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Missing commands from the interpolator caused by the dropout effect of network transmission will cause motion error in motion
plants implemented on network-based control systems (NCSs). Dropout data can be properly recovered by applying different
message estimators to improve motion contouring accuracy. This study shows that the dropout rate and the distribution of missing
commands dominate the motion error, and that more centralized missing commands result in a higher maximum contouring
error. The short-window dropout quantity (SDQ) is proposed in this paper to estimate the network quality based on the dropout
rate and its distribution of the missing data. Furthermore, according to the condition of missing data based on the SDQ, the
switching least-square estimator (LSE) is proposed to compensate for missing motion commands. Simulation and experimental
results on the two-axis AC servo motor NCS indicate that motion contouring accuracy is greatly improved by applying the
proposed estimator.

1. Introduction

Recently, network-based control systems (NCSs) have been
widely studied because of their advantages, such as lower
cost, easier troubleshooting, and implementation flexibility
[1, 2]. However, network-introduced time delay is unavoid-
able and the data dropout of NCS becomes significant as
node and data length increase or as the system sampling
time decreases with a limited network bandwidth. Recently,
coping with the network-introduced delay on NCS has been
widely studied using various approaches, such as robust H∞
control [3], passive control [4], and predictive control [5].
These methods handle the stochastic network delay with the
assumption that the delay is either relatively small or similar
to the sampling time in NCS.

In real applications, however, the network-induced time
delay may be significant enough to cause data traffic
congestion and collision; thus, data dropout occurs and
leads to the severe degradation of performance in NCS
[7]. The linear quadratic Gaussian (LQG) control has been
successfully used to solve random packet loss (e.g., TCP-like
protocols) to compensate for the missing data in NCS under

a relatively low dropout rate [8]. Optimal filtering based on
the Hn-norm estimation error has been presented to handle
multiple packet dropouts [9, 10]. The network predictor
control (NPC), which consists of a control prediction
generator (GPC), observer-based output predictor (OP), and
network delay compensator (NDC), has been proposed to
overcome network delay and data dropout rate [11]. A
reliable estimator to restore the missing data in real motion
NCS applications is still being pursued by automation and
industry engineers.

The general NCS architecture in Figure 1 shows that all
control and feedback signals are communicated through the
network for multiaxis motion systems. However, as the num-
ber of motion axes increases, network traffic also increases.
Therefore, in real control applications, the practical motion
NCS architecture with more efficient transmission for multi-
axis system is generally modified, as shown in Figure 2. Only
command messages are transmitted from the master to the
controller. These control and feedback signals are not sent
through the network in multiaxis motion systems. Therefore,
the transmission can meet the hard real-time requirement
within a sampling period to avoid heavy traffic in networks.



2 Journal of Control Science and Engineering

Network

ControllerController

Plant

SensorsActuators

EncDec

Sensors

Time-triggering

Plant

EncDec

Time-triggeringTime-triggering

Figure 1: The general NCS architecture with multiple nodes.
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Figure 2: The modified NCS architecture with multiaxis motion control systems.

Feedback messages may still be transmitted according to
monitoring functions by the event-triggering approach.

However, missing messages in motion NCS become
unavoidable when the network delay is longer than the
sampling period. Under such circumstances, a message
estimator is required to estimate the missing commands and
to compensate for their effect in motion accuracy. Various
message estimators have been proposed to cope with the
dropout effect for motion NCS under different conditions.
The 1-delay message estimator is implemented by estimating
the missing message using previously received data [12]. The

nonlinear NCS has been modeled as a Markovian jump linear
system, and the finite loss history estimator (FLHE) has been
proposed to improve data dropout effects when the dropout
rate is accurately known [13]. However, these methods
require an accurate plant/network model. Recently, model-
free strategies for control packet dropout compensators, such
as the proportional plus derivative (PD) predictor with a
different order of derivatives, have been proposed [14]. The
Taylor estimator has also been proposed to significantly
improve the control performance of motion control NCS
[6, 15]. These methods are preferred as dropout data over



Journal of Control Science and Engineering 3

 
Servo 

motor 

Feedback 

sensor

Servo 

motor

Feedback 

sensor

+

−

CAN bus ···(delay τ)

Controller n

In
te

rp
ol

at
or

r1 (t)

rn(t)

yn(t)

y1 (t)
Controller 1

+

−

Figure 3: The multiaxis motion NCS.

r[k] +

+

+
+

−

−
d[k]

y[k]
C(z)

F(z)

P(z)r[k]

r̂[k]
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the network are evenly distributed. Missing data that occur
in a continuous format tend to lead to a more significant
maximum contouring error. Therefore, motion NCS require
a suitable index to express the data dropout quantity and to
imply its distribution.

This paper proposes the use of short-window dropout
quantities (SDQs) to indicate the network communication
quality for motion NCS based on both the dropout rate and
distribution of the missing data. This paper also proposes
an intelligent message estimator (IME) with a switching
mechanism based on real-time measured SDQ to obtain a
significantly-reduced motion error compared with the 1-
delay and Taylor message estimators in the literature [6, 12–
15].

Data dropout also leads to the problem of asynchroniza-
tion among different axes. Both simulation and experimental
results, with the nonuniform rational B-spline (NURBS)
motion commands [16, 17], have been verified using the pro-
posed message estimator. Results indicate that the proposed
estimator maintains the lowest transmission error and the
least motion contouring error as missing messages become
more severe. The CAN-based two-axis AC servo motor
control system has also been implemented with the proposed
estimator. Although a high dropout rate degrades NCS
performance, the contouring error in the motion control
is also closely related to centralized missing commands.
Therefore, an effective approach to estimate the quantity of
network communication by considering both the dropout

rate and the distribution of missing motion commands is
crucial to obtain a reliable motion NCS.

2. Data Dropout Quantity in Motion NCS

In motion NCS, the control messages for each motion axis
must be transmitted on time through the network protocol
to meet control design specifications, as shown in Figure 3.
Since the network-induced time delay exists in stochastic and
time-varying natures, the transmitted messages may miss
the hard real-time deadline because of the limited network
bandwidth and the missing data thus occurs.

2.1. Modeling of the Data Dropout. Concerning the missing
data in motion NCS, d represents a binary process with
probability P(d[k] = 1) = ε and P(d[k] = 0) = 1 − ε, and
the data dropout occurs when d[k] = 1, where C(z) and P(z)
represent the controller and the plant, respectively, as shown
in Figure 4 [6]. During the network transmission, the general
message estimator F(z) is activated to compensate for the
lost data packets with the estimated motion commands r̂ as
[9]:

r[k] = r[k], if d[k] = 0,

r[k] = r̂[k], if d[k] = 1, ⇐= dropout.
(1)

2.2. The Distribution Effect of Data Dropout. Traditionally,
the data dropout rate ε is recognized as the quality of service
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Figure 5: (a) Distributed-dropout signals and (b) centralized-dropout signals with the same dropout rate 20%.
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Figure 6: NURBS position commands.

(QoS) for most NCSs. However, in motion NCS, central-
ized missing data will cause a more serious motion error
compared with evenly distributed missing data, as shown in
Figure 5. Note that Figures 5(a) and 5(b) show two signals
with the same data dropout rate of 20% applied to the
butterfly profile for the fifth-order NURBS commands, as
shown in Figures 6-7 [6]. By applying the same second-
order Taylor estimator for the missing motion commands,
simulation results show that the transmission error is more
significant when the data dropout is more centralized, as
shown in Figure 7(b). These results indicate that both data
dropout and its distribution should be evaluated together
particularly applied in motion NCS.

2.3. The SDQ Index. The dropout data of different network
infrastructures possess different distributions [18]. It is
mentioned before that the distribution of data dropout in
NCS is a crucial factor to determine motion accuracy as
well as the data dropout. This paper proposes the short-
windows dropout quantities (SDQ) for on-line evaluating
the transmission performance of motion NCS. The SDQ is
activated only when a missing data occurs, and the total

missing data in the past short window is accumulated as in
the following:

SDQ

⎧

⎨

⎩

nonactivated, if d[k] = 0,

activated, if d[k] = 1.
(2)

For example, if the data length of the short window is
determined as 5, six possible receiving/missing states, 0 ∼ 5,
is recorded in a buffer during the network communication to
indicate its micro QoS. The average of the total SDQ can be
recognized and the macro-QoS of the NCS.

2.4. An Illustrative Example of the SDQ. Examples illustrated
with three missing data among eighteen transmitted mes-
sages with different distribution as shown in Figures 8(a)
and 8(b), separately. Even their data dropout rates are the
same as 3/16, their average SDQ are different, and the more
distributed missing data series presents a lower average value
of SDQ as shown in Figure 8(b).

As shown in Figures 5(a) and 5(b) with the same data
dropout rate of 20%, their average values of SDQ are
very different as 0.9 and 2.1, for more distributed and
more centralized dropouts, respectively. Simulation results
indicate that as the 3rd-order Taylor estimator is applied, the
contouring error increases when the averaging SDQ increases
even with the same data dropout rate, as shown in Figures
6-7. Results also indicate that the index of SDQ is more
appropriate to imply the distribution of the dropout data in
motion NCS.

3. The Switching Least-Square Estimator

In real motion NCS, the position commands are generally
in the form of smooth curves. At the curvature varying
significantly along the contour, and missing data with higher
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Figure 7: y-axis racking errors due to (a) distributed and (b) centralized missing data (20% dropout rate).
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Figure 8: Real-time recorded SDQ with the same dropout rate 3/16 (a) distributed dropout and (b) concentrated dropout.

SDQ generally causes a more serious contouring error. To
estimate the missing messages in NCS, the basic 1-delay
estimator simply adopts the last received message as the
current missing message. Moreover, the Taylor estimator was
proposed to estimate the current missing message from past
several received signals [15]. However, if the past received
signal is also missing, the estimated message by the Taylor
estimators thus becomes unreliable.

In this paper, the estimator with a switching mechanism
is proposed based on the online measured SDQ with the
suitable order of the least-square estimator (LSE). However,
as the messages dropout becomes more serious, estimation
based on the previous data is no longer reliable and the 1-
delay estimator will be adopted.

3.1. The Least-Square Estimator. Since the online estimation
processing is time consuming and the time-trigger NCS
commands are simply in a time series, all parameters of
the real-time least-square estimation (LSE) can be obtained
in advance. Thus, an online estimation and compensation
algorithm for the missing messages in motion NCS are
proposed by applying the least-square approach on the past
data within a short window. For a general time sequence

x[1], x[2], . . . , x[M], a polynomial sequence can be suitably
described as

x[k] = c0 + c1k + c2k
2 + · · · + cNk

N . (3)

Thus,

x[1] = c0 + c1 + c2 + · · · + cN ,

x[2] = c0 + c12 + c222 + · · · + cN2N ,

...

x[M] = c0 + c1M + c2M
2 + · · · + cNM

N.

(4)

By rearranging (4) as
⎡
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⎢
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≡ x = A · c. (5)

The normal equation from the least-square approach can be
applied to obtain the coefficient vector c as

c =
(

ATA
)−1

ATx. (6)
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Figure 10: Transmission errors with (a) LSE(5, 3) and (b) LSE(2, 1) with the average SDQ = 0.9.
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Figure 11: Transmission errors with (a) LSE(5, 3) and (b) LSE(2, 1) with the average SDQ = 1.9.
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Figure 13: Simulation results with different estimators.

Thus, the missing value can be estimated based on the past
M signals with the Nth order of the least-square estimator as

x[M + 1] = c0 + c1(M + 1) + c2(M + 1)2 + · · ·

+ cN (M + 1)N

=
[

(M + 1)0 (M + 1)1 · · · (M + 1)N
]

· c

=
[

(M + 1)0 (M + 1)1 · · · (M + 1)N
]

·
(

ATA
)−1

ATx

≡ LSE(M,N) · x,

(7)

and the estimator matrix LSE(M,N) can thus be preobtained
for real-time implementation, where M also indicates the
data number in a window to be counted and N is the order
of polynomial functions with N + 1 coefficients.

3.2. Coefficients of the Least-Square Estimators. To achieve an
online estimation for motion NCS, the order and the number
of data within the window of the least-square estimator
should be determined based on the motion commands. For
example, the NURBS signal can be approximated by a third-
order polynomial equation obtained from the LSE [19].
Practically, the window length can be properly chosen as
large as five to estimate the missing NURBS commands or
other motion contours. In practice, three useful LSE(M,N)
are precalculated for real-time applications based on the
quality of communication of NCS as follows.

3.2.1. LSE(5,3) for Low Dropout Cases. The third-order
LSE(5, 3) can properly estimate the motion trajectory con-
cerning its position, velocity, acceleration, and even the
change of acceleration as the jerk. In this transmission case,
all data within the window length 5 are properly received,
or at most, only one missing data is estimated within
the window. LSE(5, 3) is chosen to estimate a cubic-curve
motion command with the order of 3 by using all five
previous data, which may include at most one estimated
data. The parameters of LSE(5, 3) are determined from (5)
as follows:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1

1 2 4 8

1 3 9 27

1 4 16 64

1 5 25 125

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (8)

and by (6)-(7),

[

1 6 36 216
](

ATA
)−1

AT =
[

−0.8 2.2 −0.8 −2.8 3.2
]

.

(9)

The LSE(5, 3) is thus obtained as

LSE(5, 3) = 3.2z−1 − 2.8z−2 − 0.8z−3 + 2.2z−4 − 0.8z−5.
(10)

3.2.2. LSE(3,2) for Medium Dropout Cases. In this case, the
medium data dropout condition occurs, and the missing data
within the short window length 5 are as large as 2. In other
words, at most only three reliable data are accountable within
the window to correctly estimate the missing data. Therefore,
LSE(3, 2) is chosen to estimate the quadric-curve trajectory
with the order of 2 by using three previous data through
considering both its position, velocity and acceleration from
(7) as

LSE(3, 2) = 3z−1 − 3z−2 + z−3. (11)

3.2.3. LSE(2,1) for Heavy Dropout Cases. In this situation,
only two data within the window are received, and LSE(2, 1)
is chosen to estimate the motion trajectory concerning as
high as its velocity only by applying previous two data as

LSE(2, 1) = 2z−1 − z−2. (12)
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Figure 15: Contouring errors with (a) the Taylor estimator (b) IME (average SDQ = 0.8).
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Figure 16: Contouring errors with (a) the Taylor estimator and (b) IME (average SDQ = 2.6).
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Figure 17: Contouring errors with (a) the Taylor estimator and (b) IME (average SDQ = 3.1).
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3.2.4. The 1-Delay Estimator for Serious Dropout Cases. In
this situation, network communication presents such a heavy
data dropout rate, either only one data is received within the
previous window of length 5, or all five previous adopted
data are obtained through the estimation process. Therefore,
estimation results based on the least-square approach by
adopting all data within the window length 5 is not reliable
anymore, and the 1-delay estimator is determined under
such circumstance to estimate the position only by directly
adopting the previous data as [6, 12]

1-delay estimator = z−1. (13)

In summary, different estimators are applied to different
transmission conditions based on the SDQ, as shown in
Figure 9 as:

SDQ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 or 1,

2,

3,

4 or 5,

LSE(5, 3) is adopted,

LSE(3, 2) is adopted,

LSE(2, 1) is adopted,

1-delay estimator is adopted.

(14)

4. Analysis of the SDQ on Motion NSC

Figure 10 shows the transmission error obtained by applying
the estimators of LSE(5, 3) and LSE(2, 1) to the motion
NCS as the simulation shown in Figure 7. The case of
SDQ = 0.9 implies that one data (close to 0.9 in average) is
missing in average within the window length 5. Simulation
results show that LSE(5, 3) renders a better compensation
effect as compared to LSE(2, 1) which should be applied to
a more serious data dropout case. However, as the SDQ
increases to 1.9, of which implies that there are about two
missing messages among the five transmitted messages, the
transmission error increases and LSE(5, 3) is not suitable
anymore. Figure 11 shows that the compensation results
applying LSE(2, 1) render better performance.

Furthermore, the least-square approach with a different
M applied to a different averaging SDQ shows that applying
LSE(5, 3) to compensate for the low missing data rate
presents the best motion accuracy as the averaging SDQ is
less than one, but it becomes the worst as the averaging SDQ
increases larger than 1.5, as shown in Figure 12. Moreover,
LSE(3, 2) is more suitable for the situation as the averaging
SDQ is between 1 and 2. Note that LSE(2, 1) is most
suitable for the situation as the averaging SDQ is between
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Figure 19: Contouring error (a) Taylor estimator and (b) IME (Ts = 0.5 ms and average SDQ = 1.8).
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Figure 20: First-order differential of the contouring errors as shown in Figure 19.

2 and 3. In addition, the 1-delay estimator possesses the
best compensation effect when the averaging SDQ is larger
than 3. All switching laws according to (14) based on the
SDQ thus agree with both the simulation results and the
theoretical analysis, as shown in Figure 12. Although the 3rd-
Taylor estimator has been proven to render more accurate
results than the 1-delay estimator [6], Figure 13 further
indicates that the proposed intelligent message estimator
(IME) renders much better performance under different
SDQ, especially as the missing data becomes more serious
as shown in Figure 9.

5. Contouring Accuracy of Motion NCS

5.1. Simulation Results. Applications of the present estimator
based on the SDQ have been applied to the two-axis motion
NCS, as shown in Figure 2. The NURBS commands and the

system response with averaging SDQ = 0.8 of the network are
shown in Figure 14. Results show that both the 3rd-Taylor
estimator and the proposed estimator can reduce the effects
of data dropout at a lower averaging SDQ. Figure 15 also
shows that the contouring error obtained by applying the
proposed estimator is significantly reduced to achieve better
contouring accuracy.

Figure 16 shows that the present estimator even renders
a much better contouring accuracy when the averaging
SDQ increases to 2.6. Furthermore, when the value of the
averaging SDQ increases to 3.1, the Taylor estimator will lead
to an unstable motion as shown in Figure 17. Under such
circumstances, the proposed estimator still results in a stable
motion and maintains the contouring accuracy well.

5.2. Experimental Results. The proposed estimator was
applied to two Tamagawa motors with NCS realization, as
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Figure 21: Contouring error with (a) Taylor estimator and (b) IME (Ts = 0.4 ms and average SDQ = 2.7).
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Figure 22: Circular response of (a) the Taylor estimator and (b) IME (Ts = 0.5 ms and average SDQ = 1.8).

shown in Figure 18. The butterfly NURBS profile for both
the x-axis and y-axis position amplitudes is 30 mm under
the feed rate 3,000 mm/min for experiments. Furthermore,
the averaging SDQ is measured as 1.8 and 2.7 for the present
CAN-bus implementation with the baud rate 1 M bit/sec
under different sampling periods as 0.5 ms and 0.4 ms,
respectively. Experimental results indicate that increasing the
sampling rate will result in more serious missing data due to
the saturation of network bandwidth.

Figure 19 also shows the contouring error when the
averaging SDQ is 1.8. The first-order differential results of
the measured contouring error with less oscillation are also
shown in Figure 20. All results indicate that the proposed
estimator renders a more stable and reliable motion than the
Taylor estimator. By observing the contouring error as shown
in Figure 21 with a more serious data dropout (average SDQ
2.7), results also show that the proposed estimator is more

effective in reducing the asynchronization effect than the
Taylor estimator. Similar results provided by the circular
NURBS profile for the motion NCS obtained as shown in
Figures 22 and 23 also indicate applicability of the proposed
estimator to different motion profiles.

6. Conclusions

As the online measured time delay is crucial for the NCS
controller design [20], this paper successfully measures
transmitted signals with different dropout rates and proposes
the SDQ, which is a suitable index for the dropout rate
and concentration of missing commands in motion NCS.
The missing commands can also be estimated by applying
the proper order of LSE. Motion NCS with the proposed
estimator render significant improvements in accuracy.
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Figure 23: Circular response of (a) Taylor estimator and (b) the proposed estimator (Ts = 0.4 ms and average SDQ = 2.7).

In a real motion system, commands usually consider
position, velocity, and acceleration. Thus, N = 3 is a suitable
order for the least square estimator LSE(M,N), and 5
is chosen as the window length M, with more accurate
estimation results if there are no or if there is only one
missing data within the window length. A lower order of
LSE will be determined if the QoS for the network worsens.
The 1-delay estimator can be adopted only for the worst
communication cases, as in (14).

The proposed estimator with a switching mechanism
based on SDQ leads to the lowest contouring error. Results
indicate that with the proposed estimator in motion NCS,
contouring accuracy can be maintained even under severe
missing commands compared with the 1-delay and the
Taylor estimators. Experimental results have also proven the
feasibility and applicability of the proposed approach in
motion NCS.
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