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In this paper, starting from the definition of the Sumudu transform on a general time scale,
we define the generalized discrete Sumudu transform and present some of its basic properties.
We obtain the discrete Sumudu transform of Taylor monomials, fractional sums, and fractional
differences. We apply this transform to solve some fractional difference initial value problems.

1. Introduction

The fractional calculus, which is as old as the usual calculus, deals with the generalization of
the integration and differentiation of integer order to arbitrary order. It has recently received
a lot of attention because of its interesting applications in various fields of science, such as,
viscoelasticity, diffusion, neurology, control theory, and statistics, see [1–6].

The analogous theory for discrete fractional calculus was initiated by Miller and Ross
[7], where basic approaches, definitions, and properties of the theory of fractional sums and
differences were reported. Recently, a series of papers continuing this research has appeared.
We refer the reader to the papers [8–12] and the references cited therein.

In the early 1990’s, Watugala [13, 14] introduced the Sumudu transform and applied it
to solve ordinary differential equations. The fundamental properties of this transform, which
are thought to be an alternative to the Laplace transform were then established in many
articles [15–19].

The Sumudu transform is defined over the set of functions

A :=
{
f(t) | ∃M,τ1, τ2 > 0,

∣∣f(t)∣∣ < Me|t|/τj , if t ∈ (−1)j × [0,∞)
}

(1.1)
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by

F(u) := S
{
f
}
(u) :=

1
u

∫∞

0
f(t)e−(t/u)dt, u ∈ (−τ1, τ2). (1.2)

Although the Sumudu transform of a function has a deep connection to its Laplace
transform, the main advantage of the Sumudu transform is the fact that it may be used to
solve problems without resorting to a new frequency domain because it preserves scales
and unit properties. By these properties, the Sumudu transform may be used to solve
intricate problems in engineering and applied sciences that can hardly be solved when the
Laplace transform is used. Moreover, some properties of the Sumudu transformmake it more
advantageous than the Laplace transform. Some of these properties are

(i) The Sumudu transform of a Heaviside step function is also a Heaviside step
function in the transformed domain.

(ii) S{tn}(u) = n!un.

(iii) limu→−τ1F(u) = limt→−∞f(t).

(iv) limu→ τ2F(u) = limt→∞f(t).

(v) limt→ 0∓f(t) = limu→ 0∓F(u).

(vi) For any real or complex number c,S{f(ct)}(u) = F(cu).

In particular, since constants are fixed by the Sumudu transform, choosing c = 0, it
gives F(0) = f(0).

In dealing with physical applications, this aspect becomes a major advantage,
especially in instances where keeping track of units, and dimensional factor groups of
constants, is relevant. This means that in problem solving, u and G(u) can be treated as
replicas of t and f (t), respectively [20].

Recently, an application of the Sumudu and Double Sumudu transforms to Caputo-
fractional differential equations is given in [21]. In [22], the authors applied the Sumudu
transform to fractional differential equations.

Starting with a general definition of the Laplace transform on an arbitrary time scale,
the concepts of the h-Laplace and consequently the discrete Laplace transformwere specified
in [23]. The theory of time scales was initiated by Hilger [24]. This theory is a tool that
unifies the theories of continuous and discrete time systems. It is a subject of recent studies in
many different fields in which dynamic process can be described with discrete or continuous
models.

In this paper, starting from the definition of the Sumudu transform on a general time
scale, we define the discrete Sumudu transform and present some of its basic properties.

The paper is organized as follows: in Sections 2 and 3, we introduce some basic
concepts concerning the calculus of time scales and discrete fractional calculus, respectively.
In Section 4, we define the discrete Sumudu transform and present some of its basic
properties. Section 5 is devoted to an application.



Abstract and Applied Analysis 3

2. Preliminaries on Time Scales

A time scale T is an arbitrary nonempty closed subset of the real numbers R. The most well-
known examples are T = R, T = Z, and T = qZ := {qn : n ∈ Z}⋃{0}, where q > 1. The forward
and backward jump operators are defined by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, (2.1)

respectively, where inf ∅ := supT and sup ∅ := inf T. A point t ∈ T is said to be left-dense
if t > infT and ρ(t) = t, right-dense if t < supT and σ(t) = t, left-scattered if ρ(t) < t, and
right-scattered if σ(t) > t. The graininess function μ : T → [0,∞) is defined by μ(t) := σ(t)− t.
For details, see the monographs [25, 26].

The following two concepts are introduced in order to describe classes of functions
that are integrable.

Definition 2.1 (see [25]). A function f : T → R is called regulated if its right-sided limits exist
at all right-dense points in T and its left-sided limits exist at all left-dense points in T.

Definition 2.2 (see [25]). A function f : T → R is called rd-continuous if it is continuous at
right-dense points in T and its left-sided limits exist at left-dense points in T.

The setT
κ is derived from the time scaleT as follows: ifT has a left-scatteredmaximum

m, then T
κ := T − {m}. Otherwise, T

κ := T.

Definition 2.3 (see [25]). A function f : T → R is said to be delta differentiable at a point
t ∈ T

κ if there exists a number fΔ(t) with the property that given any ε > 0, there exists a
neighborhood U of t such that

∣∣∣[f(σ(t)) − f(s)
] − fΔ(t)[σ(t) − s]

∣∣∣ ≤ ε|σ(t) − s| ∀s ∈ U. (2.2)

We will also need the following definition in order to define the exponential function
on an arbitrary time scale.

Definition 2.4 (see [25]). A function p : T → R is called regressive provided 1 + μ(t)p(t)/= 0
for all t ∈ T

κ.

The set R of all regressive and rd-continuous functions forms an Abelian group under
the “circle plus” addition ⊕ defined by

(
p ⊕ q

)
(t) := p(t) + q(t) + μ(t)p(t)q(t) ∀t ∈ T

κ. (2.3)

The additive inverse �p of p ∈ R is defined by

(�p)(t) := − p(t)
1 + μ(t)p(t)

∀t ∈ T
κ. (2.4)
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Theorem 2.5 (see [25]). Let p ∈ R and t0 ∈ T be a fixed point. Then the exponential function
ep(·, t0) is the unique solution of the initial value problem

yΔ = p(t)y, y(t0) = 1. (2.5)

3. An Introduction to Discrete Fractional Calculus

In this section, we introduce some basic definitions and a theorem concerning the discrete
fractional calculus.

Throughout, we consider the discrete set

Na := {a, a + 1, a + 2, . . .}, where a ∈ R is fixed. (3.1)

Definition 3.1 (see [27]). Let f : Na → R and ν > 0 be given. Then the νth-order fractional
sum of f is given by

Δ−ν
a f(t) :=

1
Γ(ν)

t−ν∑
s=a

(t − σ(s))ν−1f(s) for t ∈ Na+ν. (3.2)

Also, we define the trivial sum by

Δ−0
a f(t) := f(t) for t ∈ Na. (3.3)

Note that the fractional sum operator Δ−ν
a maps functions defined on Na to functions defined

on Na+ν.

In the above equation the term (t − σ(s))ν−1 is the generalized falling function defined
by

tν :=
Γ(t + 1)

Γ(t + 1 − ν)
(3.4)

for any t, ν ∈ R for which the right-hand side is well defined. As usual, we use the convention
that division by a pole yields zero.

Definition 3.2 (see [27]). Let f : Na → R and ν ≥ 0 be given, and let N ∈ N be chosen such
that N − 1 < ν ≤ N. Then the νth-order Riemann-Liouville fractional difference of f is given
by

Δν
af(t) := ΔNΔ−(N−ν)

a f(t) for t ∈ Na+N−ν. (3.5)

It is clear that, the fractional difference operator Δν
a maps functions defined on Na to

functions defined on Na+N−ν.
As stated in the following theorem, the composition of fractional operators behaves

well if the inner operator is a fractional difference.
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Theorem 3.3 (see [27]). Let f : Na → R be given and suppose ν, μ > 0 withN − 1 < ν ≤ N. Then

Δν
a+μΔ

−μ
a f(t) = Δν−μ

a f(t) for t ∈ Na+μ+N−ν. (3.6)

A disadvantage of the Riemann-Liouville fractional difference operator is that when
applied to a constant c, it does not yield 0. For example, for 0 < v < 1, we have

Δν
ac = −c(t − a)−ν

Γ(1 − ν)
. (3.7)

In order to overcome this and to make the fractional difference behave like the usual
difference, the Caputo fractional difference was introduced in [12].

Definition 3.4 (see [12]). Let f : Na → R and ν ≥ 0 be given, and let N ∈ N be chosen such
that N − 1 < ν ≤ N. Then the νth-order Caputo fractional difference of f is given by

CΔν
af(t) := Δ−(N−ν)

a ΔNf(t) for t ∈ Na+N−ν. (3.8)

It is clear that the Caputo fractional difference operator CΔν
a maps functions defined

on Na to functions defined on Na+N−ν as well. And it follows from the definition of the Caputo
fractional difference operator that

CΔν
a c = 0. (3.9)

4. The Discrete Sumudu Transform

The following definition is a slight generalization of the one introduced by Jarad et al. [28].

Definition 4.1. The Sumudu transform of a regulated function f : Ta → R is given by

Sa

{
f
}
(u) :=

1
u

∫∞

a

e�(1/u)(σ(t), a)f(t)Δt ∀u ∈ D{
f
}
, (4.1)

where a ∈ R is fixed, Ta is an unbounded time scale with infimum a and D{f} is the set of all
nonzero complex constants u for which 1/u is regressive and the integral converges.

In the special case, when Ta = Na, every function f : Na → R is regulated and its
discrete Sumudu transform can be written as

Sa

{
f
}
(u) =

1
u

∞∑
k=0

( u

u + 1

)k+1
f(k + a) (4.2)

for each u ∈ C \ {−1, 0} for which the series converges. For the convergence of the Sumudu
transform, we need the following definition.
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Definition 4.2 (see [27]). A function f : Na → R is of exponential order r (r > 0) if there exists
a constant A > 0 such that

∣∣f(t)∣∣ ≤ Art for sufficiently large t. (4.3)

The following lemma can be proved similarly as in Lemma 12 in [27].

Lemma 4.3. Suppose f : Na → R is of exponential order r > 0. Then

Sa

{
f
}
(u) exists for all u ∈ C \ {−1, 0} such that

∣∣∣∣
u + 1
u

∣∣∣∣ > r. (4.4)

The following lemma relates the shifted Sumudu transform to the original.

Lemma 4.4. Let m ∈ N0 and f : Na−m → R and g : Na → R are of exponential order r > 0. Then
for all u ∈ C \ {−1, 0} such that |(u + 1)/u| > r,

Sa−m
{
f
}
(u) =

( u

u + 1

)m
Sa

{
f
}
(u) +

1
u

m−1∑
k=0

( u

u + 1

)k+1
f(k + a −m), (4.5)

Sa+m
{
g
}
(u) =

(
u + 1
u

)m

Sa

{
g
}
(u) − 1

u

m−1∑
k=0

(
u + 1
u

)m−1−k
g(k + a). (4.6)

Proof. For all u ∈ C \ {−1, 0} such that |(u + 1)/u| > r, we have

Sa−m
{
f
}
(u) =

1
u

∞∑
k=0

( u

u + 1

)k+1
f(k + a −m)

=
1
u

∞∑
k=m

( u

u + 1

)k+1
f(k + a −m) +

1
u

m−1∑
k=0

( u

u + 1

)k+1
f(k + a −m)

=
1
u

∞∑
k=0

( u

u + 1

)k+m+1
f(k + a) +

1
u

m−1∑
k=0

( u

u + 1

)k+1
f(k + a −m)

=
( u

u + 1

)m
Sa

{
f
}
(u) +

1
u

m−1∑
k=0

( u

u + 1

)k+1
f(k + a −m),
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Sa+m
{
g
}
(u) =

1
u

∞∑
k=0

( u

u + 1

)k+1
g(k + a +m)

=
1
u

∞∑
k=m

( u

u + 1

)k−m+1
g(k + a)

=
1
u

∞∑
k=0

( u

u + 1

)k−m+1
g(k + a) − 1

u

m−1∑
k=0

( u

u + 1

)k−m+1
g(k + a)

=
(
u + 1
u

)m

Sa

{
g
}
(u) − 1

u

m−1∑
k=0

(
u + 1
u

)m−1−k
g(k + a).

(4.7)

Taylor monomials are very useful for applying the Sumudu transform in discrete
fractional calculus.

Definition 4.5 (see [27]). For each μ ∈ R \ (−N), define the μth-Taylor monomial to be

hμ(t, a) :=
(t − a)μ

Γ
(
μ + 1

) for t ∈ Na. (4.8)

Lemma 4.6. Let μ ∈ R \ (−N) and a, b ∈ R such that b − a = μ. Then for all u ∈ C \ {−1, 0} such
that |(u + 1)/u| > 1, one has

Sb

{
hμ(·, a)

}
(u) = (u + 1)μ. (4.9)

Proof. By the general binomial formula

(
x + y

)ν =
∞∑
k=0

(
v
k

)
xkyv−k (4.10)

for ν, x, y ∈ R such that |x| < |y|, where

(
v
k

)
:=

νk

k!
, (4.11)

as in [27], it follows from (4.10) and

(−v
k

)
= (−1)k

(
k + v − 1
v − 1

)
, (4.12)
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where k ∈ N0 that

1(
1 − y

)ν =
((−y) + 1

)−ν =
∞∑
k=0

(
k + v − 1
v − 1

)
yk (4.13)

for ν ∈ R and |y| < 1.
And since b − a = μ, we have for all u ∈ C \ {−1, 0} such that |(u + 1)/u| > 1,

(u + 1)μ =
1

u + 1
1

(1 − (u/(u + 1)))μ+1

=
1

u + 1

∞∑
k=0

(
k + μ
μ

)( u

u + 1

)k

=
1
u

∞∑
k=0

(
k + μ
μ

)( u

u + 1

)k+1

=
1
u

∞∑
k=0

(
k + μ

)μ
Γ
(
μ + 1

)
( u

u + 1

)k+1

=
1
u

∞∑
k=0

hμ(k + b, a)
( u

u + 1

)k+1

= Sb

{
hμ(·, a)

}
(u).

(4.14)

Definition 4.7 (see [27]). Define the convolution of two functions f, g : Na → R by

(
f ∗ g)(t) :=

t∑
r=a

f(r)g(t − r + a) for t ∈ Na. (4.15)

Lemma 4.8. Let f, g : Na → R be of exponential order r > 0. Then for all u ∈ C \ {−1, 0} such that
|(u + 1)/u| > r,

Sa

{
f ∗ g}(u) = (u + 1)Sa

{
f
}
(u)Sa

{
g
}
(u). (4.16)
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Proof. Since

Sa

{
f ∗ g}(u) = 1

u

∞∑
k=0

( u

u + 1

)k+1(
f ∗ g)(k + a)

=
1
u

∞∑
k=0

( u

u + 1

)k+1 k+a∑
r=a

f(r)g((k + a) − r + a)

=
1
u

∞∑
k=0

k∑
r=0

( u

u + 1

)k+1
f(r + a)g(k − r + a),

(4.17)

the substitution τ = k − r yields

Sa

{
f ∗ g}(u) = 1

u

∞∑
τ=0

∞∑
r=0

( u

u + 1

)τ+r+1
f(r + a)g(τ + a)

= (u + 1)

(
1
u

∞∑
r=0

( u

u + 1

)r+1
f(r + a)

)(
1
u

∞∑
τ=0

( u

u + 1

)τ+1
g(τ + a)

)

= (u + 1)Sa

{
f
}
(u)Sa

{
g
}
(u)

(4.18)

for all u ∈ C \ {−1, 0} such that |(u + 1)/u| > r.

Theorem 4.9. Suppose f : Na → R is of exponential order r ≥ 1 and let ν > 0 withN − 1 < ν ≤ N.
Then for all u ∈ C \ {−1, 0} such that |(u + 1)/u| > r,

Sa+ν
{
Δ−ν

a f
}
(u) = (u + 1)νSa

{
f
}
(u), (4.19)

Sa+ν−N
{
Δ−ν

a f
}
(u) =

uN

(u + 1)N−ν Sa

{
f
}
(u). (4.20)

Proof. First note that the shift formula (4.5) implies that for all u ∈ C \ {−1, 0} such that
|(u + 1)/u| > r,

Sa+ν−N
{
Δ−ν

a f
}
(u) =

1
u

∞∑
k=0

( u

u + 1

)k+1
Δ−ν

a f(k + a + ν −N)

=
( u

u + 1

)N
Sa+ν

{
Δ−ν

a f
}
(u) +

1
u

N−1∑
k=0

( u

u + 1

)k+1
Δ−ν

a f(k + a + ν −N)

=
( u

u + 1

)N
Sa+ν

{
Δ−ν

a f
}
(u),

(4.21)
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taking N zeros of Δ−ν
a f into account. Furthermore, by (4.9), (4.15), and (4.16),

Sa+ν
{
Δ−ν

a f
}
(u) =

1
u

∞∑
k=0

( u

u + 1

)k+1
Δ−ν

a f(k + a + ν)

=
1
u

∞∑
k=0

( u

u + 1

)k+1 k+a∑
r=a

(k + a + ν − σ(r))ν−1

Γ(ν)
f(r)

=
1
u

∞∑
k=0

( u

u + 1

)k+1 k+a∑
r=a

f(r)hν−1((k + a) − r + a, a − (ν − 1))

=
1
u

∞∑
k=0

( u

u + 1

)k+1(
f ∗ hν−1(·, a − (ν − 1))

)
(k + a)

= Sa

{
f ∗ hν−1(·, a − (ν − 1))

}
(u)

= (u + 1)Sa

{
f
}
(u)Sa{hν−1(·, a − (ν − 1))}

= (u + 1)(u + 1)ν−1Sa

{
f
}
(u)

= (u + 1)νSa

{
f
}
(u).

(4.22)

Then we obtain

Sa+ν−N
{
Δ−ν

a f
}
(u) =

( u

u + 1

)N
Sa+ν

{
Δ−ν

a f
}
(u)

=
uN

(u + 1)N−ν Sa

{
f
}
(u).

(4.23)

Theorem 4.10. Suppose f : Na → R is of exponential order r ≥ 1 and let ν > 0withN−1 < ν ≤ N.
Then for all u ∈ C \ {−1, 0} such that |(u + 1)/u| > r,

Sa+N−ν
{
Δν

af
}
(u) =

(u + 1)N−ν

uN
Sa

{
f
}
(u) −

N−1∑
k=0

uk−NΔν−N+k
a f(a +N − ν). (4.24)

Proof. Let f, r, ν, andN be as in the statement of the theorem.We already know from Theorem
3.8 in [28] that (4.24) holds when ν = N, that is,

Sa

{
ΔNf

}
(u) =

1
uN

Sa

{
f
}
(u) −

N−1∑
k=0

uk−NΔkf(a). (4.25)
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IfN − 1 < ν < N, then 0 < N − ν < 1 and hence it follows from (3.6), (4.19), and (4.25) that

Sa+N−ν
{
Δν

af
}
(u) = Sa+N−ν

{
ΔNΔ−(N−ν)

a f
}
(u)

=
1
uN

Sa+N−ν
{
Δ−(N−ν)

a f
}
(u) −

N−1∑
k=0

uk−NΔkΔ−(N−ν)
a f(a +N − ν)

=
(u + 1)N−ν

uN
Sa

{
f
}
(u) −

N−1∑
k=0

uk−NΔν−N+k
a f(a +N − ν).

(4.26)

In the following theorem the Sumudu transform of the Caputo fractional difference
operator is presented.

Theorem 4.11. Suppose f : Na → R is of exponential order r ≥ 1 and let ν > 0withN−1 < ν ≤ N.
Then for all u ∈ C \ {−1, 0} such that |(u + 1)/u| > r,

Sa+N−ν
{
CΔν

af
}
(u) =

(u + 1)N−ν

uN

[
Sa

{
f
}
(u) −

N−1∑
k=0

ukΔkf(a)

]
. (4.27)

Proof. Let f, r, ν, and N be as in the statement of the theorem. We already know from (4.25)
that v = N, (4.27) holds. IfN − 1 < ν < N, then 0 < N − ν < 1 and hence it follows from (4.19)
and (4.25) that

Sa+N−ν
{
CΔ

ν
af

}
(u) = Sa+N−ν

{
Δ−(N−ν)

a ΔNf
}
(u)

= (u + 1)N−ν
Sa

{
ΔNf

}
(u)

=
(u + 1)N−ν

uN

[
Sa

{
f
}
(u) −

N−1∑
k=0

ukΔkf(a)

]
.

(4.28)

Lemma 4.12. Let f : Na → R be given. For any p ∈ N0 and ν > 0 withN − 1 < ν ≤ N, one has

CΔν+p
a f(t) = CΔν

aΔ
pf(t) for t ∈ Na+N−v. (4.29)

Proof. Let f, v, N, and p be given as in the statement of the lemma. Then

CΔν+p
a f(t) = Δ−(N+p−ν−p)

a ΔN+pf(t)

= Δ−(N−ν)
a ΔNΔpf(t)

= CΔ
ν
aΔ

pf(t).

(4.30)
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Corollary 4.13. Suppose f : Na → R is of exponential order r ≥ 1, ν > 0 with N − 1 < ν ≤ N and
p ∈ N0. Then for all u ∈ C \ {−1, 0} such that |(u + 1)/u| > r,

Sa+N−ν
{
CΔ

ν+p
a f

}
(u) =

(u + 1)N−ν

uN+p

[
Sa

{
f
}
(u) −

N+p−1∑
k=0

ukΔkf(a)

]
. (4.31)

Proof. The proof follows from (4.25), (4.27), and (4.29).

5. Applications

In this section, we will illustrate the possible use of the discrete Sumudu transform by
applying it to solve some initial value problems. The following initial value problem was
solved in Theorem 23 in [27] by using the Laplace transforms.

Example 5.1. Suppose f : Na → R is of exponential order r ≥ 1 and let ν > 0 withN − 1 < ν ≤
N. The unique solution to the fractional initial value problem

Δν
a+ν−Ny(t) = f(t), t ∈ Na

Δky(a + ν −N) = Ak, k ∈ {0, 1, . . . ,N − 1}, Ak ∈ R

(5.1)

is given by

y(t) =
N−1∑
k=0

αk(t − a)ν+k−N + Δ−ν
a f(t), t ∈ Na+ν−N, (5.2)

where

αk =
Δν−N+k

a+ν−Ny(a)
Γ(ν + k −N + 1)

=
k∑

p=0

k−p∑
j=0

(−1)j
k!

(
k − j

)N−ν
(
k
p

)(
k − p
j

)
Ap (5.3)

for k ∈ {0, 1, . . . ,N − 1}.

Proof. Since f is of exponential order r, then Sa{f}(u) exists for all u ∈ C \ {−1, 0} such that
|(u + 1)/u| > r. So, applying the Sumudu transform to both sides of the fractional difference
equation in (5.1), we have for all u ∈ C \ {−1, 0} such that |(u + 1)/u| > r,

Sa

{
Δν

a+ν−Ny
}
(u) = Sa

{
f
}
(u). (5.4)

Then from (4.24), it follows

(u + 1)N−ν

uN
Sa+ν−N

{
y
}
(u) −

N−1∑
k=0

uk−NΔν−N+k
a+ν−Ny(a) = Sa

{
f
}
(u) (5.5)
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and hence

Sa+ν−N
{
y
}
(u) =

uN

(u + 1)N−ν Sa

{
f
}
(u) +

N−1∑
k=0

uk

(u + 1)N−νΔ
ν−N+k
a+ν−Ny(a). (5.6)

By (4.20), we have

uN

(u + 1)N−ν Sa

{
f
}
(u) = Sa+ν−N

{
Δ−ν

a f
}
(u). (5.7)

Considering the terms in the summation, by using the shifting formula (4.5), we see that for
each k ∈ {0, 1, . . . ,N − 1},

uk

(u + 1)N−ν

=
( u

u + 1

)k
(u + 1)ν+k−N

=
( u

u + 1

)k
Sa+ν+k−N{hν+k−N(·, a)}(u)

= Sa+ν−N{hν+k−N(·, a)}(u) − 1
u

k−1∑
i=0

( u

u + 1

)i+1
hν+k−N(i + a + ν −N,a)

= Sa+ν−N{hν+k−N(·, a)}(u)

(5.8)

since

hν+k−N(i + a + ν −N,a) =
(i + ν −N)ν+k−N

Γ(ν + k −N + 1)

=
Γ(i + ν −N + 1)

Γ(i − k + 1)Γ(ν + k −N + 1)

= 0

(5.9)

for i ∈ {0, . . . k − 1}.
Consequently, we have

Sa+ν−N
{
y
}
(u) = Sa+ν−N

{
Δ−ν

a f
}
(u) +

N−1∑
k=0

Δν−N+k
a+ν−Ny(a)Sa+ν−N{hν+k−N(·, a)}(u)

= Sa+ν−N

{
N−1∑
k=0

Δν−N+k
a+ν−Ny(a)hν+k−N(·, a) + Δ−ν

a f

}
(u).

(5.10)
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Since Sumudu transform is a one-to-one operator (see [28, Theorem 3.6]), we conclude that
for t ∈ Na+ν−N ,

y(t) =
N−1∑
k=0

Δν−N+k
a+ν−Ny(a)hν+k−N(t, a) + Δ−ν

a f(t)

=
N−1∑
k=0

(
Δν−N+k

a+ν−Ny(a)
Γ(ν + k −N + 1)

)
(t − a)ν+k−N + Δ−ν

a f(t),

(5.11)

where

Δν−N+k
a+ν−Ny(a)

Γ(ν + k −N + 1)
=

k∑
p=0

k−p∑
j=0

(−1)j
k!

(
k − j

)N−ν
(
k
p

)(
k − p
j

)
Δky(a + ν −N), (5.12)

(see [27, Theorem 11]).

Example 5.2. Consider the initial value problem (5.1) with the Riemann-Liouville fractional
difference replaced by the Caputo fractional difference.

CΔν
a+ν−Ny(t) = f(t), t ∈ Na,

Δky(a + ν −N) = Ak, k ∈ {0, 1, . . . ,N − 1}, Ak ∈ R.
(5.13)

Applying the Sumudu transform to both sides of the difference equation, we get for
all u ∈ C \ {−1, 0} such that |(u + 1)/u| > r,

Sa

{
CΔν

a+ν−Ny
}
(u) = Sa

{
f
}
(u). (5.14)

Then from (4.27), it follows

(u + 1)N−ν

uN

[
Sa+ν−N

{
y
}
(u) −

N−1∑
k=0

ukAk

]
= Sa

{
f
}
(u). (5.15)

By (4.20), we have

Sa+ν−N
{
y
}
(u) =

N−1∑
k=0

ukAk +
uN

(u + 1)N−ν Sa

{
f
}
(u)

=
N−1∑
k=0

ukAk + Sa+ν−N
{
Δ−ν

a f
}
(u).

(5.16)

Since from [28], we have

S0{tn}(u) = n!un, n ∈ N0, (5.17)
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hence

y(t) =
N−1∑
k=0

Ak
(t − a − ν +N)k

k!
+ Δ−ν

a f(t). (5.18)

Remark 5.3. The initial value problem (5.1) can also be solved by using Proposition 15 in [12].

Example 5.4. Consider the initial value problem

CΔ
ν+1
a+ν−1y(t) −C Δν

a+ν−1y(t) = 0, t ∈ Na,

Δky(a + v −N) = Ak, k ∈ {0.1}, Ak ∈ R,
(5.19)

where 0 < ν ≤ 1. Applying the Sumudu transform to both sides of the equation and using
(4.31) and (4.27), respectively, we get

(u + 1)1−ν

u2

[
Sa+ν−1

{
y
}
(u) −A0 − uA1

] − (u + 1)1−ν

u

[
Sa+ν−1

{
y
}
(u) −A0

]
= 0. (5.20)

Hence we get

Sa+ν−1
{
y
}
(u) = (A0 −A1) +

A1

1 − u
. (5.21)

Since from [28], we have

S0

{
(1 + λ)t

}
(u) =

1
1 − λu

for
∣∣∣∣
(1 + λ)u
u + 1

∣∣∣∣ < 1, (5.22)

then

y(t) = (A0 −A1) +A12t−a−ν+1. (5.23)
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