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We establish the general solutions of the followingmixed type of quartic and quadratic functional equation:𝑓(2𝑥+𝑦)+𝑓(2𝑥−𝑦) =
4𝑓(𝑥 + 𝑦) + 4𝑓(𝑥 − 𝑦) + 2𝑓(2𝑥) − 8𝑓(𝑥) − 6𝑓(𝑦). Moreover we prove the Hyers-Ulam-Rassias stability of this equation under the
approximately quartic and the approximately quadratic conditions.

1. Introduction

The stability problems of functional equations go back to
1940, when Ulam [1] proposed the following problem con-
cerning group homomorphisms.

Let 𝐺
1
be a group and let 𝐺

2
be a metric group

with metric 𝑑(⋅, ⋅) and 𝜖 a positive number. Does
there exist a positive 𝛿 such that for every 𝑓 :
𝐺
1
→ 𝐺

2
with 𝑑(𝑓(𝑥𝑦), 𝑓(𝑥)𝑓(𝑦)) ≤ 𝜖 there

exists a group homomorphism 𝐿 : 𝐺
1
→ 𝐺
2
such

that 𝑑(𝑓(𝑥), 𝐿(𝑥)) < 𝛿 for all 𝑥 in 𝐺
1
?

In 1941, Hyers [2] had affirmatively answered the question
of Ulam for Banach spaces. He proved that if 𝑓 is a mapping
between Banach spaces satisfying ‖𝑓(𝑥+𝑦)−𝑓(𝑥)−𝑓(𝑦)‖ ≤ 𝜖
for some fixed 𝜖 ≥ 0, then there exists the unique additive
mapping𝐴 such that ‖𝑓(𝑥)−𝐴(𝑥)‖ ≤ 𝜖. Actually, the additive
mapping 𝐴 is explicitly constructed from the given function
𝑓 by the formular

𝐴 (𝑥) = lim
𝑛→∞

2−𝑛𝑓 (2𝑛𝑥) or 𝐴 (𝑥) = lim
𝑛→∞

2𝑛𝑓 (2−𝑛𝑥) .

(1)

This method is called a direct method. The theorem of Hyers
was generalized by Aoki [3] for additive mappings and by
Rassias [4] for linearmappings by considering an unbounded
Cauchy difference to be controlled by 𝜖(‖𝑥‖𝑝 + ‖𝑦‖𝑝). In
addition, Rassias generalized the Hyers’ stability result by
introducing two weaker conditions controlled by the product

of different powers of norms and mixed product-sum of
powers of norms, respectively (see [5–9]). In 1994, Găvruţa
[10] gave a generalization of Rassias’ theorem by replacing
𝜖(‖𝑥‖𝑝+‖𝑦‖𝑝) by a general control function𝜙(𝑥, 𝑦). Instead of
the direct method, Cădariu and Radu [11] introduced another
approach for proving the stability of functional equations (see
also [12]) via the fixed point theory. They observed that the
existence of a solution 𝐴 of the functional equation and the
estimation of the difference with the given mapping 𝑓 can
be obtained from the fixed point alternative. This method is
called a fixed point method.

As of now, both the direct method and the fixed point
method have been intensively used in the study of stability
problems of various types of functional equations (see [13–
19]). In particular, one of the important functional equations
studied is the quadratic functional equation:

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) . (2)

We note that the quadratic function 𝑓(𝑥) = 𝑥2 is a solution
of (2). So one usually calls the above functional equation
quadratic and every solution of (2) is said to be a quadratic
mapping. Stability results of quadratic functional equations
can be found in [20–22]. On the other hand, Rassias [23]
investigated stability problems of the following functional
equation:

𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 2𝑦) + 6𝑓 (𝑥)

= 4𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥 − 𝑦) + 24𝑓 (𝑦) .
(3)
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It is easy to see that 𝑓(𝑥) = 𝑥4 is a solution of (3) by virtue of
the algebraic identity

(𝑥 + 2𝑦)
4

+ (𝑥 − 2𝑦)
4

+ 6𝑥4

= 4(𝑥 + 𝑦)
4

+ 4(𝑥 − 𝑦)
4

+ 24𝑦4.
(4)

For this reason, (3) is called a quartic functional equation
and every solution of (3) is said to be a quartic mapping.
Chung and Sahoo [24] determined the general solutions
of (3) without assuming any regularity conditions on the
unknown function. In fact, they proved that the function 𝑓 :
R → R is a solution of (3) if and only if 𝑓(𝑥) = 𝐴(𝑥, 𝑥, 𝑥, 𝑥),
where the function𝐴 : R4 → R is symmetric and additive in
each variable. Since the solution of (3) is even, we can rewrite
(3) as

𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦)

= 4𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥 − 𝑦) + 24𝑓 (𝑥) − 6𝑓 (𝑦) .
(5)

Lee et al. [25] obtained the general solutions of (5) and proved
the Hyers-Ulam-Rassias stability of this equation (see also
[26]). Lee andChung [27] proved the stability of the following
quartic functional equation, which is a generalization of (5),

𝑓 (𝑛𝑥 + 𝑦) + 𝑓 (𝑛𝑥 − 𝑦)

= 𝑛2𝑓 (𝑥 + 𝑦) + 𝑛2𝑓 (𝑥 − 𝑦) + 2𝑛2 (𝑛2 − 1)𝑓 (𝑥)

− 2 (𝑛2 − 1)𝑓 (𝑦)

(6)

for fixed integer 𝑛 with 𝑛 ̸= 0, ±1. Also Kim [28] solved the
general solutions and proved the Hyers-Ulam-Rassias stabil-
ity for the mixed type of quartic and quadratic functional
equation:

𝑓 (𝑥
1
+ 𝑥
2
+ 𝑥
3
) + 𝑓 (𝑥

1
+ 𝑥
2
− 𝑥
3
) + 𝑓 (𝑥

1
− 𝑥
2
+ 𝑥
3
)

+ 𝑓 (𝑥
1
− 𝑥
2
− 𝑥
3
) + 4𝑓 (𝑥

1
) + 4𝑓 (𝑥

2
) + 4𝑓 (𝑥

3
)

= 2𝑓 (𝑥
1
+ 𝑥
2
) + 2𝑓 (𝑥

1
− 𝑥
2
) + 2𝑓 (𝑥

1
+ 𝑥
3
)

+ 2𝑓 (𝑥
1
− 𝑥
3
) + 2𝑓 (𝑥

2
+ 𝑥
3
) + 2𝑓 (𝑥

2
− 𝑥
3
) .

(7)

Gordji et al. [29] introduced another mixed type of quartic
and quadratic functional equation:

𝑓 (𝑛𝑥 + 𝑦) + 𝑓 (𝑛𝑥 − 𝑦)

= 𝑛2𝑓 (𝑥 + 𝑦) + 𝑛2𝑓 (𝑥 − 𝑦) + 2 (𝑓 (𝑛𝑥) − 𝑛
2𝑓 (𝑥))

− 2 (𝑛2 − 1)𝑓 (𝑦)

(8)

for fixed integers 𝑛 with 𝑛 ̸= 0, ±1. They established
the general solutions and proved the Hyers-Ulam-Rassias
stability of this equation in quasi-Banach spaces.

In this paper, we deal with the following mixed type of
quartic and quadratic functional equations, for the case 𝑛 = 2
in (8),
𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦)

= 4𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥 − 𝑦) + 2𝑓 (2𝑥) − 8𝑓 (𝑥) − 6𝑓 (𝑦) .

(9)

In Section 2, we solve the general solutions of (9) using
another way as in [29]. As a matter of fact, 𝑓 satisfies
(9) if and only if there exists a quartic mapping 𝑇 and a
quadratic mapping 𝑄 which satisfy (5) and (2), respectively;
the mapping 𝑓 can be written as 𝑓(𝑥) = 𝑇(𝑥) + 𝑄(𝑥).
Using the idea of Gãvruta [10] we prove the Hyers-Ulam-
Rassias stability of (9) in Section 3. Applying the different
approaches as in [29] we prove the Hyers-Ulam-Rassias
stability of (9) under the approximately quartic condition and
the approximately quadratic condition in Sections 4 and 5,
respectively.

2. General Solutions of (9)
Throughout this section, we denote both 𝑋 and 𝑌 by real
vector spaces.

It is well-known [30] that a mapping 𝑓 : 𝑋 → 𝑌 satisfies
the quadratic functional equation (2) if and only if there exists
a unique symmetric biadditive mapping 𝐵 such that 𝑓(𝑥) =
𝐵(𝑥, 𝑥) for all 𝑥 ∈ 𝑋. The biadditive mapping 𝐵 is given by

𝐵 (𝑥, 𝑦) =
1

4
[𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥 − 𝑦)] . (10)

Similarly, a mapping 𝑓 : 𝑋 → 𝑌 satisfies the quartic
functional equation (5) if and only if there exists a symmetric
biquadraticmapping𝐹 : 𝑋×𝑋 → 𝑌 such that𝑓(𝑥) = 𝐹(𝑥, 𝑥)
for all 𝑥 ∈ 𝑋 (see [25]). The biquadratic mapping 𝐹 is given
by

𝐹 (𝑥, 𝑦) =
1

12
[𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)] .

(11)

Nowwe are going to establish the general solutions of (9).

Lemma 1. If a mapping 𝑓 : 𝑋 → 𝑌 satisfies (9), then the
mapping 𝑔 : 𝑋 → 𝑌 defined by 𝑔(𝑥) = 𝑓(2𝑥) − 4𝑓(𝑥) is a
quartic mapping satisfying (5).

Proof. Putting 𝑥 = 𝑦 = 0 in (9) gives 𝑓(0) = 0. Letting 𝑥 = 0
in (9) we have 𝑓(−𝑦) = 𝑓(𝑦) for all 𝑦 ∈ 𝑋. Substituting 𝑦 by
𝑥 in (9) yields

𝑓 (3𝑥) = 6𝑓 (2𝑥) − 15𝑓 (𝑥) (12)

for all 𝑥 ∈ 𝑋. Replacing 𝑦 by 2𝑥 in (9) and using the evenness
of 𝑓 we obtain

𝑓 (4𝑥) = 4𝑓 (3𝑥) − 4𝑓 (2𝑥) − 4𝑓 (𝑥) (13)

for all 𝑥 ∈ 𝑋. Combining (12) and (13) to eliminate the term
𝑓(3𝑥) gives

𝑓 (4𝑥) = 20𝑓 (2𝑥) − 64𝑓 (𝑥) (14)
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for all 𝑥 ∈ 𝑋. By the definition of 𝑔 and using (9), (14) we have

𝑔 (2𝑥 + 𝑦) + 𝑔 (2𝑥 − 𝑦)

= [𝑓 (4𝑥 + 2𝑦) + 𝑓 (4𝑥 − 2𝑦)]

− 4 [𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦)]

= [4𝑓 (2𝑥 + 2𝑦) + 4𝑓 (2𝑥 − 2𝑦)

+2𝑓 (4𝑥) − 8𝑓 (2𝑥) − 6𝑓 (2𝑦)]

− 4 [4𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥 − 𝑦)

+2𝑓 (2𝑥) − 8𝑓 (𝑥) − 6𝑓 (𝑦)]

= 4 [𝑓 (2𝑥 + 2𝑦) − 4𝑓 (𝑥 + 𝑦)]

+ 4 [𝑓 (2𝑥 − 2𝑦) − 4𝑓 (𝑥 − 𝑦)]

+ 24 [𝑓 (2𝑥) − 4𝑓 (𝑥)] − 6 [𝑓 (2𝑦) − 4𝑓 (𝑦)]

= 4𝑔 (𝑥 + 𝑦) + 4𝑔 (𝑥 − 𝑦) + 24𝑔 (𝑥) − 6𝑔 (𝑦)

(15)

for all 𝑥, 𝑦 ∈ 𝑋. This shows that 𝑔 satisfies (5).

Lemma 2. If a mapping 𝑓 : 𝑋 → 𝑌 satisfies (9), then the
mapping ℎ : X → 𝑌 defined by ℎ(𝑥) = 𝑓(2𝑥) − 16𝑓(𝑥) is a
quadratic mapping satisfying (2).

Proof. Interchanging the role of 𝑥 and 𝑦 in (9) and using the
evenness of 𝑓 we have

𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 2𝑦)

= 4𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥 − 𝑦) + 2𝑓 (2𝑦) − 8𝑓 (𝑦) − 6𝑓 (𝑥)

(16)

for all 𝑥, 𝑦 ∈ 𝑋. Putting 𝑦 = 2𝑦 in (9) and using (16) we figure
out
𝑓 (2𝑥 + 2𝑦) + 𝑓 (2𝑥 − 2𝑦)

= 4𝑓 (𝑥 + 2𝑦) + 4𝑓 (𝑥 − 2𝑦)

+ 2𝑓 (2𝑥) − 8𝑓 (𝑥) − 6𝑓 (2𝑦)

= 4 [4𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥 − 𝑦)

+2𝑓 (2𝑦) − 8𝑓 (𝑦) − 6𝑓 (𝑥)]

+ 2𝑓 (2𝑥) − 8𝑓 (𝑥) − 6𝑓 (2𝑦)

= 16 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)] + 2 [𝑓 (2𝑥) − 16𝑓 (𝑥)]

+ 2 [𝑓 (2𝑦) − 16𝑓 (𝑦)]

(17)

for all 𝑥, 𝑦 ∈ 𝑋. This shows that ℎ satisfies (2).

From the preceding Lemmas we establish the general
solutions of (9) as follows.

Theorem 3. A mapping 𝑓 : 𝑋 → 𝑌 satisfies (9) for all 𝑥, 𝑦 ∈
𝑋 if and only if there exists a symmetric biquartic mapping 𝐹 :
𝑋×𝑋 → 𝑌 and a symmetric biadditivemapping𝐵 : 𝑋×𝑋 →
𝑌 such that 𝑓(𝑥) = 𝐹(𝑥, 𝑥) + 𝐵(𝑥, 𝑥) for all 𝑥 ∈ 𝑋.

Proof. We assume that the mapping 𝑓 : 𝑋 → 𝑌 satisfies (9).
Define mappings 𝑔, ℎ : 𝑋 → 𝑌 by

𝑔 (𝑥) = 𝑓 (2𝑥) − 16𝑓 (𝑥) , ℎ (𝑥) = 𝑓 (2𝑥) − 4𝑓 (𝑥)
(18)

for all 𝑥 ∈ 𝑋. By Lemmas 1 and 2 we note that the mappings
𝑔 and ℎ satisfy (5) and (2), respectively, and

𝑓 (𝑥) = −
1

12
𝑔 (𝑥) +

1

12
ℎ (𝑥) (19)

for all 𝑥 ∈ 𝑋. According to the results as in [25, 30] there
exists a symmetric biquadratic mapping 𝐹 : 𝑋 ×𝑋 → 𝑌 and
a symmetric biadditive mapping 𝐵 : 𝑋 × 𝑋 → 𝑌 such that

𝑔 (𝑥) = −12𝐹 (𝑥, 𝑥) , ℎ (𝑥) = 12𝐵 (𝑥, 𝑥) (20)

for all 𝑥 ∈ 𝑋. Conversely, one can easily verify that the
mappings 𝐹 and 𝐵 satisfy (9) by a simple computation.

3. Stability of (9)
Now we are going to prove the Hyers-Ulam-Rassias stability
for themixed type quartic and quadratic functional equation.
In what follows, we denote 𝑋 by a real vector space and 𝑌
by a Banach space. Let R+ denote the set of all nonnegative
real numbers and N the set of all positive integers. For
convenience, we define the difference operator for a given
mapping 𝑓 : 𝑋 → 𝑌 by

𝐷𝑓 (𝑥, 𝑦) = 𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) − 4𝑓 (𝑥 + 𝑦)

− 4𝑓 (𝑥 − 𝑦) − 2𝑓 (2𝑥) + 8𝑓 (𝑥) + 6𝑓 (𝑦)
(21)

for all 𝑥, 𝑦 ∈ 𝑋.

Theorem 4. Let 𝜙 : 𝑋 × 𝑋 → R+ be a mapping satisfying
∞

∑
𝑖=0

𝜙 (2𝑖𝑥, 2𝑖𝑦)

4𝑖
< ∞ (22)

for all 𝑥, 𝑦 ∈ 𝑋. If a mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0
satisfies

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑥, 𝑦) (23)

for all 𝑥, 𝑦 ∈ 𝑋, then there exists a quartic and quadratic
mapping𝐻 : 𝑋 → 𝑌 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐻 (𝑥)
󵄩󵄩󵄩󵄩 ≤

4

3

∞

∑
𝑖=0

(
1

4𝑖
−

1

42𝑖+1
)Φ (2𝑖𝑥) (24)

for all 𝑥 ∈ 𝑋, where the mapping Φ is given by

Φ (𝑥) =
1

64
[𝜙 (𝑥, 2𝑥) + 4𝜙 (𝑥, 𝑥) +

4

3
𝜙 (0, 𝑥)] (25)

for all 𝑥 ∈ 𝑋. The mapping𝐻 is given by

𝐻(𝑥) = lim
𝑛→∞

[
4

3
(
1

4𝑛
−

1

42𝑛+1
)𝑓 (2𝑛𝑥)

−
1

12
(
1

4𝑛
−

1

42𝑛
)𝑓 (2𝑛+1𝑥)]

(26)

for all 𝑥 ∈ 𝑋.
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Proof. Putting 𝑥 = 0 and then replacing 𝑦 by 𝑥 in (23), one
has the approximately even condition of 𝑓 as follows:

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (−𝑥)
󵄩󵄩󵄩󵄩 ≤

1

3
𝜙 (0, 𝑥) (27)

for all 𝑥 ∈ 𝑋. Substituting 𝑦 by 𝑥 in (23) gives
󵄩󵄩󵄩󵄩𝑓 (3𝑥) − 6𝑓 (2𝑥) + 15𝑓 (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑥, 𝑥) (28)

for all 𝑥 ∈ 𝑋. Replacing 𝑦 by 2𝑥 in (23) yields
󵄩󵄩󵄩󵄩𝑓 (4𝑥) − 4𝑓 (3𝑥) + 4𝑓 (2𝑥) + 8𝑓 (𝑥) − 4𝑓 (−𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑥, 2𝑥)
(29)

for all 𝑥 ∈ 𝑋. Combining (27), (28), and (29) to eliminate the
terms 𝑓(−𝑥) and 𝑓(3𝑥) we have the following relation

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

5

16
𝑓 (2𝑥) +

1

64
𝑓 (4𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ Φ (𝑥) (30)

for all 𝑥 ∈ 𝑋.
Making use of induction arguments in (30) we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥)−

4

3
(
1

4𝑛
−

1

42𝑛+1
)𝑓 (2𝑛𝑥)+

1

12
(
1

4𝑛
−
1

42𝑛
)𝑓(2𝑛+1𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
4

3

𝑛−1

∑
𝑖=0

(
1

4𝑖
−

1

42𝑖+1
)Φ (2𝑖𝑥)

(31)

for all 𝑛 ∈ N and for all 𝑥 ∈ 𝑋. Actually (30) proves the
validity of the inequality (31) for the case 𝑛 = 1. Assume that
inequality (31) holds for some 𝑛 ∈ N. Using (30) and (31) we
have the following relation
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

4

3
(

1

4𝑛+1
−

1

42𝑛+3
)𝑓 (2𝑛+1𝑥)

+
1

12
(

1

4𝑛+1
−

1

42𝑛+2
)𝑓 (2𝑛+2𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

4

3
(
1

4𝑛
−

1

42𝑛+1
)𝑓 (2𝑛𝑥)

+
1

12
(
1

4𝑛
−

1

42𝑛
)𝑓 (2𝑛+1𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
4

3
(
1

4𝑛
−

1

42𝑛+1
)

×
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (2𝑛𝑥) −

5

16
𝑓 (2𝑛+1𝑥) +

1

64
𝑓 (2𝑛+2𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
4

3

𝑛−1

∑
𝑖=0

(
1

4𝑖
−

1

42𝑖+1
)Φ (2𝑖𝑥) +

4

3
(
1

4𝑛
−

1

42𝑛+1
)Φ (2𝑛𝑥)

(32)

for all 𝑥 ∈ 𝑋 and 𝑛 ∈ N. This proves the validity of inequality
(31) for the case 𝑛 + 1.

Now let us define a sequence {𝑓
𝑛
(𝑥)} by

𝑓
𝑛
(𝑥) =

4

3
(
1

4𝑛
−

1

42𝑛+1
)𝑓 (2𝑛𝑥)

−
1

12
(
1

4𝑛
−

1

42𝑛
)𝑓 (2𝑛+1𝑥)

(33)

and claim that it is a convergent sequence. For any integers
𝑚, 𝑛 with𝑚 > 𝑛 ≥ 0, we verify by (30) that
󵄩󵄩󵄩󵄩𝑓𝑚 (𝑥) − 𝑓𝑛 (𝑥)

󵄩󵄩󵄩󵄩

≤
𝑚−1

∑
𝑘=𝑛

󵄩󵄩󵄩󵄩𝑓𝑘+1 (𝑥) − 𝑓𝑘 (𝑥)
󵄩󵄩󵄩󵄩

=
𝑚−1

∑
𝑘=𝑛

4

3
(
1

4𝑘
−

1

42𝑘+1
)

×
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (2𝑘𝑥) −

5

16
𝑓 (2𝑘+1𝑥) +

1

64
𝑓 (2𝑘+2𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑚−1

∑
𝑘=𝑛

4

3
(
1

4𝑘
−

1

42𝑘+1
)Φ (2𝑘𝑥)

(34)

for all𝑥 ∈ 𝑋. Since the right-hand side of the above inequality
tends to 0 as 𝑛 → ∞ by assumption, the sequence {𝑓

𝑛
(𝑥)}

is a Cauchy sequence in 𝑌. Thus, we may define a mapping
𝐻 : 𝑋 → 𝑌 by

𝐻(𝑥) = lim
𝑛→∞

[
4

3
(
1

4𝑛
−

1

42𝑛+1
)𝑓 (2𝑛𝑥)

−
1

12
(
1

4𝑛
−

1

42𝑛
)𝑓 (2𝑛+1𝑥)]

(35)

for all 𝑥 ∈ 𝑋. By virtue of the inequality (23) we figure out
󵄩󵄩󵄩󵄩𝐷𝑓𝑛 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩

≤
4

3
(
1

4𝑛
−

1

42𝑛+1
)
󵄩󵄩󵄩󵄩𝐷𝑓 (2

𝑛𝑥, 2𝑛𝑦)
󵄩󵄩󵄩󵄩

+
1

12
(
1

4𝑛
−

1

42𝑛
)
󵄩󵄩󵄩󵄩󵄩𝐷𝑓 (2

𝑛+1𝑥, 2𝑛+1𝑦)
󵄩󵄩󵄩󵄩󵄩

≤
4

3
(
1

4𝑛
−

1

42𝑛+1
)𝜙 (2𝑛𝑥, 2𝑛𝑦)

+
1

12
(
1

4𝑛
−

1

42𝑛
)𝜙 (2𝑛+1𝑥, 2𝑛+1𝑦)

(36)

for all 𝑛 ∈ N and for all 𝑥, 𝑦 ∈ 𝑋. Letting 𝑛 → ∞ in the
above inequality we see that

𝐷𝐻(𝑥, 𝑦) = 0 (37)

which shows that 𝐻 satisfies (9). Finally letting 𝑛 → ∞ in
(31) we have the result (24). This completes the proof.

Theorem 5. Let 𝜙 : 𝑋 × 𝑋 → R+ be a mapping satisfying
∞

∑
𝑖=0

16𝑖𝜙(
𝑥

2𝑖
,
𝑦

2𝑖
) < ∞ (38)

for all 𝑥, 𝑦 ∈ 𝑋. If a mapping 𝑓 : 𝑋 → 𝑌 satisfies
󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑥, 𝑦) (39)

for all 𝑥, 𝑦 ∈ 𝑋, then there exists a quartic and quadratic
mapping𝐻 : 𝑋 → 𝑌 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐻 (𝑥)
󵄩󵄩󵄩󵄩 ≤

64

3

∞

∑
𝑖=0

(42𝑖+1 − 4𝑖)Φ(
𝑥

2𝑖+2
) (40)
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for all 𝑥 ∈ 𝑋. The mapping𝐻 is given by

𝐻(𝑥) = lim
𝑛→∞

[
1

3
(42𝑛+1 − 4𝑛) 𝑓 (

𝑥

2𝑛
)

−
16

3
(42𝑛 − 4𝑛) 𝑓 (

𝑥

2𝑛+1
)]

(41)

for all 𝑥 ∈ 𝑋.

Proof. Replacing 𝑥 by 𝑥/4 in (30) we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) − 20𝑓(

𝑥

2
) + 64𝑓(

𝑥

4
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 64Φ(

𝑥

4
) (42)

for all 𝑥 ∈ 𝑋. Using the induction argument in (42) we obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

1

3
(42𝑛+1 − 4𝑛) 𝑓 (

𝑥

2𝑛
) +

16

3
(42𝑛 − 4𝑛) 𝑓 (

𝑥

2𝑛+1
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
64

3

𝑛−1

∑
𝑖=0

(42𝑖+1 − 4𝑖)Φ(
𝑥

2𝑖+2
)

(43)

for all 𝑛 ∈ N and for all 𝑥 ∈ 𝑋. We define a sequence {𝑓
𝑛
(𝑥)}

by

𝑓
𝑛
(𝑥) =

1

3
(42𝑛+1 − 4𝑛) 𝑓 (

𝑥

2𝑛
) −

16

3
(42𝑛 − 4𝑛) 𝑓 (

𝑥

2𝑛+1
)

(44)

and show that it is a Cauchy sequence. For any integers 𝑚, 𝑛
with𝑚 > 𝑛 ≥ 0, we verify by (42) that

󵄩󵄩󵄩󵄩𝑓𝑚 (𝑥) − 𝑓𝑛 (𝑥)
󵄩󵄩󵄩󵄩

≤
𝑚−1

∑
𝑘=𝑛

󵄩󵄩󵄩󵄩𝑓𝑘+1 (𝑥) − 𝑓𝑘 (𝑥)
󵄩󵄩󵄩󵄩

=
𝑚−1

∑
𝑘=𝑛

1

3
(42𝑘+1 − 4𝑘)

×
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (

𝑥

2𝑘
) − 20𝑓(

𝑥

2𝑘+1
) + 64𝑓(

𝑥

2𝑘+2
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑚−1

∑
𝑘=𝑛

64

3
(42𝑘+1 − 4𝑘)Φ(

𝑥

2𝑘+2
)

(45)

for all𝑥 ∈ 𝑋. Since the right-hand side of the above inequality
tends to 0 as 𝑛 → ∞ by assumption, the sequence {𝑓

𝑛
(𝑥)} is a

convergent sequence. Now we define a mapping𝐻 : 𝑋 → 𝑌
by

𝐻(𝑥) = lim
𝑛→∞

[
1

3
(42𝑛+1 − 4𝑛) 𝑓 (

𝑥

2𝑛
)

−
16

3
(42𝑛 − 4𝑛) 𝑓 (

𝑥

2𝑛+1
)]

(46)

for all 𝑥 ∈ 𝑋. From (39) we figure out
󵄩󵄩󵄩󵄩𝐷𝑓𝑛 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩

≤
1

3
(42𝑛+1 − 4𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐷𝑓(

𝑥

2𝑛
,
𝑦

2𝑛
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
16

3
(42𝑛 − 4𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐷𝑓(

𝑥

2𝑛+1
,
𝑦

2𝑛+1
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

3
(42𝑛+1 − 4𝑛) 𝜙 (

𝑥

2𝑛
,
𝑦

2𝑛
)

+
16

3
(42𝑛 − 4𝑛) 𝜙 (

𝑥

2𝑛+1
,
𝑦

2𝑛+1
)

(47)

for all 𝑛 ∈ N and for all 𝑥, 𝑦 ∈ 𝑋. Letting 𝑛 → ∞ in the
above inequality we see that𝐻 satisfies (9). Letting 𝑛 → ∞
in (43) we finally obtain the result (40). This completes the
proof.

From the previous Theorem 4, we obtain the following
corollary concerning the stability of (9) immediately.

Corollary 6. Suppose that for some 𝜖 ≥ 0, amapping𝑓 : 𝑋 →
𝑌 satisfies

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜖 (48)

for all 𝑥, 𝑦 ∈ 𝑋. Then there exists a quartic and quadratic
mapping𝐻 : 𝑋 → 𝑌 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐻 (𝑥)
󵄩󵄩󵄩󵄩 ≤

17

135
𝜖 (49)

for all 𝑥 ∈ 𝑋.

4. Stability of (9) under the Approximately
Quartic Condition

In the next part, we state and prove the Hyers-Ulam-Rassias
stability of (9) under the approximately quartic condition.

Theorem 7. Let 𝜙 : 𝑋 × 𝑋 → R+ be a mapping satisfying

∞

∑
𝑖=0

𝜙 (3𝑖𝑥, 3𝑖𝑦)

81𝑖
< ∞ (50)

for all 𝑥, 𝑦 ∈ 𝑋 and let 𝜓 : 𝑋 → R+ be a mapping satisfying

∞

∑
𝑖=0

𝜓 (3𝑖𝑥)

81𝑖
< ∞ (51)

for all 𝑥 ∈ 𝑋. If a mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0 satisfies
󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑥, 𝑦) (52)

for all 𝑥, 𝑦 ∈ 𝑋 and
󵄩󵄩󵄩󵄩𝑓 (2𝑥) − 16𝑓 (−𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝜓 (𝑥) (53)

for all 𝑥 ∈ 𝑋, then there exists a unique quartic mapping 𝑇 :
𝑋 → 𝑌 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑇 (𝑥)
󵄩󵄩󵄩󵄩

≤
∞

∑
𝑖=1

{
1

2
[(

1

81
)
𝑖

+ (−
1

111
)
𝑖

]Ψ (3𝑖−1𝑥)

+
1

2
[(

1

81
)
𝑖

− (−
1

111
)
𝑖

]Ψ (−3𝑖−1𝑥)}

(54)
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for all 𝑥 ∈ 𝑋, where Ψ(𝑥) = 𝜙(𝑥, 𝑥) + 6𝜓(𝑥). The mapping 𝑇
is given by

𝑇 (𝑥) = lim
𝑛→∞

𝑓 (3𝑛𝑥)

81𝑛
(55)

for all 𝑥 ∈ 𝑋.

Proof. It follows from (28) and (53) that we have

󵄩󵄩󵄩󵄩𝑓 (3𝑥) + 15𝑓 (𝑥) − 96𝑓 (−𝑥)
󵄩󵄩󵄩󵄩 ≤ Ψ (𝑥) (56)

for all 𝑥 ∈ 𝑋. Substituting −𝑥 into 𝑥 in (56) yields

󵄩󵄩󵄩󵄩𝑓 (−3𝑥) + 15𝑓 (−𝑥) − 96𝑓 (𝑥)
󵄩󵄩󵄩󵄩 ≤ Ψ (−𝑥) (57)

for all 𝑥 ∈ 𝑋. Combining (56) and (57) to eliminate the term
𝑓(−𝑥) we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

5

2997
𝑓 (3𝑥) −

32

2997
𝑓 (−3𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
5

2997

󵄩󵄩󵄩󵄩𝑓 (3𝑥) + 15𝑓 (𝑥) − 96𝑓 (−𝑥)
󵄩󵄩󵄩󵄩

+
32

2997

󵄩󵄩󵄩󵄩𝑓 (−3𝑥) + 15𝑓 (−𝑥) − 96𝑓 (𝑥)
󵄩󵄩󵄩󵄩

≤
5

2997
Ψ (𝑥) +

32

2997
Ψ (−𝑥)

(58)

for all 𝑥 ∈ 𝑋. Making use of induction arguments in (58) we
have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

1

2
[(

1

81
)
𝑛

+ (−
1

111
)
𝑛

]𝑓 (3𝑛𝑥)

−
1

2
[(

1

81
)
𝑛

− (−
1

111
)
𝑛

]𝑓 (−3𝑛𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑛

∑
𝑖=1

{
1

2
[(

1

81
)
𝑖

+ (−
1

111
)
𝑖

]Ψ (3𝑖−1𝑥)

+
1

2
[(

1

81
)
𝑖

− (−
1

111
)
𝑖

]Ψ (−3𝑖−1𝑥)}

(59)

for all 𝑛 ∈ N and for all 𝑥 ∈ 𝑋. Actually, (58) proves the
validity of the inequality (59) for 𝑛 = 1. Using (56), (57), and
the following relation

𝑓 (𝑥) −
1

2
[(

1

81
)
𝑛+1

+ (−
1

111
)
𝑛+1

]𝑓 (3𝑛+1𝑥)

−
1

2
[(

1

81
)
𝑛+1

− (−
1

111
)
𝑛+1

]𝑓 (−3𝑛+1𝑥)

= 𝑓 (𝑥) −
1

2
[(

1

81
)
𝑛

+ (−
1

111
)
𝑛

]𝑓 (3𝑛𝑥)

−
1

2
[(

1

81
)
𝑛

− (−
1

111
)
𝑛

]𝑓 (−3𝑛𝑥)

+
1

2
[(

1

81
)
𝑛+1

+ (−
1

111
)
𝑛+1

]

× [−𝑓 (3𝑛+1𝑥) − 15𝑓 (3𝑛𝑥) + 96𝑓 (−3𝑛𝑥)]

+
1

2
[(

1

81
)
𝑛+1

− (−
1

111
)
𝑛+1

]

× [−𝑓 (−3𝑛+1𝑥) − 15𝑓 (−3𝑛𝑥) + 96𝑓 (3𝑛𝑥)] ,

(60)

one can easily verify (59) for 𝑛 + 1. It follows from (27) and
(59) that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

𝑓 (3𝑛𝑥)

81𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑛

∑
𝑖=1

{
1

2
[(

1

81
)
𝑖

+ (−
1

111
)
𝑖

]Ψ (3𝑖−1𝑥)

+
1

2
[(

1

81
)
𝑖

− (−
1

111
)
𝑖

]Ψ (−3𝑖−1𝑥)}

+
1

6
[(

1

81
)
𝑛

− (−
1

111
)
𝑛

] 𝜙 (0, 3𝑛𝑥)

(61)

for all 𝑛 ∈ N and for all 𝑥 ∈ 𝑋. We show that the sequence
{𝑓(3𝑛𝑥)/81𝑛} is a convergent sequence. For any integers𝑚, 𝑛
with𝑚 > 𝑛 ≥ 0, we figure out

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (3𝑚)

81𝑚
−
𝑓 (3𝑛𝑥)

81𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1

81𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (3𝑚−𝑛3𝑛𝑥)

81𝑚−𝑛
− 𝑓 (3𝑛𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

81𝑛

𝑚−𝑛

∑
𝑖=1

{
1

2
[(

1

81
)
𝑖

+ (−
1

111
)
𝑖

]Ψ (3𝑛+𝑖−1𝑥)

+
1

2
[(

1

81
)
𝑖

− (−
1

111
)
𝑖

]Ψ (−3𝑛+𝑖−1𝑥)}

+
1

6 ⋅ 81𝑛
[(

1

81
)
𝑚−𝑛

− (−
1

111
)
𝑚−𝑛

] 𝜙 (0, 3𝑚−𝑛3𝑛𝑥)

(62)

for all 𝑥 ∈ 𝑋. Since the right-hand side of the inequality (62)
tends to 0 as 𝑛 tends to infinity, the sequence {𝑓(3𝑛𝑥)/81𝑛} is
a Cauchy sequence in 𝑌. Now we define

𝑇 (𝑥) = lim
𝑛→∞

𝑓 (3𝑛𝑥)

81𝑛
(63)

for all 𝑥 ∈ 𝑋. Letting 𝑛 → ∞ in (61) we arrive at (54).
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Let us prove that the mapping 𝑇 : 𝑋 → 𝑌 satisfies (9).
Replacing 𝑥 and 𝑦 by 3𝑛𝑥 and 3𝑛𝑦, respectively in (52) and
dividing by 81𝑛 yields

81−𝑛
󵄩󵄩󵄩󵄩𝐷𝑓 (3

𝑛𝑥, 3𝑛𝑦)
󵄩󵄩󵄩󵄩 ≤ 81−𝑛𝜙 (3𝑛𝑥, 3𝑛𝑦) (64)

for all 𝑛 ∈ N, 𝑥, 𝑦 ∈ 𝑋. Taking the limit as 𝑛 → ∞ in the
above inequality, we see that 𝑇 satisfies (9) for all 𝑥, 𝑦 ∈ 𝑋.

Finally we prove the uniqueness of the mapping 𝑇.
Assume that there exists another quarticmapping 𝑆 : 𝑋 → 𝑌
which satisfies (9) and the inequality (54). Obviously, we have
𝑇(3𝑛𝑥) = 81𝑛𝑇(𝑥) and 𝑆(3𝑛𝑥) = 81𝑛𝑆(𝑥) for all 𝑛 ∈ N, 𝑥 ∈ 𝑋.
Hence it follows from (54) that

‖𝑇 (𝑥) − 𝑆 (𝑥)‖

≤ 81−𝑛 {
󵄩󵄩󵄩󵄩𝑇 (3
𝑛𝑥) − 𝑓 (3𝑛𝑥)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (3
𝑛𝑥) − 𝑆 (3𝑛𝑥)

󵄩󵄩󵄩󵄩}

≤
2

81𝑛

∞

∑
𝑖=1

{
1

2
[(

1

81
)
𝑖

+ (−
1

111
)
𝑖

]Ψ (3𝑖−1𝑥)

+
1

2
[(

1

81
)
𝑖

− (−
1

111
)
𝑖

]Ψ (−3𝑖−1𝑥)}

(65)

for all 𝑥 ∈ 𝑋. Letting 𝑛 → ∞ in the above inequality, we
immediately obtain the uniqueness of 𝑇.

Theorem 8. Let 𝜙 : 𝑋 × 𝑋 → R+ be a mapping satisfying
∞

∑
𝑖=0

111𝑖𝜙(
𝑥

3𝑖
,
𝑦

3𝑖
) < ∞ (66)

for all 𝑥, 𝑦 ∈ 𝑋 and let 𝜓 : 𝑋 → R+ be a mapping satisfying
∞

∑
𝑖=0

111𝑖𝜓(
𝑥

3𝑖
) < ∞ (67)

for all 𝑥 ∈ 𝑋. If a mapping 𝑓 : 𝑋 → 𝑌 satisfies
󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑥, 𝑦) (68)

for all 𝑥, 𝑦 ∈ 𝑋 and
󵄩󵄩󵄩󵄩𝑓 (2𝑥) − 16𝑓 (−𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝜓 (𝑥) (69)

for all 𝑥 ∈ 𝑋, then there exists a unique quartic mapping 𝑇 :
𝑋 → 𝑌 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑇 (𝑥)
󵄩󵄩󵄩󵄩

≤
∞

∑
𝑖=0

{
1

2

󵄨󵄨󵄨󵄨󵄨−81
𝑖 + (−1)

𝑖−1 ⋅ 111𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (

𝑥

3𝑖+1
)

+
1

2

󵄨󵄨󵄨󵄨󵄨−81
𝑖 − (−1)

𝑖−1 ⋅ 111𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (−

𝑥

3𝑖+1
)}

(70)

for all 𝑥 ∈ 𝑋. The mapping 𝑇 is given by

𝑇 (𝑥) = lim
𝑛→∞

81𝑛𝑓(
𝑥

3𝑛
) (71)

for all 𝑥 ∈ 𝑋.

Proof. Replacing 𝑥 by 𝑥/3 in (54) gives

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) + 15𝑓(

𝑥

3
) − 96𝑓(−

𝑥

3
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ Ψ(

𝑥

3
) (72)

for all 𝑥 ∈ 𝑋. Using induction arguments in (72) we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) +

1

2
[−81𝑛 + (−1)

𝑛−1 ⋅ 111𝑛] 𝑓 (
𝑥

3𝑛
)

+
1

2
[−81𝑛 − (−1)

𝑛−1 ⋅ 111𝑛] 𝑓 (−
𝑥

3𝑛
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑛−1

∑
𝑖=0

{
1

2

󵄨󵄨󵄨󵄨󵄨−81
𝑖 + (−1)

𝑖−1 ⋅ 111𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (

𝑥

3𝑖+1
)

+
1

2

󵄨󵄨󵄨󵄨󵄨−81
𝑖 − (−1)

𝑖−1 ⋅ 111𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (−

𝑥

3𝑖+1
)}

(73)

for all 𝑛 ∈ N and for all 𝑥 ∈ 𝑋. It follows from (27) and (73)
that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) − 81

𝑛𝑓(
𝑥

3𝑛
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑛−1

∑
𝑖=0

{
1

2

󵄨󵄨󵄨󵄨󵄨−81
𝑖 + (−1)

𝑖−1 ⋅ 111𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (

𝑥

3𝑖+1
)

+
1

2

󵄨󵄨󵄨󵄨󵄨−81
𝑖 − (−1)

𝑖−1 ⋅ 111𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (−

𝑥

3𝑖+1
)}

+
1

6

󵄨󵄨󵄨󵄨󵄨−81
𝑖 − (−1)

𝑖−1 ⋅ 111𝑖
󵄨󵄨󵄨󵄨󵄨 𝜙 (0,

𝑥

3𝑛
)

(74)

for all 𝑛 ∈ N and for all 𝑥 ∈ 𝑋. The rest of the proof is similar
to the proof of Theorem 7.

By Theorem 7, we have the following corollary immedi-
ately.

Corollary 9. Suppose that for some 𝜖 ≥ 0, 𝛿 ≥ 0, a mapping
𝑓 : 𝑋 → 𝑌 satisfies

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜖 (75)

for all 𝑥, 𝑦 ∈ 𝑋 and
󵄩󵄩󵄩󵄩𝑓 (2𝑥) − 16𝑓 (−𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝛿 (76)

for all 𝑥 ∈ 𝑋. Then there exists a unique quartic mapping 𝑇 :
𝑋 → 𝑌 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑇 (𝑥)
󵄩󵄩󵄩󵄩 ≤

𝜖 + 6𝛿

80
(77)

for all 𝑥 ∈ 𝑋.

5. Stability of (9) under the Approximately
Quadratic Condition

Now we state and prove the Hyers-Ulam-Rassias stability of
(9) under the approximately quadratic condition.
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Theorem 10. Let 𝜙 : 𝑋 × 𝑋 → R+ be a mapping satisfying

∞

∑
𝑖=0

𝜙 (3𝑖𝑥, 3𝑖𝑦)

9𝑖
< ∞ (78)

for all 𝑥, 𝑦 ∈ 𝑋 and let 𝜓 : 𝑋 → R+ be a mapping satisfying

∞

∑
𝑖=0

𝜓 (3𝑖𝑥)

9𝑖
< ∞ (79)

for all 𝑥 ∈ 𝑋. If a mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0 satisfies

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑥, 𝑦) (80)

for all 𝑥, 𝑦 ∈ 𝑋 and

󵄩󵄩󵄩󵄩𝑓 (2𝑥) − 4𝑓 (−𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝜓 (𝑥) (81)

for all 𝑥 ∈ 𝑋, then there exists a unique quadratic mapping
𝑄 : 𝑋 → 𝑌 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑄 (𝑥)
󵄩󵄩󵄩󵄩

≤
∞

∑
𝑖=1

{
1

2
[(

1

9
)
𝑖

+ (−
1

39
)
𝑖

]Ψ (3𝑖−1𝑥)

+
1

2
[(

1

9
)
𝑖

− (−
1

39
)
𝑖

]Ψ (−3𝑖−1𝑥)}

(82)

for all 𝑥 ∈ 𝑋. The mapping 𝑄 is defined by

𝑄 (𝑥) = lim
𝑛→∞

𝑓 (3𝑛𝑥)

9𝑛
(83)

for all 𝑥 ∈ 𝑋.

Proof. It follows from (28) and (81) that we have

󵄩󵄩󵄩󵄩𝑓 (3𝑥) + 15𝑓 (𝑥) − 24𝑓 (−𝑥)
󵄩󵄩󵄩󵄩 ≤ Ψ (𝑥) (84)

for all 𝑥 ∈ 𝑋. Substituting −𝑥 for 𝑥 in (84) yields

󵄩󵄩󵄩󵄩𝑓 (−3𝑥) + 15𝑓 (−𝑥) − 24𝑓 (𝑥)
󵄩󵄩󵄩󵄩 ≤ Ψ (−𝑥) (85)

for all 𝑥 ∈ 𝑋. Combining (84) and (85) to eliminate the term
𝑓(−𝑥) we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

5

117
𝑓 (3𝑥) −

8

117
𝑓 (−3𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
5

117

󵄩󵄩󵄩󵄩−𝑓 (3𝑥) − 15𝑓 (𝑥) + 24𝑓 (−𝑥)
󵄩󵄩󵄩󵄩

+
8

117

󵄩󵄩󵄩󵄩−𝑓 (−3𝑥) − 15𝑓 (−𝑥) + 24𝑓 (𝑥)
󵄩󵄩󵄩󵄩

≤
5

117
Ψ (𝑥) +

8

117
Ψ (−𝑥)

(86)

for all 𝑥 ∈ 𝑋. Making use of induction arguments in (86) we
have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

1

2
[(

1

9
)
𝑛

+ (−
1

39
)
𝑛

]𝑓 (3𝑛𝑥)

−
1

2
[(

1

9
)
𝑛

− (−
1

39
)
𝑛

]𝑓 (−3𝑛𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑛

∑
𝑖=1

{
1

2
[(

1

9
)
𝑖

+ (−
1

39
)
𝑖

]Ψ (3𝑖−1𝑥)

+
1

2
[(

1

9
)
𝑖

− (−
1

39
)
𝑖

]Ψ (−3𝑖−1𝑥)}

(87)

for all 𝑛 ∈ N and for all 𝑥 ∈ 𝑋. It follows from (86) and (87)
that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

𝑓 (3𝑛𝑥)

9𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑛

∑
𝑖=1

{
1

2
[(

1

9
)
𝑖

+ (−
1

39
)
𝑖

]Ψ (3𝑖−1𝑥)

+
1

2
[(

1

9
)
𝑖

− (−
1

39
)
𝑖

]Ψ (−3𝑖−1𝑥)}

+
1

6
[(

1

9
)
𝑛

− (−
1

39
)
𝑛

] 𝜙 (0, 3𝑛𝑥)

(88)

for all 𝑛 ∈ N, 𝑥 ∈ 𝑋. From (88) one can easily show that
the sequence {𝑓(3𝑛𝑥)/9𝑛} is a Cauchy sequence in 𝑌. Define
a mapping

𝑄 (𝑥) = lim
𝑛→∞

𝑓 (3𝑛𝑥)

9𝑛
(89)

for all 𝑥 ∈ 𝑋. It follows from (80) and (88) that we verify
the mapping𝑄 is the unique mapping satisfying (9) and (82).
Letting 𝑛 → ∞ in (88) we have the result (82).

Theorem 11. Let 𝜙 : 𝑋 × 𝑋 → R+ be a mapping satisfying

∞

∑
𝑖=0

39𝑖𝜙(
𝑥

3𝑖
,
𝑦

3𝑖
) < ∞ (90)

for all 𝑥, 𝑦 ∈ 𝑋 and let 𝜓 : 𝑋 → R+ be a mapping satisfying

∞

∑
𝑖=0

39𝑖𝜓(
𝑥

3𝑖
) < ∞ (91)

for all 𝑥 ∈ 𝑋. If a mapping 𝑓 : 𝑋 → 𝑌 satisfies

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑥, 𝑦) (92)

for all 𝑥, 𝑦 ∈ 𝑋 and

󵄩󵄩󵄩󵄩𝑓 (2𝑥) − 4𝑓 (−𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝜓 (𝑥) (93)
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for all 𝑥 ∈ 𝑋, then there exists a unique quadratic mapping
𝑄 : 𝑋 → 𝑌 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑄 (𝑥)
󵄩󵄩󵄩󵄩

≤
∞

∑
𝑖=1

{
1

2

󵄨󵄨󵄨󵄨󵄨−9
𝑖 + (−1)

𝑖−1 ⋅ 39𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (

𝑥

3𝑖+1
)

+
1

2

󵄨󵄨󵄨󵄨󵄨−9
𝑖 − (−1)

𝑖−1 ⋅ 39𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (−

𝑥

3𝑖+1
)}

(94)

for all 𝑥 ∈ 𝑋. The mapping 𝑄 is given by

𝑄 (𝑥) = lim
𝑛→∞

9𝑛𝑓(
𝑥

3𝑛
) (95)

for all 𝑥 ∈ 𝑋.

Proof. Putting 𝑥 = 𝑥/3 in (84) gives
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) + 15𝑓(

𝑥

3
) − 24𝑓(−

𝑥

3
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ Ψ(

𝑥

3
) (96)

for all 𝑥 ∈ 𝑋. Making use of induction arguments in (96) we
have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) +

1

2
[−9𝑛 + (−1)

𝑛−1 ⋅ 39𝑛] 𝑓 (
𝑥

3𝑛
)

+
1

2
[−9𝑛 − (−1)

𝑛−1 ⋅ 39𝑛] 𝑓 (−
𝑥

3𝑛
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑛−1

∑
𝑖=0

{
1

2

󵄨󵄨󵄨󵄨󵄨−9
𝑖 + (−1)

𝑖−1 ⋅ 39𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (

𝑥

3𝑖+1
)

+
1

2

󵄨󵄨󵄨󵄨󵄨−9
𝑖 − (−1)

𝑖−1 ⋅ 39𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (−

𝑥

3𝑖+1
)}

(97)

for all 𝑛 ∈ N and for all 𝑥 ∈ 𝑋. It follows from (27) and (73)
that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) − 9

𝑛𝑓(
𝑥

3𝑛
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑛−1

∑
𝑖=0

{
1

2

󵄨󵄨󵄨󵄨󵄨−9
𝑖 + (−1)

𝑖−1 ⋅ 39𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (

𝑥

3𝑖+1
)

+
1

2

󵄨󵄨󵄨󵄨󵄨−9
𝑖 − (−1)

𝑖−1 ⋅ 39𝑖
󵄨󵄨󵄨󵄨󵄨 Ψ (−

𝑥

3𝑖+1
)}

+
1

6

󵄨󵄨󵄨󵄨󵄨−9
𝑖 − (−1)

𝑖−1 ⋅ 39𝑖
󵄨󵄨󵄨󵄨󵄨 𝜙 (0,

𝑥

3𝑛
)

(98)

for all 𝑛 ∈ N and for all 𝑥 ∈ 𝑋. The rest of the proof goes
through in the similar way as that of the proof ofTheorem 10.

It follows from Theorem 10 that we obtain the following
corollary immediately.

Corollary 12. Suppose that for some 𝜖 ≥ 0, 𝛿 ≥ 0, a mapping
𝑓 : 𝑋 → 𝑌 satisfies

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜖 (99)

for all 𝑥, 𝑦 ∈ 𝑋 and
󵄩󵄩󵄩󵄩𝑓 (2𝑥) − 4𝑓 (−𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝛿 (100)

for all 𝑥 ∈ 𝑋, for all 𝑥, 𝑦 ∈ 𝑋, and for some 𝛿 ≥ 0. Then there
exists a unique quartic mapping 𝑇 : 𝑋 → 𝑌 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑄 (𝑥)
󵄩󵄩󵄩󵄩 ≤

𝜖 + 6𝛿

8
(101)

for all 𝑥 ∈ 𝑋.
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