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The impulsive control and synchronization of unified chaotic system are proposed. By applying impulsive control theory and
introducing a piecewise continuous auxiliary function, some novel and useful conditions are provided to guarantee the globally
asymptotical stabilization and synchronization of unified chaotic system under impulsive control. Compared with some previous
results, our criteria are superior and less conservative. Finally, the effectiveness of theoretical results is shown through numerical
simulations.

1. Introduction

In 1963, Lorenz presented the first chaotic attractor in a
simple three-dimensional autonomous system [1]. Since then,
many researchers began to study chaos theory. In 1999,
Chen and Ueta found another chaotic system called Chen
system, which is similar but topologically nonequivalent to
Lorenz system [2]. In 2002, the unified chaotic system was
introduced by Lü and Chen. It includes Lorenz system and
Chen attractor as two extremes, respectively, and Lü attractor
as a transition system between Lorenz system and Chen
system [3, 4].

For a long time, people thought that chaos was neither
predictable nor controllable. However, in the 1990s, the
viewpoint and theory about control of chaotic system intro-
duced by Ott. Grebogi Yorke and Pecora Carroll completely
changed the situation [5], and many scholars began to study
chaos control. Until now, many different techniques and
methods have been proposed to achieve chaos control and
synchronization, such as adaptive control [6], fuzzy control
[7], and impulsive control [1, 5, 8–22].

In the past several years, impulsive control strategy has
been widely used to stabilize and synchronize nonlinear
dynamical systems. From the control point of view, impulsive
control is an effective method based on the theory of
impulsive dynamic systems [14, 17, 23]. It allows stabilization
of a complex system by using only small control impulses.
Additionally, this method drastically reduces the amount

of information transmitted from the driving system to the
driven system in chaos synchronization [10, 20].Thosemerits
make it more efficient and more useful in a great number
of real-life applications. Up to now, the stabilization and
synchronization of chaotic systems under impulsive control
have been extensively studied (see [1, 5, 8–10, 15, 16, 19–22]).

In this paper, based on impulsive control theory, the
stabilization and synchronization of unified chaotic system
are investigated via designing impulsive controller. By intro-
ducing a piecewise continuous function, somenew anduseful
criteria are established to guarantee the stabilization and
synchronization of unified chaotic system. Compared with
the main criteria obtained in [8, 10], our results are less
stringent and more general.

This paper is organized as follows. In Section 2, two
central lemmas are given. In Section 3, the impulsive control
model of unified chaotic system is introduced and some
new conditions are provided to ensure the stability of the
equilibrium point for unified chaotic system under impulsive
control. In Section 4, impulsive synchronization criteria are
proposed. In Section 5, numerical simulations are provided
to illustrate and verify our results.

2. Preliminaries

In this section, two central lemmas are provided to support
our analysis in later sections.
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Lemma 1. Assume that 𝐴 is an 𝑛 × 𝑛 symmetric and semipos-
itive definite real matrix; then, for any two real column vectors
𝜁 ∈ 𝑅

n and 𝜂 ∈ 𝑅𝑛, the following inequality holds:

󵄨󵄨󵄨󵄨󵄨
𝜁
𝑇

𝐴𝜂
󵄨󵄨󵄨󵄨󵄨

2

≤
󵄨󵄨󵄨󵄨󵄨
𝜁
𝑇

𝐴𝜁
󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨
𝜂
𝑇

𝐴𝜂
󵄨󵄨󵄨󵄨󵄨
. (1)

Proof. Sincematrix𝐴 is symmetric and semipositive definite,
there exists an 𝑛 × 𝑛matrix 𝐶 such that

𝐴 = 𝐶
𝑇

𝐶. (2)

Then, by using Cauchy-Bunyakovsky inequality, we have

󵄨󵄨󵄨󵄨(𝐶𝜁, 𝐶𝜂)
󵄨󵄨󵄨󵄨

2

≤
󵄨󵄨󵄨󵄨𝐶𝜁
󵄨󵄨󵄨󵄨

2

⋅
󵄨󵄨󵄨󵄨𝐶𝜂
󵄨󵄨󵄨󵄨

2

. (3)

It follows that

󵄨󵄨󵄨󵄨󵄨
𝜁
𝑇

𝐴𝜂
󵄨󵄨󵄨󵄨󵄨

2

≤
󵄨󵄨󵄨󵄨󵄨
𝜁
𝑇

𝐴𝜁
󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨
𝜂
𝑇

𝐴𝜂
󵄨󵄨󵄨󵄨󵄨
. (4)

This proof is completed.

Lemma 2. Assume that 𝑃 is an 𝑛 × 𝑛 symmetric real matrix
and 𝜆𝑚 and 𝜆𝑀 are the smallest and the largest eigenvalues of
𝑃, respectively.Then, for an arbitrary column vector 𝜉 ∈ 𝑅𝑛, the
following inequality holds:

𝜆
𝑚

𝜉
𝑇

𝜉 ≤ 𝜉
𝑇

𝑃𝜉 ≤ 𝜆
𝑀

𝜉
𝑇

𝜉. (5)

Proof. 𝑃 is a symmetric real matrix; then, there exists an
orthogonal matrix 𝑈 ∈ 𝑅𝑛×𝑛 such that

𝑃 = 𝑈Λ𝑈
𝑇

, (6)

where Λ = diag(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
) and 𝜆

𝑖
is the 𝑖th eigenvalue of

𝑃, 𝑖 = 1, 2, . . . , 𝑛.
For an arbitrary column vector 𝜉 ∈ 𝑅𝑛, we have

𝜉
𝑇

𝑃𝜉 = (𝑈
𝑇

𝜉)
𝑇

Λ(𝑈
𝑇

𝜉)

=

𝑛

∑

𝑖=1

𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨
(𝑈
𝑇

𝜉)
𝑖

󵄨󵄨󵄨󵄨󵄨

2

≤ 𝜆
𝑀

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
(𝑈
𝑇

𝜉)
𝑖

󵄨󵄨󵄨󵄨󵄨

2

= 𝜆
𝑀

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨(𝜉)𝑖
󵄨󵄨󵄨󵄨

2

= 𝜆
𝑀

𝜉
𝑇

𝜉.

(7)

Similarly, we can prove

𝜉
𝑇

𝑃𝜉 ≥ 𝜆
𝑚

𝜉
𝑇

𝜉. (8)

The proof is completed.

3. Impulsive Control of Unified
Chaotic System

Consider the unified chaotic system [3, 4, 8, 10] described by
the following form:

̇𝑦
1
= (25𝛼 + 10) (𝑦

2
− 𝑦
1
) ,

̇𝑦
2
= (28 − 35𝛼) 𝑦

1
+ (29𝛼 − 1) 𝑦

2
− 𝑦
1
𝑦
3
,

̇𝑦
3
= 𝑦
1
𝑦
2
−
8 + 𝛼

3
𝑦
3
,

(9)

where 𝑦
1
, 𝑦
2
, 𝑦
3
are state variables and 𝛼 ∈ [0, 1]. System (9)

has some special features and advantages because it unifies
Lorenz system (when 𝛼 ∈ [0, 0.8)), Lü system (𝛼 = 0.8),
and Chen system (when 𝛼 ∈ (0.8, 1]). Moreover, system (9) is
always chaotic in the whole interval 𝛼 ∈ [0, 1].

It is easy to see that system (9) has three equilibrium
points:

𝐸
1
= (0, 0, 0)

𝑇

, 𝐸
2
= (𝛽, 𝛽, 𝜂)

𝑇

,

𝐸
3
= (−𝛽, −𝛽, 𝜂)

𝑇

,

(10)

where 𝛽 = √(8 + 𝛼)(9 − 2𝛼) and 𝜂 = 27 − 6𝛼.
For convenience, denote the above equilibrium points as

(𝑦
0

1
, 𝑦
0

2
, 𝑦
0

3
)
𝑇 and introduce the following transformation:

𝑥
𝑖
= 𝑦
𝑖
− 𝑦
0

𝑖
, 𝑖 = 1, 2, 3. (11)

Then, from (9), the following model can be obtained:

𝑥̇
1
= (25𝛼 + 10) (𝑥

2
− 𝑥
1
) ,

𝑥̇
2
= (28 − 35𝛼 − 𝑦

0

3
) 𝑥
1
+ (29𝛼 − 1) 𝑥

2

− 𝑦
0

1
𝑥
3
− 𝑥
1
𝑥
3
,

𝑥̇
3
= 𝑦
0

2
𝑥
1
+ 𝑦
0

1
𝑥
2
−
8 + 𝛼

3
𝑥
3
+ 𝑥
1
𝑥
2
.

(12)

We decompose the linear and nonlinear parts of system (12)
and rewrite it as the following form:

𝑥̇ = 𝐴𝑥 + Φ (𝑥) , (13)

where 𝑥 = (𝑥
1
, 𝑥
2
, 𝑥
3
)
𝑇 and

𝐴 = (

− (25𝛼 + 10) 25𝛼 + 10 0

28 − 35𝛼 − 𝑦
0

3
29𝛼 − 1 −𝑦

0

1

𝑦
0

2
𝑦
0

1
−
𝛼 + 8

3

) ,

Φ (𝑥) = (

0

−𝑥
1
𝑥
3

𝑥
1
𝑥
2

) .

(14)

In order to stabilize the equilibrium point, we now
introduce a control model of system (13) described by

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + Φ (𝑥 (𝑡)) +

∞

∑

𝑘=1

𝛿 (𝑡 − 𝜏
𝑘
) 𝐵
𝑘
𝑥 (𝑡) , (15)
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where 𝛿(⋅) is the Dirac delta function, the time sequence {𝜏
𝑘
}

satisfies 0 = 𝜏
0
< 𝜏
1
< 𝜏
2
< ⋅ ⋅ ⋅ < 𝜏

𝑘
< 𝜏
𝑘+1
⋅ ⋅ ⋅ , lim

𝑘→∞
𝜏
𝑘
=

∞, and 𝐵
𝑘
denotes a 3 × 3 constant matrix for each 𝑘 ∈ 𝑍+ =

{1, 2, . . . , 𝑛, 𝑛 + 1, . . .}.
Integrating from 𝜏

𝑘
−ℎ to 𝜏

𝑘
+ℎ both sides of system (15),

we have
𝑥 (𝜏
𝑘
+ ℎ) − 𝑥 (𝜏

𝑘
− ℎ)

= ∫

𝜏𝑘+ℎ

𝜏𝑘−ℎ

[𝐴𝑥 (𝑡) + Φ (𝑥 (𝑡)) +

∞

∑

𝑘=1

𝛿 (𝑡 − 𝜏
𝑘
) 𝐵
𝑘
𝑥 (𝑡)] 𝑑𝑡,

(16)

where ℎ > 0 is sufficiently small. As ℎ → 0+, by applying the
properties of the Dirac delta function, we have

𝑥 (𝜏
+

𝑘
) − 𝑥 (𝜏

−

𝑘
) = 𝐵
𝑘
𝑥 (𝜏
𝑘
) . (17)

Throughout this paper, we always assume that 𝑥(𝑡) =
(𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡))
𝑇 is left continuous at 𝜏

𝑘
(𝑘 ∈ 𝑍+); that

is, 𝑥
𝑖
(𝑡) = lim

𝑡→𝜏
−

𝑘

𝑥
𝑖
(𝑡). In this case, the above equality is

equivalent to the following form:

𝑥 (𝜏
+

𝑘
) − 𝑥 (𝜏

𝑘
) = 𝐵
𝑘
𝑥 (𝜏
𝑘
) . (18)

Thus, from the definition of the Dirac delta function, control
system (15) can be rewritten as

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + Φ (𝑥 (𝑡)) , 𝑡 ̸= 𝜏
𝑘
,

𝑥 (𝑡
+

) − 𝑥 (𝑡) = 𝐵
𝑘
𝑥 (𝑡) , 𝑡 = 𝜏

𝑘
.

(19)

It is easy to see that the origin is an equilibrium point of
system (19). We are interested in stabilizing the origin of
system (19), which is equivalent to the asymptotical stability
of the equilibrium point (𝑦0

1
, 𝑦
0

2
, 𝑦
0

3
)
𝑇 of system (9).

For convenience, denote 𝛿
𝑘
= 𝜏
𝑘+1
− 𝜏
𝑘
, Δ
𝑘
= 𝜏
2𝑘+1
−

𝜏
2𝑘−1
(𝑘 ∈ 𝑍

+

) and assume that

sup
𝑘∈𝑍
+

{𝛿
𝑘
} = 𝜎 < ∞. (20)

Since system (9) is chaotic, there exist two positive numbers
𝑆
1
and 𝑆
2
such that |𝑦

1
(𝑡)| ≤ 𝑆

1
, |𝑦
2
(𝑡)| ≤ 𝑆

2
, and |𝑦

3
(𝑡)| ≤ 𝑆

2

for 𝑡 ∈ 𝑅+ (see [4]). Additionally, we have |𝑥
1
(𝑡)| ≤ 𝑆

1
+|𝑦
0

1
| =

𝑀
1
, |𝑥
2
(𝑡)| ≤ 𝑆

2
+ |𝑦
0

2
| ≤ 𝑆

2
+ |𝑦
0

3
| = 𝑀

2
, and |𝑥

3
(𝑡)| ≤

𝑆
2
+ |𝑦
0

3
| = 𝑀

2
for 𝑡 ∈ 𝑅+.

The following theorem is provided to ensure the globally
asymptotical stability of the origin for the impulsive control
system (19).

Theorem 3. Let 𝑃 be a 3 × 3 symmetric and positive definite
matrix such that (𝑃−𝐼) is semipositive definite, where 𝐼 denotes
the identity matrix. Denote that 𝜆

1
and 𝜆

2
are the smallest and

the largest eigenvalues of𝑃 and (𝑃−𝐼), respectively. Let 𝑞 be the
largest eigenvalue of (𝑃𝐴 + 𝐴𝑇𝑃). 𝑑

𝑘
is the largest eigenvalue

of the matrix (𝐼 + 𝐵
𝑘
)
𝑇

𝑃(𝐼 + 𝐵
𝑘
) and 𝛼 = inf

𝑘∈𝑍
+{𝑑
𝑘
} > 0,

𝜁 = sup
𝑘∈𝑍
+{𝑑
𝑘
} < ∞. Denote that

𝛾 =
{

{

{

0, 𝑃 = 𝐼,

2𝑀
1
𝜆
2

𝜆
1

, 𝑃 ̸= 𝐼.
(21)

The origin of the controlled unified chaotic system (19) is
globally asymptotically stable if there exist two constants 𝜇 > 1
and 𝑏 ≥ 0 such that one of the following conditions is satisfied.

(1) For all 𝑘 ∈ 𝑍+,

(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝛿
𝑘
+ ln(

𝜇𝑑
𝑘

𝜆
1

) ≤ 0. (22)

(2) For all 𝑘 ∈ 𝑍+,

(
𝑞

𝜆
1

+ 𝛾 − 𝑏)Δ
𝑘
+ ln(

𝜇𝑑
2𝑘
𝑑
2𝑘−1

𝜆
2

1

) ≤ 0. (23)

Proof. Firstly, construct an auxiliary function described by
the following form:

𝑉 (𝑡, 𝑥) = 𝑒
𝑏(𝜏𝑘−1−𝑡)𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑡 ∈ (𝜏
𝑘−1
, 𝜏
𝑘
] , 𝑘 = 1, 2, . . . .

(24)

Denote that𝑄 = 𝐴𝑇𝑃+𝑃𝐴. For 𝑡 ∈ (𝜏
𝑘−1
, 𝜏
𝑘
], if 𝑃 ̸= 𝐼, in view

of Lemmas 1 and 2, the derivative of 𝑉(𝑡) along the solution
of (19) is

𝐷
+

𝑉 (𝑡) = 𝑒
𝑏(𝜏𝑘−1−𝑡) [𝑥

𝑇

𝑄𝑥 + 𝑥
𝑇

𝑃Φ (𝑥) + Φ
𝑇

(𝑥) 𝑃𝑥] − 𝑏𝑉

= 𝑒
𝑏(𝜏𝑘−1−𝑡) [𝑥

𝑇

𝑄𝑥 + 2𝑥
𝑇

(𝑃 − 𝐼)Φ (𝑥)] − 𝑏𝑉

≤ 𝑒
𝑏(𝜏𝑘−1−𝑡) (𝑥

𝑇

𝑄𝑥 + 2√𝑥𝑇 (𝑃 − 𝐼) 𝑥

× √Φ𝑇 (𝑥) (𝑃 − 𝐼)Φ (𝑥)) − 𝑏𝑉

≤ 𝑒
𝑏(𝜏𝑘−1−𝑡) (𝑥

𝑇

𝑄𝑥 + 2𝜆
2

√𝑥𝑇𝑥√Φ𝑇 (𝑥)Φ (𝑥)) − 𝑏𝑉

≤ 𝑒
𝑏(𝜏𝑘−1−𝑡) (𝑥

𝑇

𝑄𝑥 + 2𝜆
2

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 𝑥
𝑇

𝑥) − 𝑏𝑉

≤ 𝑒
𝑏(𝜏𝑘−1−𝑡) (

𝑞

𝜆
1

+
2𝜆
2
𝑀
1

𝜆
1

)𝑥
𝑇

𝑃𝑥 − 𝑏𝑉

= (
𝑞

𝜆
1

+
2𝜆
2
𝑀
1

𝜆
1

− 𝑏)𝑉 (𝑡) .

(25)

On the other hand, if 𝑃 = 𝐼,

𝐷
+

𝑉 (𝑡) = 𝑒
𝑏(𝜏𝑘−1−𝑡)𝑥

𝑇

𝑄𝑥 − 𝑏𝑉

≤
𝑞

𝜆
1

𝑒
𝑏(𝜏𝑘−1−𝑡)𝑥

𝑇

𝑃𝑥 − 𝑏𝑉

= (
𝑞

𝜆
1

− 𝑏)𝑉 (𝑡) .

(26)

From what has been discussed above, we have

𝐷
+

𝑉 (𝑡) ≤ (
𝑞

𝜆
1

+ 𝛾 − 𝑏)𝑉 (𝑡) . (27)
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Besides, for 𝑡 = 𝜏
𝑘
,

𝑉 (𝜏
+

𝑘
) = 𝑒
𝑏(𝜏𝑘−1−𝜏𝑘)𝑥

𝑇

(𝜏
+

𝑘
) 𝑃𝑥 (𝜏

+

𝑘
)

= 𝑒
𝑏(𝜏𝑘−1−𝜏𝑘)𝑥

𝑇

(𝜏
𝑘
) (𝐼 + 𝐵

𝑘
)
𝑇

𝑃 (𝐼 + 𝐵
𝑘
) 𝑥 (𝜏
𝑘
)

≤
𝑑
𝑘

𝜆
1

𝑒
𝑏(𝜏𝑘−1−𝜏𝑘)𝑥

𝑇

(𝜏
𝑘
) 𝑃𝑥 (𝜏

𝑘
)

=
𝑑
𝑘

𝜆
1

𝑉 (𝜏
𝑘
) .

(28)

From (27), for 𝑡 ∈ [0, 𝜏
1
],

𝑉 (𝑡) ≤ 𝑉 (0) exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝑡] , (29)

which leads to

𝑉 (𝜏
1
) ≤ 𝑉 (0) exp [(

𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
1
] . (30)

Further, by using (28),

𝑉 (𝜏
+

1
) ≤ 𝑉 (0)

𝑑
1

𝜆
1

exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
1
] . (31)

Similarly, for 𝑡 ∈ (𝜏
1
, 𝜏
2
], we obtain

𝑉 (𝑡) ≤ 𝑉 (𝜏
+

1
) exp [(

𝑞

𝜆
1

+ 𝛾 − 𝑏) (𝑡 − 𝜏
1
)]

≤ 𝑉 (0)
𝑑
1

𝜆
1

exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝑡] ,

𝑉 (𝜏
+

2
) ≤ 𝑉 (0)

𝑑
1

𝜆
1

𝑑
2

𝜆
1

exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
2
] .

(32)

Hence, generally, for 𝑡 ∈ (𝜏
𝑘
, 𝜏
𝑘+1
],

𝑉 (𝑡) ≤ 𝑉 (0)(

𝑘

∏

𝑖=1

𝑑
𝑖

𝜆
1

) exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝑡] . (33)

If 𝑞/𝜆
1
+ 𝛾 − 𝑏 ≥ 0, then

𝑉 (𝑡) ≤ 𝑉 (0)(

𝑘

∏

𝑖=1

𝑑
𝑖

𝜆
1

) exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
𝑘+1
]

= 𝑉 (0) exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
1
]

×

𝑘

∏

𝑖=1

𝑑
𝑖

𝜆
1

exp(
𝑞

𝜆
1

+ 𝛾 − 𝑏) (𝜏
𝑖+1
− 𝜏
𝑖
) .

(34)

If 𝑞/𝜆
1
+ 𝛾 − 𝑏 < 0, then

𝑉 (𝑡) ≤ 𝑉 (0)(

𝑘

∏

𝑖=1

𝑑
𝑖

𝜆
1

) exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
𝑘+1
]

× exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) (𝑡 − 𝜏
𝑘+1
)]

≤ 𝑉 (0) 𝛽(

𝑘

∏

𝑖=1

𝑑
𝑖

𝜆
1

) exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
𝑘+1
]

= 𝑉 (0) 𝛽 exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
1
]

×

𝑘

∏

𝑖=1

𝑑
𝑖

𝜆
1

exp(
𝑞

𝜆
1

+ 𝛾 − 𝑏) (𝜏
𝑖+1
− 𝜏
𝑖
) ,

(35)

where

𝛽 = exp [
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

𝜆
1

+ 𝛾 − 𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎] > 1. (36)

Hence, for 𝑡 ∈ (𝜏
𝑘
, 𝜏
𝑘+1
], we always have

𝑉 (𝑡) ≤ 𝑉 (0) 𝛽 exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
1
]

×

𝑘

∏

𝑖=1

𝑑
𝑖

𝜆
1

exp(
𝑞

𝜆
1

+ 𝛾 − 𝑏) (𝜏
𝑖+1
− 𝜏
𝑖
) .

(37)

In the following, we consider the following cases.

Case 1. When condition (9) is satisfied, from (22),

𝑑
𝑖

𝜆
1

exp(
𝑞

𝜆
1

+ 𝛾 − 𝑏) (𝜏
𝑖+1
− 𝜏
𝑖
) ≤
1

𝜇
, 𝑖 ∈ 𝑍

+

, (38)

and together with (37), we have

𝑉 (𝑡) ≤
1

𝜇𝑘
𝑉 (0) 𝛽 exp [(

𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
1
] . (39)

Note that 𝑘 → ∞ as 𝑡 → ∞; then, from 𝜇 > 1, we obtain
lim
𝑡→∞

𝑉(𝑡) = 0. Therefore, we finally have lim
𝑡→∞

𝑥(𝑡) = 0.

Case 2. If condition (12) holds, from (23), we have

𝑑
2𝑖
𝑑
2𝑖−1

𝜆
2

1

exp(
𝑞

𝜆
1

+ 𝛾 − 𝑏) (𝜏
2𝑖+1
− 𝜏
2𝑖−1
) ≤
1

𝜇
, 𝑖 ∈ 𝑍

+

.

(40)

For 𝑡 ∈ (𝜏
2𝑘−1
, 𝜏
2𝑘
], it follows from (37) and (40) that

𝑉 (𝑡) ≤
1

𝜇𝑘−1
𝛽𝑉 (0) exp [(

𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
1
]

×
𝑑
2𝑘−1

𝜆
1

exp(
𝑞

𝜆
1

+ 𝛾 − 𝑏) (𝜏
2𝑘
− 𝜏
2𝑘−1
)

≤
1

𝜇𝑘−1
𝑉 (0) 𝛽 exp [

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

𝜆
1

+ 𝛾 − 𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝜏
1
+ 𝜎)]

𝜁

𝜆
1

.

(41)
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Similarly, if 𝑡 ∈ (𝜏
2𝑘
, 𝜏
2𝑘+1
], from (37) and (40), we can derive

that

𝑉 (𝑡) ≤
1

𝜇𝑘
𝑉 (0) 𝛽 exp [(

𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
1
] . (42)

From (41) and (42), we finally have lim
𝑡→∞

𝑥(𝑡) = 0.
From the above analysis, the trivial solution 𝑥(𝑡) = 0

of system (19) is globally asymptotically stable. The proof of
Theorem 3 is completed.

Remark 4. FromTheorem 3, it is clear that 𝛾 = 0 if 𝑃 = 𝐼. On
the other hand, for 𝑃 ̸= 𝐼, 𝛾 → 0 as 𝑃 approaches to 𝐼, since
𝜆
2
→ 0 in this case.

Remark 5. If 𝜇 = 1 in Theorem 3, from the proof of
Theorem 3, we have

𝑉 (𝑡) ≤ 𝑉 (0) exp [(
𝑞

𝜆
1

+ 𝛾 − 𝑏) 𝜏
1
]𝛽𝑄, (43)

where 𝑄 = max{1, (𝜁/𝜆
1
) exp[|𝑞/𝜆

1
+ 𝛾 − 𝑏|𝜎]}. In this case,

it is clear that the origin of impulsive control system (19) is
stable.

Taking 𝑃 = 𝐼 in Theorem 3, it is easy to see that 𝜆
1
= 1,

𝜆
2
= 0, and 𝛾 = 0 in this case. By virtue of Theorem 3, the

following statements can be derived.

Corollary 6. The origin of the controlled unified chaotic
system (19) is globally asymptotically stable if there exist two
constants 𝜇 > 1 and 𝑏 ≥ 0 such that one of the following
conditions holds.

(a) For all 𝑘 ∈ 𝑍+,

(𝑞 − 𝑏) 𝛿
𝑘
+ ln (𝜇𝑑

𝑘
) ≤ 0. (44)

(b) For all 𝑘 ∈ 𝑍+,

(𝑞 − 𝑏) Δ
𝑘
+ ln (𝜇𝑑

2𝑘
𝑑
2𝑘−1
) ≤ 0, 𝑘 ∈ 𝑍

+

. (45)

Remark 7. In Corollary 6, if 𝑏 = 0, inequality (44) is reduced
to

𝑞𝛿
𝑘
+ ln (𝜇𝑑

𝑘
) ≤ 0, (46)

which is equivalent to the condition of Theorem 1 in [10].
Further, in this case, inequality (45) is degenerated to

𝑞Δ
𝑘
+ ln (𝜇𝑑

2𝑘
𝑑
2𝑘−1
) ≤ 0, (47)

which is the same as inequality (7) in [8]. On the other
hand, for 𝑏 > 0, evidently, conditions (44) and (45) are
less conservative than inequalities (46) and (47). Hence,
compared with [8, 10], our results are less stringent and more
general.

In practice, the equal impulsive interval and the constant
gainmatrix are often selected for convenience. In Corollary 6,
we choose 𝛿

𝑖
= 𝛿 and 𝐵

𝑖
= 𝐵 for 𝑖 ∈ 𝑍+ and denote that 𝑞 and

𝑑 are the largest eigenvalues of (𝐴𝑇 + 𝐴) and (𝐼 + 𝐵)𝑇(𝐼 + 𝐵),
respectively. Then, the following corollary can be obtained.

Corollary 8. The origin of system (19) is globally asymptoti-
cally stable if there exist 𝜇 > 1 and 𝑏 ≥ 0 such that

(𝑞 − 𝑏) 𝛿 + ln (𝜇𝑑) ≤ 0. (48)

Remark 9. From Corollary 8, an upper bound of equal
impulsive interval 𝛿 can be derived. In fact,

𝛿 ≤
1

𝑞 − 𝑏
ln 1
𝜇𝑑
. (49)

In [10], the upper bound of impulsive interval was also given,
which can be represented by

𝛿 ≤
1

𝑞
ln 1
𝜇𝑑
. (50)

It is evident that the equal impulsive interval obtained in this
paper is larger, which shows that our designed controller is
more efficient and more economical in practice.

4. Impulsive Synchronization of Unified
Chaotic System

In this section, we discuss the impulsive synchronization of
unified chaotic system. It is easy to see that system (9) can be
rewritten as

̇𝑦 = 𝐴𝑦 + Φ (𝑦) , (51)

where 𝑦 = (𝑦
1
, 𝑦
2
, 𝑦
3
)
𝑇 and

𝐴 = (

− (25𝛼 + 10) 25𝛼 + 10 0

28 − 35𝛼 29𝛼 − 1 0

0 0 −
𝛼 + 8

3

) ,

Φ (𝑦) = (

0

−𝑦
1
𝑦
3

𝑦
1
𝑦
2

) .

(52)

In impulsive synchronization configuration, the driving sys-
tem is given by (51), while the driven system is represented by
the following form:

̇̃𝑦 = 𝐴𝑦 + Φ (𝑦) +

∞

∑

𝑘=1

𝛿 (𝑡 − 𝜏
𝑘
) 𝐵
𝑘
(𝑦 (𝑡) − 𝑦 (𝑡)) , (53)

where 𝑦 = (𝑦
1
, 𝑦
2
, 𝑦
3
)
𝑇 is the state variable of the driven

system, 𝐴 and Φ are defined in (52), and 𝐵
𝑘
, 𝛿(⋅), and {𝜏

𝑘
}

are defined in (15).
Similar to the technique of system (15), the driven system

(53) can be rewritten as the following impulsive equation:
̇̃𝑦 = 𝐴𝑦 + Φ (𝑦) , 𝑡 ̸= 𝜏

𝑘
,

Δ𝑦 = 𝐵
𝑘
(𝑦 (𝑡) − 𝑦 (𝑡)) , 𝑡 = 𝜏

𝑘
.

(54)

Let 𝑒 = (𝑒
1
, 𝑒
2
, 𝑒
3
)
𝑇

= (𝑦
1
− 𝑦
1
, 𝑦
2
− 𝑦
2
, 𝑦
3
− 𝑦
3
)
𝑇 be the

synchronization error and

Ψ (𝑦, 𝑦) = Φ (𝑦) − Φ (𝑦) = (

0

𝑦
1
𝑦
3
− 𝑦
1
𝑦
3

𝑦
1
𝑦
2
− 𝑦
1
𝑦
2

) . (55)
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From (51) and (54), the error system can be expressed by

̇𝑒 = 𝐴𝑒 + Ψ (𝑦, 𝑦) , 𝑡 ̸= 𝜏
𝑘
,

Δ𝑒 = 𝐵
𝑘
𝑒, 𝑡 = 𝜏

𝑘
.

(56)

In this section, we are interested in synchronizing the
driving system (51) and the driven system (54), which is
equivalent to the asymptotical stability of the origin for
error system (56). Similar to Theorem 3, the following
results are stated, which ensure the globally asymptotical
synchronization of the driving system (51) and the driven
system (54).

Theorem 10. Let 𝑞 be the largest eigenvalue of (𝐴 + 𝐴𝑇). 𝑑
𝑘

is the largest eigenvalue of the matrix (𝐼 + 𝐵
𝑘
)
T
(𝐼 + 𝐵

𝑘
). The

driving system (51) and the driven system (54) are globally
asymptotically synchronized if there exist constants 𝜇 > 1 and
𝑏 ≥ 0 such that one of the following conditions is satisfied.

(a) For all 𝑘 ∈ 𝑍+,

(𝑞 + 2𝑆
2
− 𝑏) 𝛿

𝑘
+ ln (𝜇𝑑

𝑘
) ≤ 0. (57)

(b) For all 𝑘 ∈ 𝑍+,

(𝑞 + 2𝑆
2
− 𝑑)Δ

𝑘
+ ln (𝜇𝑑

2𝑘
𝑑
2𝑘−1
) ≤ 0. (58)

Proof. Observe that error system (56) is almost the same
as system (19) except for Ψ(𝑦, 𝑦). Construct an auxiliary
function described by the following form:

𝑉 (𝑡, 𝑥) = 𝑒
𝑏(𝜏𝑘−1−𝑡)𝑒

𝑇

(𝑡) 𝑒 (𝑡) ,

𝑡 ∈ (𝜏
𝑘−1
, 𝜏
𝑘
] , 𝑘 = 1, 2, . . . .

(59)

For 𝑡 ∈ (𝜏
𝑘−1
, 𝜏
𝑘
], calculating the time derivative of𝑉(𝑡) along

the solution of (56), we have

𝐷
+

𝑉 (𝑡)

= 𝑒
𝑏(𝜏𝑘−1−𝑡) [𝑒

𝑇

(𝐴
𝑇

+ 𝐴) 𝑒 + 𝑒
𝑇

Ψ (𝑦, 𝑦) + Ψ
𝑇

(𝑦, 𝑦) 𝑒] − 𝑏𝑉

= 𝑒
𝑏(𝜏𝑘−1−𝑡) [𝑒

𝑇

(𝐴
𝑇

+ 𝐴) 𝑒 + 2 (𝑦
2
𝑒
1
𝑒
3
− 𝑦
3
𝑒
1
𝑒
2
)] − 𝑏𝑉

≤ 𝑒
𝑏(𝜏𝑘−1−𝑡) [𝑒

𝑇

(𝐴
𝑇

+ 𝐴) 𝑒 + 2𝑆
2
𝑒
𝑇

𝑒] − 𝑏𝑉

≤ 𝑒
𝑏(𝜏𝑘−1−𝑡) (𝑞 + 2𝑆

2
) 𝑒
𝑇

𝑒 − 𝑏𝑉

≤ (𝑞 + 2𝑆
2
− 𝑏)𝑉.

(60)

In addition, for 𝑘 ∈ 𝑍+,

𝑉 (𝜏
+

𝑘
) = 𝑒
𝑏(𝜏𝑘−1−𝜏𝑘)𝑒

𝑇

(𝜏
𝑘
) (𝐼 + 𝐵

𝑘
)
𝑇

(𝐼 + 𝐵
𝑘
) 𝑒 (𝜏
𝑘
)

≤ 𝑑
𝑘
𝑉 (𝜏
𝑘
) .

(61)

The rest of this proof is the same as that of Theorem 3, and
here we omit it. The proof of Theorem 10 is completed.

Similar to Corollary 6, we have the following results.
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Figure 1: The chaotic behavior of system (9) with 𝛼 = 1.

Corollary 11. The driving system (51) and the driven system
(54) are globally asymptotically synchronized, if there exist 𝜇 >
1 and 𝑏 ≥ 0 such that one of the following conditions is satisfied.

(a) For all 𝑘 ∈ 𝑍+,

(𝑞 + 2𝑆
2
− 𝑏) 𝛿

𝑘
+ ln (𝜇𝑑

𝑘
) ≤ 0. (62)

(b) For all 𝑘 ∈ 𝑍+,

(𝑞 + 2𝑆
2
− 𝑏) Δ

𝑘
+ ln (𝜇𝑑

2𝑘
𝑑
2𝑘−1
) ≤ 0, 𝑘 ∈ 𝑍

+

. (63)

Remark 12. The impulsive synchronization of unified chaotic
system was investigated in [8, 10]. It is noted that inequality
(62) is reduced to the condition of Theorem 2 in [10] and
condition (b) in Corollary 11 will be degenerated to the
assumption of Theorem 2 in [8] when 𝑏 = 0. Additionally,
if 𝑏 > 0, it is evident that conditions (62) and (63) are less
stringent than the assumptions introduced in [8, 10].

Similar toCorollary 8, the following results can be derived
when we select 𝛿

𝑖
= 𝛿 and 𝐵

𝑖
= 𝐵 for each 𝑘 ∈ 𝑍+.

Corollary 13. The driving system (51) and the driven system
(54) are globally asymptotically synchronized, if there exist 𝜇 >
1 and 𝑏 ≥ 0 such that

(𝑞 + 2𝑆
2
− 𝑏) 𝛿 + ln (𝜇𝑑) ≤ 0, (64)

where 𝑑 is the largest eigenvalue of (𝐼 + 𝐵)𝑇(𝐼 + 𝐵).

5. Numerical Simulations

In this section, based on the results obtained in the previous
sections, somenumerical simulations are represented to show
the effectiveness of our results.

First, we consider numerical simulations of impulsive
control for system (9) with 𝛼 = 1. The chaotic behavior of
system (9) with 𝛼 = 1 is shown in Figure 1.

For convenience, select (𝑦0
1
, 𝑦
0

2
, 𝑦
0

3
) = (0, 0, 0), 𝑃 = 𝐼 and

take gain matrices 𝐵
𝑖
= diag(−0.86, −0.84, −0.9) (𝑖 ∈ 𝑍+) in

Theorem 3. By simple computation, we obtain

𝐴 + 𝐴
𝑇

= (

−70 28 0

28 56 0

0 0 −6

) , (65)
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Figure 2: Impulsive stabilization of system (9) with 𝛼 = 1 and 𝛿 =
0.07.

and its eigenvalues are −75.942, −6, and 61.942; then, 𝑞 =
61.942.

Choosing impulsive control interval 𝛿 = 0.07, 𝜇 = 1.1. By
computation, 𝑑 = 0.0256 and

𝑞𝛿 + ln (𝜇𝑑) = 61.942 × 0.07 + ln (1.1 × 0.0256)

= 0.7661.

(66)

Taking 𝑏 = 12 in Theorem 3, then,

𝑏𝛿 = 12𝛿 = 0.84. (67)

Hence,

(𝑞 − 𝑏) 𝛿 + ln (𝜇𝑑) = −0.0739 < 0. (68)

Therefore, all conditions of Corollary 8 are satisfied, which
implies that the origin of unified chaotic system (9) is globally
asymptotically stable under impulsive control.The numerical
simulation results with constant impulsive interval 𝛿 = 0.07
are shown in Figure 2.

In the second simulation, we study impulsive synchro-
nization of the driving system (51) and the driven system
(54) with 𝛼 = 0. The initial conditions of the driving
system and the driven system are (−2, −8, −1) and (5, −9, −6),
respectively. Figure 3 shows that system (51) with 𝛼 = 0 is
chaotic, and from this we can obtain that 𝑆

2
= 65.

Choose 𝐵
𝑖
= diag(−0.88, −0.8, −0.8), 𝛿 = 0.02, 𝜇 = 1.5,

and 𝑏 = 20 in (43). By computation, 𝑞 = 28.0512, 𝑑 = 0.04
and

(𝑞 + 2𝑆
2
) 𝛿 + ln (𝜇𝑑) = 0.3476, (69)

and 𝑏𝛿 = 0.4, which leads to

(𝑞 + 2𝑆
2
− 𝑏) 𝛿 + ln (𝜇𝑑) = −0.0524. (70)

By the above analysis, all conditions of Corollary 13 hold;
hence, system (51) and system (54) are globally asymptotically
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Figure 3: The chaotic behavior of system (51) with 𝛼 = 0.
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Figure 4: Synchronization error curves with 𝛼 = 0 and 𝛿 = 0.02.

synchronized under impulsive control. The synchronization
errors with impulsive distance 𝛿 = 0.02 are shown in Figure 4.

Remark 14. Evidently, it follows from (66) and (69) that the
conditions ofTheorems 1 and 2 in [10] are not satisfied under
the above parameters; that is to say, the stabilization and
synchronization of unified chaotic system are not ensured
by means of the criteria obtained in [10]. However, it follows
from (68) and (70) that the stabilization and synchronization
of unified chaotic system can be realized by virtue of our
criteria and Figures 2 and 4 show the validity of our results.
Therefore, our results are less conservative andmore superior
compared with [10].

6. Conclusion

In this paper, the issue on the stabilization and synchro-
nization of unified chaotic system under impulsive control
is investigated. Some novel and useful criteria are derived
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by using impulsive control theory. Finally, the effectiveness
and feasibility of the developed methods are shown by some
numerical simulations. Comparedwith some previous results
given in [8, 10], our designed controller is more efficient and
economical.
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