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Abstract
Background/Aims: Tissue inhibitor of metalloproteinases-1 (TIMP-1) has been reported to 
upregulate in urethral scar. However, the underlying molecular mechanisms remain undefined.
Methods: Here, we studied levels of TIMP-1 and α-smooth muscle actin (α-SMA) in the 
fibroblasts isolated from urethral scar tissues, compared to the fibroblasts isolated from 
normal urethra. Then we either overexpressed TIMP-1, or inhibited TIMP-1 by lentiviruses 
carrying a transgene or a short hairpin small interfering RNA for TIMP-1 in human fibroblasts. 
We examined the effects of modulation of TIMP-1 on α-SMA, and on epithelial-mesenchymal 
transition (EMT)-related genes. We also studied the underlying mechanisms.  Results: We 
detected significantly higher levels of TIMP-1 and α-smooth muscle actin (α-SMA) in the 
fibroblasts isolated from urethral scar tissues, compared to the fibroblasts isolated from 
normal urethra. Moreover, the levels of TIMP-1 and α-SMA strongly correlated. Moreover, we 
found that TIMP-1 significantly increased levels of α-SMA, transforming growth factor β 1 
(TGFβ1), Collagen I and some other key factors related to an enhanced EMT, suggesting 
that TIMP-1 may induce transformation of fibroblasts into myofibroblasts to promote 
tissue EMT to enhance the formation of urethral scar. Moreover, increases in TIMP-1 also 
induced an increase in fibroblast cell growth and cell invasion, in an ERK/MAPK-signaling-
dependent manner. Conclusion: Our study thus highlights a pivotal role of TIMP-1 in 
urethral scar formation.
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Introduction

Urethral stricture is a fibrotic process in incompliant scarred tissue, resulting in 
constricted urethral lumen [1-4]. The common causes for developing urethral stricture are 
indirect or direct trauma-like side effects, such as surgical correction of urinary incontinence 
[1-4]. Although urethrotomy under direct vision could be an effective therapy for minor 
urethral stricture in the penile segment, the recurrence rate is pretty high [1-4]. Scar tissue 
for larger strictures is usually treated with excision by anastomotic urethroplasty, free buccal 
mucosal transplants or foreskin pedicled grafts [1-4].

The molecular basis of urethral stricture involves activation of tissue fibroblasts, 
their transformation into myofibroblasts, following outgrowth and increased deposition of 
collagens, and consequent changes in extracellular matrix components [5-8]. The matrix 
metalloproteinase (MMP) family members are involved in the breakdown of extracellular 
matrix during embryonic development, tissue remodeling and disease processes [9-13]. 

Tissue inhibitor of metalloproteinases 1 (TIMP-1) is a glycoprotein ubiquitously 
expressed in various human cells and tissues [14-16]. TIMP-1 controls the activity of MMPs 
and appears to an important regulator of extracellular matrix turnover [14-16]. Moreover, 
TIMP-1 also regulates cellular processes including cell growth, apoptosis, and differentiation 
that are independent of its metalloproteinase inhibitory activity [14-16]. Recently, TIMP-1 
has been reported to upregluate in urethral scar tissues, which has been suggested to be 
responsible for decreased collagenase activities [17-20]. However, little is known about the 
effects of TIMP-1 on fibroblasts and the exact downstream mechanisms of TIMP-1-mediated 
cell signaling.

Here, we found significantly higher levels of TIMP-1 and α-smooth muscle actin (α-SMA) 
in the fibroblasts isolated from urethral scar tissues, compared to the fibroblasts isolated 
from normal urethra. Moreover, the levels of TIMP-1 and α-SMA strongly correlated. Then 
we either overexpressed TIMP-1, or inhibited TIMP-1 by lentiviruses carrying a transgene or 
a short hairpin small interfering RNA for TIMP-1 in human fibroblasts. We found that TIMP-
1 significantly increased levels of α-SMA, transforming growth factor β 1 (TGFβ1), Collagen 
I and some other key factors related to an enhanced epithelial-mesenchymal transition 
(EMT), suggesting that TIMP-1 may induce transformation of fibroblasts into myofibroblasts 
to promote tissue EMT to enhance the formation of urethral scar. Moreover, increases in 
TIMP-1 also induced an increase in fibroblast cell growth and cell invasion, in an ERK/MAPK-
signaling-dependent manner. 

Materials and Methods

Patient tissue specimens
A total of 21 resected urethral scar tissue specimens from patients were collected for this study. The 

normal urethral tissues from the same patient were used as controls. All specimens had been histologically 
and clinically diagnosed at the Department of Urology, Shanghai Sixth People’s Hospital of Shanghai Jiaotong 
University from 2010 to 2013. For the use of these clinical materials for research purposes, prior patient's 
consents and approval were collected, and the approvals by the Institutional Research Ethics Committee 
were obtained. 

Isolation of fibroblasts from urethral scar tissues
A six-well plate was coated with a 0.1% gelatin solution and then incubated for 20 min. The dissected 

tissue parts from urethral scar tissue or control normal urethral tissue were put in separated large petri 
dishes and a scalpel was used to cut pieces as small as possible. Hereafter, the pieces were carried over 
to a new 10 ml tube, and 2.5 ml 30mg/ml collagenase (Sigma-Aldrich, St. Louis, MO, USA) was added to 
it to incubate for 60 min. at 37 ºC. And 5 ml 0.25% trypsin (Sigma-Aldrich) was added in the last 10 min. 
The tubes were centrifuged for 5 min. at 300 g. The gelatin was removed from the dish, and the volume 
was distributed equally over 2 coated wells and placed in the incubator for 2 days. Passaging of the cells 
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was done when the culture plate grown confluent. A small plane of 0.25% trypsin was added to the cells 
after removing the medium and placed in the incubator at 37 ºC for 10 minutes. Now the loosen cells were 
put in a tube. The culture plate was washed with PBS and added to the cells. After centrifugation for 5 
minutes at 1000 RPM, cells where resuspended and seeded at 1:3 dilution on a new coated plate which 
surface is now approximately 3 times larger. New culture medium was added and the cells were placed in 
the incubator. The culture media was Dulbecco’s modified Eagle’s media (DMEM, Invitrogen, Carlsbad, CA, 
USA) supplemented with 15% fetal bovine serum (Invitrogen). PD98059, LY294002 and IWP-2 were both 
purchased from Sigma-Aldrich.

Transduction of human fibroblasts
The coding sequence of TIMP-1 was amplified using human cDNA as a template, and cloned into 

pLVX-ZsGreen1-C1 vector (Clontech, Mountain View, CA, USA). Short hairpin interfering RNAs (shRNAs) 
targeting TIMP-1 used the published sequences [21]. The shRNA was also cloned into pLVX-ZsGreen1-C1 
vector, with pLVX-ZsGreen1-C1 itself as the mock control. To generate TIMP-1 or shTIMP-1 lentiviral 
particles, NIH HEK293T cells were seeded in a 100 mm dish at 50,000 cells/cm2 and co-transfected with 
10 µg of recombinant DNA plasmids and 5 µg each of packaging plasmids (REV, pMDL and VSV-G) using 
Lipofectamine-2000 (Invitrogen). The supernatant containing lentiviral particles was collected 48 hours 
after transfection and filtered through a 0.45 µm syringe filter. The fibroblasts were seeded in 100 mm 
plates at 15,000 cells/cm2 one day prior to lentiviral infection. The lentiviral particles were added along 
with 10 µg/ml polybrene (Sigma-Aldrich) to the cell culture for 24 hours. Then the cells were washed twice 
with complete media and purified for the transduced cells, based on expression of GFP.

Transwell migration assay
The transwell migration assay was performed using a Fluorometric Cell Migration Assay kit with 

polycarbonate membrane inserts (5-μm pore size; Cell Biolabs, San Diego, CA, USA). Cells (4 × 104) were 
serum-starved overnight in DMEM prior to initiation of the experiment, and added to the upper chamber. 
Cells were then incubated at 37 °C for 24 hours to allow cell migration through the membrane to the lower 
chamber. The cells inside the upper chamber were then removed with cotton swabs. Migratory and invasive 
cells on the lower membrane surface were fixed, stained with hematoxylin, and counted for 10 random 100X 
fields per well. Cell counts are expressed as the mean number of cells per field of view. Five independent 
experiments were performed and the data are presented as mean ± standard deviation (SD).

Scratch wound healing assay
Scratch wound healing assay was performed as has been described previously [22]. Cells were 

seeded in 24-well plates at a density of 104 cells/well in complete DMEM and cultured to confluence. The 
cell monolayer was serum starved overnight in DMEM prior to initiating of the experiment. Confluent cell 
monolayer were then scraped with a yellow pipette tip to generate scratch wounds and washed twice with 
media to remove cell debris. Cells were incubated at 37 °C for 24 hours. Time lapse images were captured 
after 12 hours using a Nikon Eclipse TE2000-5 microscope. Images were captured from five randomly 
selected fields in each sample, and the wound areas are calculated by NIH ImageJ software. 

Cell proliferation assay
For assay of cell proliferation, the cells were seeded into 96 well-plate at 4000 cells per well and 

subjected to a Cell Proliferation Kit (MTT, Roche, USA), according to the manufacturer’s instruction. 

RNA extraction, reverse transcription and quantitative RT-PCR
Total RNA was extracted from the cultured cells, or tissue, or patient specimens using Trizol 

(Invitrogen), according to the manufacturer’s instruction. For mRNA analysis, complementary DNA (cDNA) 
was randomly primed from 2.0μg of total RNA using the Omniscript reverse transcription kit (Qiagen, 
Hilden, Germany). Quantitative Real-time PCR (RT-qPCR) was subsequently performed in duplicate with a 
1:4 dilution of cDNA using the Quantitect SyBr green PCR system (Qiagen) on a Rotorgene 6000 series PCR 
machine. Data were collected and analyzed using the Rotorgene software accompanying the PCR machine. 
Relative expression levels were determined using the comparative quantification feature of the Rotorgene 
software. Levels of gene transcripts were normalized to α-tubulin, and then compared to controls. 
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Western blot and ELISA
Protein was extracted from the cultured cells or conditioned media by RIPA buffer (Sigma-Aldrich) for 

Western Blot. The supernatants were collected after centrifugation at 12000×g at 4°C for 20min. Protein 
concentration was determined using BCA protein assay, and whole lysates were mixed with 4×SDS loading 
buffer (125 mmol/l Tris-HCl, 4% SDS, 20% glycerol, 100 mmol/l DTT, and 0.2% bromophenol blue) at a 
ratio of 1:3. Samples were heated at 100 °C for 5 min and were separated on SDS-polyacrylamide gels. The 
separated proteins were then transferred to a PVDF membrane. The membrane blots were first probed 
with a primary antibody. After incubation with horseradish peroxidase-conjugated second antibody, 
autoradiograms were prepared using the enhanced chemiluminescent system to visualize the protein 
antigen. The signals were recorded using X-ray film. Primary antibodies for Western Blot are anti-TIMP-1, 
anti-α-SMA, anti-Collagen I and anti-α-tubulin (all purchased from Cell Signaling, San Jose, CA, USA). 
Secondary antibody is HRP-conjugated anti-rabbit (Jackson Labs, Bar Harbor, ME, USA). Images shown 
in the figure were representative from 5 repeats. Densitometry of Western blots was quantified with NIH 
ImageJ software. ELISA for TIMP-1 in the conditioned media was performed using a commercial ELISA kit 
(R&D Systems, Minneapolis, MN, USA), according to the manufacturer’s instruction.

Statistical analysis
All statistical analyses were carried out using the SPSS 19.0 statistical software package. All data 

were statistically analyzed using one-way ANOVA with a Bonferoni Correction. Bivariate correlation 
was calculated by Spearman's Rank Correlation Coefficients. All values are depicted as mean ± standard 
deviation from 5 individuals and are considered significant if p < 0.05. The figures were generated in Prism 
6.0 (GraphPad Software Inc, USA).

Results

Correlated increases in TIMP-1 and α-SMA levels in urethral scar tissues 
In order to figure out whether TIMP-1 may induce the transformation of fibroblasts 

into myofibroblasts to promote EMT, we examined the transcript levels of TIMP-1 and 
α-SMA, a marker for myofibroblasts and the levels of EMT in tissue, in the resected urethral 
scar tissue specimens (US), compared to the normal urethral tissues (NU) from the same 
patient. We also analyzed the correlation between TIMP-1 and α-SMA levels in individual 
patients. We detected significantly higher levels of TIMP-1 (about 8 fold increase, Fig. 1A), 
and significantly higher levels of α-SMA (about 6 fold increase, Fig. 1A) in US, compared to 
NU. In addition, a strong correlation between TIMP-1 and α-SMA levels was detected (Fig. 

Fig. 1. Correlated increases in TIMP-1 and α-SMA levels in urethral scar tissues. The transcript levels of 
TIMP-1 and α-SMA in the resected urethral scar tissue specimens (US) were compared to the normal ure-
thral tissues (NU) from the same patient. (A) Significantly higher levels of TIMP-1 (about 8 fold increase) 
and α-SMA (about 6 fold increase) were detected in US, compared to NU. (B) A strong correlation between 
TIMP-1 and α-SMA levels was detected (R=0.77, p<0.0001). *p<0.05. n=21. Statistics: one-way ANOVA with 
a Bonferoni Correction. Bivariate correlation was calculated by Spearman's Rank Correlation Coefficients.
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1B, r=0.77, p<0.0001). These data suggest a causal link between TIMP-1 and α-SMA in the 
formation of urethral scar.

Preparation of Timp-1-modified human fibroblasts from urethral scar tissues
Then we isolated human fibroblasts (FS) from urethral scar tissues. To examine whether 

TIMP-1 directly regulates α-SMA and other events of EMT, we transduced FS with either a 
TIMP-1 expressing lentivirus, or a lentivirus carrying small short hairpin interfering RNA for 
TIMP-1, or a control lentivirus. All viruses contained GFP as a reporter, to allow transduced 
cells to be visualized in culture (Fig. 2A), and to be purified by flow cytometry (Fig. 2B). 
The purified cells were termed as FS-TIMP-1, FS-GFP and FS-shTIMP-1, respectively. The 
modifications of TIMP-1 levels in these cells were confirmed by RT-qPCR (Fig. 2C), and by 
Western blot on the cell extracts (Fig. 2D), and by ELISA on the conditioned media (Fig. 2D).

Fig. 2. Preparation of TIMP-1-modified human fibroblasts from urethral scar tissues. (A-B) Human fibrob-
lasts (FS) were isolated from urethral scar tissues and transduced with either a TIMP-1 expressing lentivi-
rus (FS-TIMP-1), or a lentivirus carrying shRNA for TIMP-1 (FS-shTIMP-1), or a control lentivirus (FS-GFP). 
All viruses contained GFP as a reporter, to allow transduced cells to be visualized in culture (A), and to be 
purified by flow cytometry (B). (C-D) The modifications of TIMP-1 levels in these cells were confirmed by 
RT-qPCR on TIMP-1 transcripts (C), by Western blot on cell extracts and by ELISA on conditioned media (D). 
FSC: forward scatter. *p<0.05. N=5. Representative images are randomly selected from 5 repeats. Statistics: 
one-way ANOVA with a Bonferoni Correction. Scale bar is 20µm.
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TIMP-1 induced transformation of fibroblasts into myofibroblasts
We found that overexpression of TIMP-1 in FS significantly increased α-SMA and TGFβ1 

levels, while inhibition of TIMP-1 in FS significantly decreased α-SMA and TGFβ1 levels, 
by RT-qPCR (Fig. 3A), and by Western blot (Fig. 3B-C). Since both α-SMA and TGFβ1 are 
markers for myofibroblasts that trigger EMT, we then examined the levels of Collagen I, a key 
player in urethral scar formation, and the levels of some EMT-related genes. We found that 
overexpression of TIMP-1 in FS significantly increased Collagen I levels, while inhibition of 
TIMP-1 in FS significantly decreased Collagen I levels, by RT-qPCR (Fig. 3A), and by Western 
blot (Fig. 3D). Moreover, overexpression of TIMP-1 in FS also significantly increased EMT-
related genes ZEB1, ZEB2 and Snail1, while inhibition of TIMP-1 in FS significantly decreased 

Fig. 3. TIMP-1 induced transformation of fibroblasts into myofibroblasts. (A) RT-qPCR for α-SMA, TGFβ1, 
Collagen I, ZEB1, ZEB2 and Snail1 in Timp-1-modified fibroblasts (cell extracts). (B-D) Western blot on cell 
extracts for α-SMA (B), TGFβ1 (C) and Collagen I (D) in TIMP-1-modified fibroblasts. LY294002 (20µmol/l), 
IWP-2 (1µmol/l), and PD98059 (10µmol/l) were added to cell culture to inhibit respective signaling pa-
thways. *p<0.05. NS: non-significant. N=5. Representative images are randomly selected from 5 repeats. 
Statistics: one-way ANOVA with a Bonferoni Correction. 
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these genes (Fig. 3A). Together, these data suggest that TIMP-1 may induce transformation of 
fibroblasts into myofibroblasts to promote processes of EMT.

TIMP-1 increased fibroblast growth
Moreover, we found that overexpression of TIMP-1 in FS significantly increased cell 

growth, while inhibition of TIMP-1 in FS significantly decreased cell growth, in a MTT assay 

Fig. 4. TIMP-1 increased fi-
broblast growth. Cell growth 
was examined in a MTT as-
say, and the values on O.D. 
at 570nm were shown. 
LY294002 (20µmol/l), IWP-
2 (1µmol/l), and PD98059 
(10µmol/l) were added to cell 
culture to inhibit respective 
signaling pathways. *p<0.05. 
NS: non-significant. N=5. Sta-
tistics: one-way ANOVA with 
a Bonferoni Correction. 

Fig. 5. TIMP-1 increased fi-
broblast invasiveness. (A-B) 
Overexpression of TIMP-1 
in FS significantly increased 
cell migration and invasion, 
while inhibition of TIMP-1 
in FS significantly decreased 
cell migration and invasion, 
in either a scratch wound 
healing assay (A), or a trans-
well migration assay (B). 
LY294002 (20µmol/l), IWP-
2 (1µmol/l), and PD98059 
(10µmol/l) were added to cell 
culture to inhibit respective 
signaling pathways. *p<0.05. 
NS: non-significant. N=5. Sta-
tistics: one-way ANOVA with 
a Bonferoni Correction. 
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(Fig. 4, upper panel), suggesting that TIMP-1-induced transformation of fibroblasts may also 
promote fibroblast outgrowth.

TIMP-1 increased fibroblast invasiveness
In either a scratch wound healing assay (Fig. 5A), or a transwell migration assay (Fig. 

5B), we found that overexpression of TIMP-1 in FS significantly increased cell migration and 
invasion, while inhibition of TIMP-1 in FS significantly decreased cell migration and invasion. 
These data suggest that TIMP-1-induced transformation of fibroblasts may also increase 
fibroblast invasiveness, which may eventually contribute to the formation of urethral scar. 

TIMP-1 stimulated myofibroblast differentiation through ERK/MAPK signaling
Since PI3k/Akt, Wnt/β-catenin and ERK/MAPK pathways may be activated by TIMP-

1 to transduce downstream intracellular signaling, we used either 20µmol/l LY294002, a 
specific inhibitor to Akt, to inhibit PI3k/Akt signaling cascades in FS-TIMP-1 cells, or 1µmol/l 
IWP-2, a specific inhibitor to β-catenin, to inhibit Wnt/β-catenin signaling cascades in FS-
TIMP-1 cells, or 10µmol/l PD98059, a specific inhibitor to ERK1/2, to inhibit ERK/MAPK 
signaling cascades in FS-TIMP-1 cells. We found that only application of PD98059 significantly 
abolished the TIMP-1-mediated induction of EMT-related factors (Fig. 3A-D), the increases in 
cell growth (Fig. 4, lower panel), and the increases in cell invasiveness (Fig. 5A-B). These data 
suggest that TIMP-1 stimulates myofibroblast differentiation through ERK/MAPK signaling.

Discussion

Urethral stricture is a disease of reduced lumen in a section of the urethra, often 
concomitant with decreased tissue flexibility due to severe fibrosis and collagen deposition, 
resulting in decreased urine flow or even retention [1-4]. Surgery is not sufficient to provide 
satisfactory treatments for urethral stricture [1-4]. Thus efficient therapeutic interventions, 
e.g. inhibition of fibrosis, or decrease of collagen deposition, or increase of collagenolysis, are 
highly needed [5-8].  

Although TIMP-1 has been recently recognized to play a role in the urethral scar 
formation, it is mainly thought to inhibit collagenase activity [5-8, 23]. The effect of TIMP-1 
on fibroblast transformation, however, has not been studied. 

Here, we addressed to this important question. We found that the TIMP-1 directly 
regulated transformation of fibroblasts into myofibroblasts, evident from the examination on 
α-SMA and TGFβ1 levels. α-SMA is specific marker for myofibroblasts, and is not express by 
normal fibroblast [24-27]. The EMT is a process by which epithelial cells acquire a migratory, 
mesenchymal phenotype, as a result of its repression of E-cadherin [28-30]. Several signaling 
pathways (TGFβ, FGF, EGF, HGF, Wnt/β-catenin and Notch) regulate EMT, among which TGFβ 
receptor signaling triggered by TGFβ1 has been shown to be the most important one and 
extensively studied [31-42]. Loss of E-cadherin is considered to be a fundamental event in 
EMT [28-30]. Transcription factors Snail1, Slug1, ZEB1 and ZEB2 directly bind to E-cadherin 
promoter and repress its transcription [28-30]. Here, TIMP-1-induced TGFβ1 may bind to 
TGFβ receptor to activate downstream SMAD proteins, and then subsequently activate EMT-
related factors ZEB1, ZEB2 and Snail1, as has been previously reported [33, 43, 44]. Of note, 
we detected activation of all these factors by TIMP-1 overexpression, except for Snail2, which 
may be due to a cell/tissue-specific manner. 

The exact causal relationship between fibroblast transformation and EMT was not 
further examined in the current study, since it is a well-established model [39, 45-51]. 
However, further proof of this regulatory axis is needed in follow-up studies. Together, our 
data highly suggest that in the current model, the EMT and fibrosis should be resulted from 
the transformation of fibroblasts into myofibroblasts. A set of loss-of-function and gain-of-
function approaches, with the help of gene-knockout and gene-overexpression, should be 
taken to elucidate the exact signal transduction that regulates the whole process.
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Our study illustrates a novel molecular mechanism that underlies the regulation 
of fibrosis and scar formation for urethral stricture, and suggests that besides affecting 
collagenase activity, TIMP-1 may also promote transformation of fibroblasts into 
myofibroblasts to enhance an EMT-mediated fibrosis and scar formation. These findings may 
provide novel insights upon the therapeutic approaches for patients with urethral stricture. 
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