have
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(A.5)

where 𝑏B is the norm bound of matrix B. Considering the
Bellman-Gronwall Lemma, we have
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where 𝑏2 = 𝑘f + 𝑘B𝑏u𝑑. Combing (A.4) with (A.6), we get
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Multiplying the above equation with the positive function
𝑒

−𝜆𝑡, we get
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From the notation of 𝜆-norm vector, we have
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where 𝜆𝑏
2

= (1 − 𝑒

(𝑏
2
−𝜆)T

)/(𝜆 − 𝑏2). Since 𝜌 < 1, it is possible
to find that 𝜆 > 0 is large enough so that 𝜌 + 𝑏1𝑏B𝜆𝑏

2

< 1.
Therefore, ‖Δu𝑘+1‖𝜆 → 0 as 𝑘 → ∞. By the definition of
𝜆-norm (3), we know that
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𝑡∈[0,𝑇]

󵄩

󵄩

󵄩

󵄩

Δu𝑘 (𝑡)
󵄩

󵄩

󵄩

󵄩

= sup
𝑡∈[0,𝑇]

{𝑒

𝜆𝑡
𝑒

−𝜆𝑡 󵄩
󵄩

󵄩

󵄩

Δu𝑘 (𝑡)
󵄩

󵄩

󵄩

󵄩

}

⩽ 𝑒

𝜆𝑇 sup
𝑡∈[0,𝑇]

{𝑒

−𝜆𝑡 󵄩
󵄩

󵄩

󵄩

Δu𝑘 (𝑡)
󵄩

󵄩

󵄩

󵄩

}

= 𝑒

𝜆𝑇󵄩
󵄩

󵄩

󵄩

Δu𝑘 (𝑡)
󵄩

󵄩

󵄩

󵄩𝜆
.

(A.10)

Therefore, we have sup
𝑡∈[0,𝑇]

‖Δu𝑘(𝑡)‖ → 0 as 𝑘 → ∞;
that is to say, u𝑘(𝑡) → u𝑑(𝑡) for 𝑡 ∈ [0, 𝑇] when 𝑘 →

∞. Furthermore, combing equation (A.6), we have x𝑘(𝑡) →

x𝑑(𝑡) uniformly on [0, 𝑇].
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