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To apply the single hidden-layer feedforward neural networks (SLFN) to identify time-varying system, online regularized
extreme learning machine (ELM) with forgetting mechanism (FORELM) and online kernelized ELM with forgetting mechanism
(FOKELM) are presented in this paper.The FORELM updates the output weights of SLFN recursively by using Sherman-Morrison
formula, and it combines advantages of online sequential ELM with forgetting mechanism (FOS-ELM) and regularized online
sequential ELM (ReOS-ELM); that is, it can capture the latest properties of identified system by studying a certain number of the
newest samples and also can avoid issue of ill-conditioned matrix inversion by regularization. The FOKELM tackles the problem
of matrix expansion of kernel based incremental ELM (KB-IELM) by deleting the oldest sample according to the block matrix
inverse formula when samples occur continually. The experimental results show that the proposed FORELM and FOKELM have
better stability than FOS-ELM and have higher accuracy than ReOS-ELM in nonstationary environments; moreover, FORELM
and FOKELM have time efficiencies superiority over dynamic regression extreme learning machine (DR-ELM) under certain
conditions.

1. Introduction

Plenty of research work has shown that the single hidden-
layer feedforward neural networks (SLFN) can approximate
any function and form decision boundaries with arbitrary
shapes if the activation function is chosen properly [1–
3]. However, most of traditional approaches (such as BP
algorithm) for training SLFN are slow due to their iterative
steps. To train SLFN fast, Huang et al. proposed a learning
algorithm called extreme learning machine (ELM), which
randomly assigns the hidden nodes parameters (the input
weights and hidden layer biases of additive networks or the
centers and impact factors of RBF networks) and then deter-
mines the output weights by the Moore-Penrose generalized
inverse [4, 5]. The original ELM is batch learning algorithm.

For some practical fields where the training data are
generated gradually, online sequential learning algorithms
are preferred over batch learning algorithms as sequential
learning algorithms donot require retrainingwhenever a new
sample is received. Hence, Liang et al. developed a kind of
online sequential ELM (OS-ELM) using the recursive least
square [6]. OS-ELM for SLFN produced better generalization

performance at faster learning speed compared with the
previous sequential learning algorithms. Moreover, for time-
varying environments, recently several incremental sequen-
tial ELMs are presented; they apply constant or adaptive
forgetting factor [7, 8] or iteration approach [9] to strengthen
new sample’s contribution on model. Speaking theoretically,
they cannot eliminate old samples’ effect on model thor-
oughly. To let ELM study the latest properties of identified
object, Zhao et al. developed online sequential ELMwith for-
getting mechanism (FOS-ELM) [10]. Fixed-memory extreme
learning machine (FM-ELM) of Zhang andWang [11] can be
thought of as a special case of FOS-ELM with the parameter
𝑝 in [10] being 1. Although experimental results show FOS-
ELM has higher accuracy [10], it may encounter the matrix
singularity problem and run unstably.

As a variant of ELM, regularized ELM (RELM) [12–
14], which is equivalent to the constrained optimization
based ELM [15, 16] mathematically, absorbing the thought
of structural risk minimization of statistical learning theory
[17], can overcome the overfitting problem of ELM and
provides better generalization ability than original ELMwhen
noises or outliers exist in the dataset [12]. Furthermore, the
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regularized OS-ELM (ReOS-ELM) developed by Huynh and
Won [13], which is equivalent to sequential regularized ELM
(SRELM) [14] and least square incremental ELM (LS-IELM)
[18] essentially, can avoid singularity problem.

If the feature mapping in SLFN is unknown to users, the
kernel based ELM (KELM) can be constructed [15, 16]. For
the application where samples arrive gradually, Guo et al.
developed kernel based incremental ELM (KB-IELM) [18].

However, in time-varying or nonstationary applications,
the newer training data usually carrymore information about
systems, and the older ones possibly carry less information,
even misleading information; that is, the training samples
usually have timeliness. The ReOS-ELM and KB-IELM can-
not reflect the timeliness of sequential training data well.
On the other hand, if a huge number of samples emerge,
for KB-IELM, the required storage space for matrix will
infinitely increase with learning ongoing and new samples
arriving ceaselessly, and at last storage overflow will happen
necessarily, so KB-IELM cannot be utilized at all under the
circumstances.

In this paper, we combine advantages of FOS-ELM and
ReOS-ELM and propose online regularized ELMwith forget-
ting mechanism (FORELM) for time-varying applications.
FORELM can overcome the potential matrix singularity
problem by using regularization and eliminate effections
of the outdated data on model by incorporating forgetting
mechanism. Like FOS-ELM, the ensemble skill also may
be employed in FORELM to enhance its stability; that is,
FORELM comprises 𝑝 (𝑝 ≥ 1) ReOE-ELMs with forgetting
mechanism, each of which trains a SLFN; the average of
those outputs represents the final output of the ensemble
of these SLFN. Additionally, forgetting mechanism also is
incorporated into KB-IELM and online kernelized ELMwith
forgetting mechanism (FOKELM) is presented, which can
deal with the problem of matrix expansion of KB-IELM.The
designed FORELM and FOKELM update model recursively.
The experimental results show the better performance of
FORELM and FOKELM approach in nonstationary environ-
ments.

It should be noted that our methods adjust the output
weights of SLFN due to addition and deletion of the samples
one by one, namely, learn and forget samples sequentially, and
network architecture is fixed. They are completely different
from those offline incremental ELMs (I-ELM) [19–21] and
incremental RELM [22] seeking optimal network architec-
ture by adding hidden nodes one by one and learning the data
in batch mode.

The rest of this paper is organized as follows. Section 2
gives a brief review of the basic concepts and related works
of ReOS-ELM and KB-IELM. Section 3 proposes new online
learning algorithms, namely, FORELM and FOKELM. Per-
formance evaluation is conducted in Section 4. Conclusions
are drawn in Section 5.

2. Brief Review of the ReOS-ELM
and KB-IELM

For simplicity, ELM based learning algorithm for SLFN with
multiple input single output is discussed.

The output of a SLFN with 𝐿 hidden nodes (additive or
RBF nodes) can be represented by

𝑓 (x) =

𝐿

∑

𝑖=1

𝛽
𝑖
𝐺 (a
𝑖
, 𝑏
𝑖
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𝑛
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𝑛
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𝛽 = [𝛽
1
, 𝛽
2
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𝐿
]
T is the vector of the output weights, and
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For a given set of distinct training data {(x
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× 𝑅, where x
𝑖
is an 𝑛-dimensional input vector and 𝑦

𝑖

is the corresponding scalar observation, the RELM, that is,
constrained optimization based ELM, can be formulated as

Minimize: 𝐿
𝑃ELM

=
1
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Subject to: H𝛽 = Y − 𝜉, (2b)

where 𝜉 = [𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑁
]
T denotes the training error. Y =

[𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
]
T indicates the target value of all the samples.

H
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= [h(x
1
)
T
, . . . , h(x

𝑁
)
T
]
T
is the mapping matrix for the

inputs of all the samples. 𝑐 is the regularization parameter (a
positive constant).

Based on the KKT theorem, the constrained optimization
of (2a) and (2b) can be transferred to the following dual
optimization problem:

𝐿
𝐷ELM

=
1

2
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where 𝛼 = [𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑁
] is the Lagrange multipliers vector.

Using KKT optimality conditions, the following equations
can be obtained:

𝜕𝐿
𝐷ELM

𝜕𝛽
= 0 󳨀→ 𝛽 = HTa, (4a)

𝜕𝐿
𝐷ELM
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= 0 󳨀→ a = 𝑐𝜉, (4b)

𝜕𝐿
𝐷ELM

𝜕𝛼
= 0 󳨀→ H𝛽 − 𝑌 + 𝜉 = 0. (4c)

Ultimately, 𝛽 can be obtained as follows [12, 15, 16]:

𝛽 = (𝑐
−1I + HTH)

−1

HTY (5a)

or 𝛽 = HT
(𝑐
−1I + HHT

)
−1

Y. (5b)

In order to reduce computational costs, when𝑁 > 𝐿, one
may prefer to apply solution (5a), and when 𝑁 < 𝐿, one may
prefer to apply solution (5b).

If the feature mapping h(x) is unknown, one can apply
Mercer’s conditions on RELM. The kernel matrix is defined



Mathematical Problems in Engineering 3

as Ω = HHT and Ω
𝑖𝑗

= h(x
𝑖
)h(x
𝑗
)
T
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𝑖
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𝑗
). Then, the

output of SLFN by kernel based RELM can be given as
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2.1. ReOS-ELM. The ReOS-ELM, that is, SRELM and LS-
IELM, can be retold as follows.

For time 𝑘 − 1, let h
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𝑖
), H

𝑘−1
=

[hT
𝑠

hT
𝑠+1

⋅ ⋅ ⋅ hT
𝑘−1

]
T
, Y
𝑘−1

= [𝑦𝑠 𝑦
𝑠+1

⋅ ⋅ ⋅ 𝑦
𝑘−1]

T; then,
according to (5a), solution of RELM can be expressed as
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2.2. KB-IELM. For time 𝑘 − 1, let
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3. The Proposed FORELM and FOKELM

When SLFN is employed to model online for time-varying
system, training samples are not only generated one by one,
but also often have the property of timeliness; that is, training
data have a period of validity. Therefore, during the learning
process by online sequential learning algorithm, the older or
outdated training data, whose effectiveness is less or is lost
after several unit times, should be abandoned, which is the
idea of forgetting mechanism [10]. ReOS-ELM (i.e., SRELM
or LS-IELM) and KB-IELM cannot reflect the timeliness
of sequential training data. In this section, the forgetting
mechanism is added to them to eliminate the outdated data
that might have misleading or bad effect on built SLFN.
On the other hand, for KB-IELM, to abandon samples can
prevent matrix A−1 of (11) from expanding infinitely. The
computing procedures of deleting sample are given, and the
completed online regularized ELM and kernelized ELMwith
forgetting mechanism are presented.

3.1. Decremental RELMand FORELM. After RELMhas stud-
ied a given number 𝑧 of samples and SLFN has been applied
for prediction, RELMwould discard the oldest sample (x
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𝑠
)
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Furthermore, using SMW formula, then
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Next time, P
𝑘+1

and 𝛽
𝑘+1

can be calculated from P (viewed
as P
𝑘
) and 𝛽 (viewed as 𝛽

𝑘
) according to (8a) and (8b),

respectively.
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Suppose that FORELM may consist of 𝑝 ReOS-ELMs
with forgetting mechanism, by which SFLNs trained have the
same output of hidden node 𝐺(a, 𝑏, x) and the same number
of hidden nodes 𝐿. In the following FORELM algorithm, the
variables and parameters with superscript 𝑟 are relevant to the
𝑟th SFLN to be trained by the 𝑟th ReOS-ELM with forgetting
mechanism. Synthesize ReOS-ELM and the decremental
RELM; then we can get FORELM as follows.

Step 1. Initialization:

(1) Choose the hidden output function𝐺(a, 𝑏, x) of SFLN
with the certain activation function and the number
of hidden nodes 𝐿. Set the value of 𝑝.

(2) Randomly assign hidden parameters (a𝑟
𝑖
,𝑏𝑟
𝑖
), 𝑖 = 1, 2,

. . . , 𝐿, 𝑟 = 1, 2, . . . , 𝑝.

(3) Determine 𝑐; set P𝑟
𝑘−1

= 𝑐I
𝐿×𝐿.

Step 2. Incrementally learn initial 𝑧−1 samples; that is, repeat
the following procedure for 𝑧 − 1 times:

(1) Get current sample (x
𝑘
, 𝑦
𝑘
).

(2) Calculate h𝑟
𝑘
and P𝑟

𝑘
: h𝑟
𝑘

= [𝐺(𝑎
𝑟

1
, 𝑏
𝑟

1
, 𝑥
𝑘
), . . . , 𝐺(𝑎

𝑟

𝐿
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𝑏
𝑟

𝐿
, 𝑥
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𝑘
by (8a).

(3) Calculate 𝛽𝑟
𝑘
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𝑘
, 𝑦
𝑘
) is the first one, then

𝛽𝑟
𝑘
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𝑘
(h𝑟
𝑘
)
T
𝑦
𝑘
, else calculate 𝛽𝑟

𝑘
by (8b).

Step 3. Online modeling and prediction: repeat the following
procedure during every step:

(1) Acquire current 𝑦
𝑘
, form new sample (x

𝑘
, 𝑦
𝑘
), and

calculate h𝑟
𝑘
, P𝑟
𝑘
, and 𝛽𝑟

𝑘
by (8a) and (8b).

(2) Prediction: form x
𝑘+1

, the output of the 𝑟th SFLN; that
is, prediction𝑦

𝑟

𝑘+1
of𝑦
𝑘+1

can be calculated by (1):𝑦𝑟
𝑘+1

= h𝑟(x
𝑘+1

)𝛽𝑟
𝑘
, the final prediction 𝑦

𝑘+1
= ∑
𝑝

𝑟=1
𝑦
𝑟

𝑘+1
/𝑝.

(3) Delete the oldest sample (x
𝑠
, 𝑦
𝑠
): calculate P𝑟 and 𝛽

𝑟

by (13) and (14), respectively.

3.2. Decremental KELM and FOKELM. After KELM has
studied the given number 𝑧 of samples and SLFN has
been applied for prediction, KELM would discard the oldest
sample (x

𝑠
, 𝑦
𝑠
) from samples set.

Let Ω
𝑖𝑗

= 𝐾(x
𝑠+𝑖

, x
𝑠+𝑗

), 𝑖, 𝑗 = 1, 2, . . . , 𝑘 − 𝑠. A = Ω +

𝑐
−1I, V = [𝐾(x

𝑠
, x
𝑠+1

), . . . , 𝐾(x
𝑠
, x
𝑘
)], V = 𝐾(x

𝑠
, x
𝑠
)+1/𝑐; then

A
𝑘
can be written in the following partitioned matrix form:

A
𝑘
= Ω + 𝑐

−1I = [
V V
VT A

] . (15)

Moreover, using the block matrix inverse formula, such
equation can be obtained:

A−1
𝑘

= Ω + 𝑐
−1I = [

V V
VT A

]

−1

= [
𝜌
−1

−𝜌
−1VA−1

−A−1VT
𝜌
−1 A−1 + A−1VT

𝜌
−1VA−1

] ,

(16)

where 𝜌 = V − VA−1VT.
Rewrite A−1

𝑘
in the partitioned matrix form as

A−1
𝑘

= [
A−1
𝑘 (1,1)

A−1
𝑘 (1,2:end)

A−1
𝑘 (2:end,1) A

−1

𝑘 (2:end,2:end)
] . (17)

Compare (16) and (17); A−1 can be calculated as

A−1 = A−1
𝑘 (2:end,2:end) − A−1VT

𝜌
−1VA−1

= A−1
𝑘 (2:end,2:end) −

(−A−1VT
𝜌
−1

) (−𝜌
−1VA−1)

𝜌
−1

= A−1
𝑘 (2:end,2:end) −

A−1
𝑘 (2:end,1) × A−1

𝑘 (1,2:end)

A−1
𝑘 (1,1)

.

(18)

Next time, compute A−1
𝑘+1

from A−1 (viewed as A−1
𝑘
)

according to (11).
Integrate KB-IELMwith the decremental KELM; further,

we can obtain FOKELM as follows.

Step 1. Initialization: choose kernel 𝐾(x
𝑖
, x
𝑗
) with corre-

sponding parameter values, and determine 𝑐.

Step 2. Incrementally learn initial 𝑧−1 samples: calculateA−1
𝑘
:

if there exists a sample only, then A−1
𝑘

= 1/(𝐾(x
𝑘
, x
𝑘
) + 𝑐
−1

),
else calculate A−1

𝑘
by (11).

Step 3. Online modeling and prediction:

(1) Acquire new sample (x
𝑘
, 𝑦
𝑘
) and calculateA−1

𝑘
by (11).

(2) Prediction: form x
𝑘+1

, and calculate prediction
𝑦
𝑘+1

of 𝑦
𝑘+1

by (6); namely,

𝑦
𝑘+1

= [𝐾 (x
𝑘+1

, x
𝑘−𝑧+1

) , . . . , 𝐾 (x
𝑘+1

, x
𝑘
)]

× A−1
𝑘

[𝑦
𝑘−𝑧+1

, . . . , 𝑦
𝑘
]
T
.

(19)

(3) Delete the oldest sample (x
𝑠
, 𝑦
𝑠
): calculateA−1 by (18).

4. Performance Evaluation

In this section, the performance of the presented FORELM
and FOKELM is verified via the time-varying nonlinear
process identification simulations. Those simulations are
designed from the aspects of accuracy, stability, and compu-
tation complexity of the proposed FORELM and FOKELM
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by comparison with the FOS-ELM, ReOS-ELM (i.e., SRELM
or LS-IELM), and dynamic regression extreme learning
machine (DR-ELM) [24]. DR-ELM also is a kind of online
sequential RELM and is designed by Zhang and Wang using
solution (5b) of RELM and the block matrix inverse formula.

All the performance evaluations were executed in MAT-
LAB 7.0.1 environment running on Windows XP with Intel
Core i3-3220 3.3 GHz CPU and 4GB RAM.

Simulation 1. The unknown identified system is a modified
version of the one addressed in [25], by changing the constant
and the coefficients of variables, to form a time-varying
system, as done in [11]:

𝑦 (𝑘 + 1) =

{{{{{{{{

{{{{{{{{

{

𝑦 (𝑘)

1 + 𝑦(𝑘)
2
+ 𝑢(𝑘)

3
𝑘 ≤ 100

2𝑦 (𝑘)

2 + 𝑦(𝑘)
2
+ 𝑢(𝑘)

3
100 < 𝑘 ≤ 300

𝑦 (𝑘)

1 + 2𝑦(𝑘)
2
+ 2𝑢(𝑘)

3
300 < 𝑘.

(20)

The system (20) can be expressed as follows:

𝑦 (𝑘) = 𝑓 (x (𝑘)) , (21)

where 𝑓(⋅) is a nonlinear function and x(𝑘) is the regression
input data vector

x (𝑘)

= [𝑦 (𝑘 − 1) , . . . , 𝑦 (𝑘 − 𝑛
𝑦
) , 𝑢 (𝑘 − 𝑛

𝑑
) , . . . , 𝑢 (𝑘 − 𝑛

𝑢
)] ,

(22)

with 𝑛
𝑑
, 𝑛
𝑢
, and 𝑛

𝑦
being model structure parameters. Apply

SLFN to approximate (20); accordingly (x(𝑘), 𝑦(𝑘)) is the
learning sample (x

𝑘
, 𝑦
𝑘
) of SLFN.

Denote 𝑘
0

= 𝑧 + max(𝑛
𝑦
, 𝑛
𝑢
) − 𝑛
𝑑
, 𝑘
1

= 𝑘
0
+ 350. The

input is set as follows:

𝑢 (𝑘) =

{{{{{{

{{{{{{

{

rand (⋅) 𝑘 ≤ 𝑘
0

sin(
2𝜋 (𝑘 − 𝑘

0
)

120
) 𝑘
0
< 𝑘 ≤ 𝑘

1

sin(
2𝜋 (𝑘 − 𝑘

1
)

50
) 𝑘
1
< 𝑘,

(23)

where rand(⋅) generates random numbers which are uni-
formly distributed in the interval (0, 1).

In all experiments, the output of hidden nodewith respect
to the input x of a SLFN in (1) is set to the sigmoidal additive
function; that is, 𝐺(a, 𝑏, x) = 1/(1 + exp(a ⋅ x + 𝑏)), the
components of a; that is, the input weights and bias 𝑏 are
randomly chosen from the range [−2, 2]. In FOKELM, the
Gaussian kernel function is applied; namely, 𝐾(x

𝑖
, x
𝑗
) =

exp(−‖𝑥
𝑖
− 𝑥
𝑗
‖
2
/𝜎).

The root-mean-square error (RMSE) of prediction and
the maximal absolute prediction error (MAPE) are regarded

as measure indices of model accuracy and stability, respec-
tively. Consider

RMSE = √
1

𝑡
2
− 𝑡
1
+ 1

𝑡2

∑

𝑖=𝑡1

(𝑦
𝑖
− 𝑦
𝑖
)
2
,

MAPE = max
𝑖=𝑡1 ,...,𝑡2

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦
𝑖

󵄨󵄨󵄨󵄨 ,

(24)

where 𝑡
1
= 𝑘
0
+ 1, 𝑡
2
= 650. Simulation is carried on for 650

instances. In model (21), 𝑛
𝑑

= 1, 𝑛
𝑢

= 2, and 𝑛
𝑦

= 3. Due to
randomness of parameters a, 𝑏, and 𝑢(𝑡) during initial stage
(𝑘 ≤ 𝑘

0
), the results of simulation must possess variation. For

each approach, the results are averaged over 5 trials.
ReOS-ELM does not discard any old sample; thus it has

𝑧 → ∞.
In offline modeling, the training samples set is fixed; thus

one may search relative optimal values for model parameter
of ELMs. Nevertheless, in online modeling for time-varying
system, the training samples set is changing; it is difficult to
choose optimal values for parameters in practice. Therefore,
we set the same parameter of these ELMs with the same value
manually; for example, their parameters 𝐶 all are set to 250;
then we compare their performances.

RMSE andMAPE of the proposed ELMs and other afore-
mentioned ELMs are listed in Tables 1 and 2, respectively,
and the corresponding running time (i.e., training time plus
predicting time) of these various ELMs is given in Table 3.

From Tables 1–3, one can see the following results.

(1) RMSE andMAPE of FORELM are smaller than those
of FOS-ELMwith the same 𝑧 and 𝐿 values.The reason
for this is that (HTH) in FOS-ELM may be (nearly)
singular at some instances; thus (HTH)

−1 calculated
recursively is nonsense and unbelievable, and when
𝐿 ≥ 𝑧, FOS-ELM cannot work owing to its too
large RMSE or MAPE. Accordingly, “×” represents
nullification inTables 1–3, whereas FORELMdoes not
suffer from such a problem. In addition, RMSE and
MAPE of FOKELM also are smaller than those of
FOS-ELM with the same 𝑧 values.

(2) RMSE of FORELM and FOKELM is smaller than that
of ReOS-ELMwith the same 𝐿 and𝐶when parameter
𝑧, namely, the length of sliding time windows, is
set properly. The reason for this is that ReOS-ELM
neglects timeliness of samples of the time-varying
process and does not get rid of effects of old samples;
contrarily, FORELM and FOKELM stress actions of
the newest ones. It should be noticed that 𝑧 is relevant
to characteristics of the specific time-varying system
and its inputs. In Table 1, when 𝑧 = 50, 70, or 100, the
effect is good.

(3) When 𝑧 is fixed, with 𝐿 increasing, RMSEs of these
ELMs tend to decrease firstly. But changes are not
obvious later.

(4) FORELM requires nearly the same time as FOS-ELM,
but more time than ReOS-ELM. It is because both
FORELM and FOS-ELM involve 𝑝 incremental and
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Table 1: RMSE comparison between the proposed ELMs and other ELMs on identification of process (20) with input (23).

𝑧 50 70 100 150 200 ∞

𝐿 = 15

FOS-ELM (𝑝 = 2) 0.3474 0.0967 0.0731 0.0975 0.0817 —
ReOS-ELM — — — — — 0.0961
DR-ELM 0.0681 0.0683 0.0712 0.0833 0.0671 —

FORELM (𝑝 = 2) 0.0850 0.0708 0.0680 0.0816 0.0718 —

𝐿 = 25

FOS-ELM 0.9070 0.1808 0.1324 0.0821 0.0883 —
ReOS-ELM — — — — — 0.0804
DR-ELM 0.0543 0.0670 0.0789 0.0635 0.0656 —
FORELM 0.0578 0.0697 0.0833 0.0653 0.0600 —

𝐿 = 50

FOS-ELM × × × 9.9541 0.4806 —
ReOS-ELM — — — — — 0.0529
DR-ELM 0.0377 0.0351 0.0345 0.0425 0.0457 —
FORELM 0.0344 0.0320 0.0324 0.0457 0.0456 —

𝐿 = 100

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.0359
DR-ELM 0.0298 0.0306 0.0308 0.0391 0.0393 —
FORELM 0.0312 0.0263 0.0288 0.0405 0.0378 —

𝐿 = 150

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.0351
DR-ELM 0.0268 0.0270 0.0281 0.0417 0.0365 —
FORELM 0.0270 0.0276 0.0284 0.0378 0.0330 —

𝐿 = 200

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.0344
DR-ELM 0.0259 0.0284 0.0272 0.0363 0.0351 —
FORELM 0.0263 0.0289 0.0274 0.0355 0.0325 —

𝐿 = 400

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.0296
DR-ELM 0.0240 0.0255 0.0249 0.0362 0.0327 —
FORELM 0.0231 0.0248 0.0256 0.0372 0.0310 —

𝐿 = 800

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.0292
DR-ELM 0.0233 0.0253 0.0270 0.0374 0.0320 —
FORELM 0.0223 0.0256 0.0252 0.0407 0.0318 —

𝐿 = 1000

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.0298
DR-ELM 0.0234 0.0263 0.0278 0.0418 0.0323 —
FORELM 0.0232 0.0238 0.0259 0.0372 0.0310 —

FOKELM 0.0236 0.0251 0.0267 0.0386 0.0331 —
“—” represents nondefinition or inexistence in the case.
“×” represents nullification owing to the too large RMSE or MAPE.

decremental learning procedures, but ReOS-ELM
does one incremental learning procedure only.

(5) Both FORELM andDR-ELMuse regularization trick,
so they should obtain the same or similar prediction
effect theoretically, and Tables 1 and 2 also show they
have similar simulation results statistically. However,
their time efficiencies are different. From Table 3, it
can be seen that, for the case where 𝐿 is small or 𝐿 ≤ 𝑧,
FORELM takes less time thanDR-ELM.Thus, when 𝐿

is small and modeling speed is preferred to accuracy,
one may try to employ FORELM.

(6) When 𝑧 is fixed, if 𝐿 is large enough, there are no sig-
nificant differences between RMSE of FORELM and
DR-ELM and RMSE of FOKELM with appropriate
parameter values. In Table 3, it is obvious that, with 𝐿

increasing, DR-ELM costs more and more time. But
time cost by FOKELM is irrelevant with 𝐿. According
to the procedures of DR-ELM and FOKELM, if 𝐿 is
large enough to make calculating h(x

𝑖
)h(x
𝑗
)
T more
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Table 2: MAPE comparison between the proposed ELMs and other ELMs on identification of process (20) with input (23).

𝑧 50 70 100 150 200 ∞

𝐿 = 15

FOS-ELM (𝑝 = 2) 5.8327 0.6123 0.5415 1.0993 0.7288 —
ReOS-ELM — — — — — 0.3236
DR-ELM 0.3412 0.4318 0.3440 0.7437 0.4007 —

FORELM (𝑝 = 2) 0.2689 0.3639 0.3135 0.8583 0.4661 —

𝐿 = 25

FOS-ELM 5.0473 1.7010 2.4941 0.9537 0.9272 —
ReOS-ELM — — — — — 0.4773
DR-ELM 0.3418 0.3158 0.4577 0.5680 0.3127 —
FORELM 0.3391 0.2568 0.3834 0.6228 0.2908 —

𝐿 = 50

FOS-ELM × × × 209.8850 3.9992 —
ReOS-ELM — — — — — 0.2551
DR-ELM 0.3876 0.3109 0.3808 0.5486 0.3029 —
FORELM 0.3478 0.2960 0.3145 0.5504 0.3514 —

𝐿 = 100

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.2622
DR-ELM 0.2473 0.2748 0.2163 0.5471 0.3381 —
FORELM 0.3229 0.2506 0.2074 0.5501 0.2936 —

𝐿 = 150

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.3360
DR-ELM 0.2725 0.2365 0.2133 0.5439 0.3071 —
FORELM 0.2713 0.2418 0.2050 0.5432 0.3133 —

𝐿 = 200

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.2687
DR-ELM 0.2539 0.2454 0.2069 0.5443 0.3161 —
FORELM 0.2643 0.2370 0.2029 0.5443 0.3148 —

𝐿 = 400

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.2657
DR-ELM 0.2520 0.2456 0.2053 0.5420 0.3260 —
FORELM 0.2277 0.2382 0.2285 0.5430 0.3208 —

𝐿 = 800

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.3784
DR-ELM 0.2388 0.2401 0.3112 0.5415 0.3225 —
FORELM 0.2128 0.2325 0.3006 0.5416 0.3247 —

𝐿 = 1000

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.4179
DR-ELM 0.2230 0.2550 0.3412 0.5431 0.3283 —
FORELM 0.2228 0.2525 0.3347 0.5412 0.3293 —

FOKELM 0.2397 0.2345 0.3125 0.5421 0.3178 —

complex than calculating 𝐾(x
𝑖
, x
𝑗
), FOKELM will

take less time than DR-ELM.

To intuitively observe and compare the accuracy and
stability of these ELMs with the same a, 𝑏 values and initial
𝑢(𝑘) (𝑘 ≤ 𝑘

0
) signal, absolute prediction error (APE) curves

of one trial of every approach (𝐿 = 25, 𝑧 = 70) are shown in
Figure 1. Clearly, Figure 1(a) shows that, at a few instances,
prediction errors of FOS-ELM are much greater, although
prediction errors are very small at other instances; thus FOS-
ELM is unstable. Comparing Figures 1(b), 1(c), 1(d), and 1(e),
we can see that, at most instances, prediction errors of DR-
ELM, FORELM, and FOKELM are smaller than those of
ReOS-ELM, and prediction effect of FORELM is similar to
that of DR-ELM.

On the whole, FORELM and FOKELM have higher
accuracy than FOS-ELM and ReOS-ELM.

Simulation 2. In this subsection, the proposed methods are
tested on modeling for a second-order bioreactor process
described by the following differential equations [26]:

̇𝑐
1 (𝑡) = −𝑐

1 (𝑡) 𝑢 (𝑡) + 𝑐
1 (𝑡) (1 − 𝑐

2 (𝑡)) 𝑒
𝑐2(𝑡)/𝛾,

̇𝑐
2 (𝑡) = −𝑐

2 (𝑡) 𝑢 (𝑡) + 𝑐
1 (𝑡) (1 − 𝑐

2 (𝑡)) 𝑒
𝑐2(𝑡)/𝛾

1 + 𝛽

1 + 𝛽 − 𝑐
2 (𝑡)

,

(25)

where 𝑐
1
(𝑡) is the cell concentration that is considered as the

output of the process (𝑦(𝑡) = 𝑐
1
(𝑡)), 𝑐

2
(𝑡) is the amount of

nutrients per unit volume, and 𝑢(𝑡) represents the flow rate
as the control input (the excitation signal for modeling); the
𝑐
1
(𝑡) and 𝑐

2
(𝑡) can take values between zero and one, and 𝑢(𝑡)

is allowed a magnitude in interval [0, 2].
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Table 3: Running time (second) comparison between the proposed ELMs and other ELMs on identification of process (20) with input (23).

𝑧 50 70 100 150 200 ∞

𝐿 = 15

FOS-ELM (𝑝 = 2) 0.0620 0.0620 0.0621 0.0621 0.0622 —
ReOS-ELM — — — — — 0.0160
DR-ELM 0.2650 0.3590 0.5781 1.0790 1.6102 —

FORELM (𝑝 = 2) 0.0620 0.0620 0.0620 0.0621 0.0622 —

𝐿 = 25

FOS-ELM 0.0621 0.0621 0.0621 0.0623 0.0623 —
ReOS-ELM — — — — — 0.0167
DR-ELM 0.2500 0.3750 0.6094 1.0630 1.6250 —
FORELM 0.0621 0.0621 0.0621 0.0622 0.0622 —

𝐿 = 50

FOS-ELM × × × 0.1250 0.1250 —
ReOS-ELM — — — — — 0.0470
DR-ELM 0.2650 0.3906 0.6250 1.1100 1.6560 —
FORELM 0.1400 0.1562 0.1560 0.1250 0.1250 —

𝐿 = 100

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.1250
DR-ELM 0.2813 0.4219 0.6719 1.2031 1.7380 —
FORELM 0.3750 0.4063 0.3440 0.3440 0.3280 —

𝐿 = 150

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.2344
DR-ELM 0.3125 0.4540 0.7500 1.2970 1.9220 —
FORELM 0.7810 0.8003 0.6560 0.6720 0.6570 —

𝐿 = 200

FOS-ELM × × × × × —
ReOS-ELM — — — — — 0.3901
DR-ELM 0.3290 0.5160 0.7810 1.3440 1.9690 —
FORELM 1.2702 1.2750 1.1250 1.0320 0.9375 —

𝐿 = 400

FOS-ELM × × × × × —
ReOS-ELM — — — — — 1.7350
DR-ELM 0.3906 0.5781 0.8750 1.4680 2.2820 —
FORELM 6.6410 6.4530 6.2030 5.6090 5.1719 —

𝐿 = 800

FOS-ELM × × × × × —
ReOS-ELM — — — — — 8.7190
DR-ELM 0.5470 0.7970 1.2660 2.0938 2.9840 —
FORELM 32.7820 31.6720 30.1400 27.5780 27.7500 —

𝐿 = 1000

FOS-ELM × × × × × —
ReOS-ELM — — — — — 13.6094
DR-ELM 0.6250 1.0000 1.4530 2.4380 3.4060 —
FORELM 51.4530 49.3440 46.8750 43.1880 38.9060 —

FOKELM 0.2811 0.4364 0.6951 1.1720 1.7813 —

In the simulation, with the growth rate parameter 𝛽 =

0.02, the nutrient inhibition parameter 𝛾 is considered as the
time-varying parameter; that is,

𝛾 =

{{

{{

{

0.3 0 s < 𝑡 ≤ 20 s
0.48 20 s < 𝑡 ≤ 60 s
0.6 60 s < 𝑡.

(26)

Let 𝑇
𝑠
indicate sampling interval. Denote 𝑡

0
= (𝑧 +

max(𝑛
𝑦
, 𝑛
𝑢
) − 𝑛
𝑑
)𝑇
𝑠
, 𝑡
1
= 𝑡
0
+ 350𝑇

𝑠
. The input is set below:

𝑢 (𝑡) =

{{{{{{

{{{{{{

{

0.5 rand (⋅) + 0.75 𝑡 ≤ 𝑡
0

0.25 sin(
2𝜋 (𝑡 − 𝑡

0
)

24
) + 1 𝑡

0
< 𝑡 ≤ 𝑡

1

0.25 sin(
2𝜋 (𝑡 − 𝑡

1
)

10
) + 1 𝑡

1
< 𝑡,

(27)

where, at every sampling instance, rand(⋅) generates random
numbers which are uniformly distributed in the interval
(0, 1).

Set 𝑇
𝑠

= 0.2 s. With the same 𝑎, 𝑏, and initial 𝑢(𝑡),
APE curves of every approach (𝐿 = 20, 𝑧 = 100) for
one trial are drawn in Figure 2. Clearly, on the whole, APE
curves of FORELM and FOKELM are smaller than those
of FOS-ELM and ReOS-ELM, and FORELM has nearly
the same prediction effect as DR-ELM. Further, RMSE of
FOS-ELM, ReOS-ELM, DR-ELM, FORELM, and FOKELM
are 0.096241, 0.012203, 0.007439, 0.007619, and 0.007102,
respectively.

Throughmany comparative trials, wemay attain the same
results as the ones in Simulation 1.

5. Conclusions

ReOS-ELM (i.e., SRELM or LS-IELM) can yield good gener-
alization models and will not suffer from matrix singularity
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Figure 1: APE curves of ELMs on process (20) with input (23).

or ill-posed problems, but it is unsuitable in time-varying
applications. On the other hand, FOS-ELM, thanks to its
forgetting mechanism, can reflect the timeliness of data
and train SLFN in nonstationary environments, but it may
encounter the matrix singularity problem and run unstably.

In the paper, the forgetting mechanism is incorporated to
ReOS-ELM, and we obtain FORELM which blends advan-
tages of ReOS-ELM and FOS-ELM. In addition, the forget-
ting mechanism also is added to KB-IELM; consequently,
FOKELM is obtained, which can overcomematrix expansion
problem of KB-IELM.

Performance comparison between the proposed ELMs
and other ELMs was carried out on identification of time-
varying systems in the aspects of accuracy, stability, and com-
putational complexity. The experimental results show that
FORELM and FOKELM have better stability than FOS-ELM
and have higher accuracy than ReOS-ELM in nonstationary
environments statistically. When the number 𝐿 of hidden
nodes is small or 𝐿 ≤ the length 𝑧 of sliding time windows,
FORELM has time efficiency superiority over DR-ELM. On
the other hand, if 𝐿 is large enough, FOKELM will be faster
than DR-ELM.
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Figure 2: APE curves of ELMs on process (25) with time-varying 𝛾 in (26).
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