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We examine the efficiency of four machine learning algorithms for the fusion of several biometrics modalities to create a
multimodal biometrics security system. The algorithms examined are Gaussian Mixture Models (GMMs), Artificial Neural
Networks (ANNSs), Fuzzy Expert Systems (FESs), and Support Vector Machines (SVMs). The fusion of biometrics leads to security
systems that exhibit higher recognition rates and lower false alarms compared to unimodal biometric security systems. Supervised
learning was carried out using a number of patterns from a well-known benchmark biometrics database, and the validation/testing
took place with patterns from the same database which were not included in the training dataset. The comparison of the algorithms
reveals that the biometrics fusion system is superior to the original unimodal systems and also other fusion schemes found in the

literature.

1. Introduction

Identity verification has many real-life applications such as
access control and economic or other transactions. Biomet-
rics measure the unique physical or behavioural character-
istics of an individual as a means to recognize or authen-
ticate their identity. Common physical biometrics include
fingerprints, hand or palm geometry, and retina, iris, or
facial characteristics. On the other hand, behavioural char-
acteristics include signature, voice (which also has a physical
component), keystroke pattern, and gait. Although some
technologies have gained more acceptance than others, it is
beyond doubt that the field of access control and biometrics
as a whole shows great potential for use in end user segments,
such as airports, stadiums, defence installations, but also
the industry and corporate workplaces where security and
privacy are required.

Biometrics may be used for identity establishment. A new
measurement that purports to belong to a particular entity is
compared against the data stored in relation to that entity.
If the measurements match, the assertion that the person is
whom they say they are is regarded as being authenticated.
Some building access schemes work in this way, with the

system comparing the new measure against the company’s
employee database. Also authentication of the identity of a
person is frequently used in order to grand access to premises
or data.

Since authentication takes place instantaneously and
usually only once, identity fraud is possible. An attacker can
bypass the biometrics authentication system and continue
undisturbed. A cracked or stolen biometric system presents
a difficult problem. Unlike passwords or smart cards, which
can be changed or reissued, absent serious medical interven-
tion, a fingerprint or iris is forever. Once an attacker has
successfully forged those characteristics, the end user must
be excluded from the system entirely, raising the possibility
of enormous security risks and/or reimplementation costs.
Static physical characteristics can be digitally duplicated, for
example, the face could be copied using a photograph, a
voice-print using a voice recording, and the fingerprint using
various forging methods. In addition static biometrics could
be intolerant of changes in physiology such as daily voice
changes or appearance changes.

Unimodal biometric systems have to contend with a
variety of problems such as noisy data, intraclass varia-
tions, restricted degrees of freedom, non-universality, spoof
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attacks, and unacceptable error rates. Some of these limita-
tions can be addressed by deploying multimodal biometric
systems [1, 2] that integrate the evidence presented by
multiple sources of information. Indeed, the development of
systems that integrate two or more biometrics is emerging
as a trend. Such systems, known as multimodal biometric
systems, are expected to be more reliable due to the
presence of multiple, (fairly) independent pieces of evidence.
These systems are able to meet the stringent performance
requirements imposed by various applications. They address
the problem of nonuniversality, since multiple traits ensure
sufficient population coverage. They also deter spoofing since
it would be difficult for an impostor to spoof multiple bio-
metric traits of a genuine user simultaneously. Furthermore,
they can facilitate a challenge response type of mechanism by
requesting the user to present a random subset of biometric
traits thereby ensuring that a “live” user is indeed present at
the point of data acquisition.

In the present paper we present the development and
evaluation of four machine learning algorithms for the fusion
of the similarity scores of several biometric experts to form a
multimodal biometrics system, aiming to raise significantly
the recognition accuracy and reduce the false acceptance and
false rejection rates. The supervised algorithms are trained
using samples from a well known biometrics database and
then validated using samples from the same database that are
different from the training ones. The aim is to compare the
developed algorithms with existing techniques and also find
the most efficient one out of the four, in order to use it for the
fusion of novel biometrics within project HUMABIO [3].

2. Supervised Fusion Algorithms

Fusion at matching score level is the most common approach
of fusion in multimodal biometric systems [2]. This fact
is mainly due to the easy accessibility and availability of

the matching scores in many biometric modules. The input
for a fusion algorithm at matching score level is the (dis-)
similarity score provided by a biometric module (Figure 1).
There are different approaches of merging scores at the
matching score level. In this approach, output scores of the
individual matching algorithms constitute the components
of a multidimensional vector for example, a 3D vector is
created if scores from a face, gait, and voice matching module
are available. The resulting multi-dimensional vector is then
classified using a classification algorithm such as Support
Vector Machines (SVM), Fuzzy Expert systems (FES), neural
networks, and so forth, to solve the two class classification
problem of classifying the output vector into either “impos-
tor” (unauthorized users) or “genuine” (authorized users, or
clients) class. One advantage of the approach is the fact that
scores may be inhomogeneous such as a mix of similarities
and distances possibly located in different intervals. Thus, no
pre-processing is required for classification fusion.

In supervised learning, the learning algorithm is pro-
vided a training set of patterns (or inputs) with associated
labels (or outputs). Usually, the patterns are in the form of
attribute vectors and once the attribute vectors are available,
machine-learning methods can be applied, ranging from
simple Boolean operators, to Bayesian classification and
more sophisticated methods. The performance of a fusion
algorithm relies on the tuning of the system. This tuning
usually consists in a group of hyper-parameters that can be
set manually (such as type of kernel in SVMs, number of
chromosomes in Genetic Algorithms (GA), etc.) and another
group that is set during the training phase. The training is
used so that the algorithm can estimate (learn) the client and
impostor spaces and is crucial for the performance of the
fusion system.

In this study four state of the art fusion techniques were
utilized, namely Support Vector Machines, Fuzzy Expert
Systems, Gaussian Mixture Models and Artificial Neural
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Networks. Each of these techniques follows a different phi-
losophy for the fusion of the unimodal biometric inputs in
order to produce an overall estimation of whether the person
is a client or an impostor.

2.1. Support Vector Machine. A typical SVM implementation
was developed [4]. A radial basis kernel function was used
to map the input data to a higher dimensional space, in
which they were linearly separable [5]. The radial basis kernel
(RBF) was selected in order to handle probable nonlinearities
between the input vectors and their corresponding class. It
also has less hyperparameters than the polynomial kernel
thus making training easier.

After the selection of the kernel, the process followed
consists of identifying the best pair of C and y, that is, the
pair with the best cross-validation accuracy. Following the
guidelines found in [6], the training set was divided into
equal sized subsets and one subset was the validation dataset
using the classifier that was trained on the remaining subsets.
The process was repeated sequentially until all subsets acted
a validation dataset. The selection of C and y was done via
grid search, that is, trying exponentially growing sequences
of C and y [7]. The penalty parameters for each of the
two classes (“Genuine”, “Impostor”) was done via complete
enumeration trials.

The final trained SVM model was then used with the
optimal C, y pair in order to check the classifier performance
on the test dataset which is comprised of “unknown” patterns
that were not used for the SVM training.

2.2. Fuzzy Expert System. A TSK FES [8] was developed
as described in [9]. The FES’s premise space consisted of
three inputs (NPI = 3). Each premise input was segmented
by three trapezoid membership functions described by the
following equation:

. . Xpi— i d.’4_x)A
el (xp) = max( min( F2=20 1, 2L o))
bi,j - a,‘,j d,',j - C,',j

where the parameters a; ; and d; ; locate the “feet” of the jth”
trapezoid of the “ith” premise input and the parameters b; ;
and ¢; j locate the “shoulders”

This segmentation leads to the creation of 27 three-
dimensional fuzzy rules (Figure 2).

The firing strength of the rule R(j), representing the
degree to which R(j) is excited by a particular premise input
vector X , is determined by

NPI

ui(Xp) = T (xp)- 2)
i=1

The premise inputs were selected via extensive experi-
mentation from the available biometric experts (shown in
Table 1). Each fuzzy rule produces an output which is a linear
function of the unimodal classifiers’ scores x.; shown in
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“low”, “medium”, “high” (score) are used for the partitioning of
three premise inputs, leading to the formation of 27 fuzzy rules.

TasBLE 1: EER of the unimodal experts in the XM2VTS database.

Expert EER (%)
1 (Face) 1.83
2 (Face) 4.13
3 (Face) 1.78
4 (Face) 3.50
5 (Face) 6.50
6 (Voice) 1.09
7 (Voice) 6.50
8 (Voice) 4.50

Table 1 so as to include all of the available information from
the unimodal biometric experts:

- ) NI Ny
yi=F(X) =2 + XM xi+ > H—, (3
i=1 k=1 Yei

where NI is the number of unimodal classifiers.
The FES estimation of the client’s authenticity is a syn-
thesis (weighted average) of the 27 fuzzy rule outputs:

S5 ui(X) - F (Yc)'
Z;\I:R1 Hj (YP>

This estimation is compared to a threshold T and if it is
higher than the FES classifies the pattern as genuine transac-
tion while if it is lower it classifies it as impostor.

The parameters A of the fuzzy rules’ linear output
functions (3), the parameters of the trapezoid membership
functions (1) that define the position of the fuzzy rules in
the premise space (or in other words the segmentation of
the premise inputs via the shape and positioning of the
membership functions), and also the decision threshold T
are optimized by a real coded [9] genetic algorithm [10].

(4)



The GA fitness function was selected so as to minimize
the false acceptance of impostors and maximize correct au-
thentication rate through the evolution of the GA:

correct_out

Fitness function = , (5)
error_out + false_normal + 1

where correct_out is the accumulated distance of the fuzzy
output from the decision threshold in case of correct authen-
tication (genuine or impostor), error_out is accumulated
distance of the fuzzy output from the threshold in case
of incorrect authentication for all training patterns, and
false_normal is the number of falsely accepted impostor indi-
viduals.

In that way the solutions that have minimum false accep-
tance occurrences have higher fitness value. The same stands
for solutions (chromosomes) that produce outputs that have
larger distance from the threshold T in correct authentica-
tions (more robust solutions) and smaller distance from the
threshold in case of erroneous authentications (thus driving
wrong solutions towards the threshold and rectifying them).

2.3. Gaussian Mixture Model. Bayesian classification and
decision making is based on probability theory and the
principle of choosing the most probable or the lowest risk
(expected cost) option. The Gaussian distribution is usually
quite good approximation for a class model shape in a
suitably selected feature space. In a Gaussian distribution
lies an assumption that the class model is truly a model of
one basic class. However, if the actual model is multimodal,
this model cannot capture coherently the underlying dis-
tribution. Gaussian Mixture Model (GMM) is a mixture of
several Gaussian distributions and can therefore represent
different subclasses within a class [11]. The probability
density function is defined as a weighted sum of Gaussians:

c
P(x;0) = z acN (%5 phes 2e),s (6)
c=1

where a is the weight of component ¢, 0 < & < 1 and

>ac=1. (7)

The parameter list 0 = {1, 1, 21,. .., &, fe, 2} defines
a particular Gaussian mixture probability density function.
Estimation of the Gaussian mixture parameters for one class
can be considered as unsupervised learning of the case where
the samples are generated by individual components of the
mixture distribution and without the knowledge of which
sample was generated by which component.

A GMM was developed, which comprised of four mix-
ture components. The weights of the components were esti-
mated after extensive experimentation.

2.4. Artificial Neural Network. The fourth algorithm was a
three-layer feed-forward neural network (NN) [12]. The
layers consist of N input neurons, Y hidden neurons, and one
output neuron where N is equal to the number of unimodal
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biometric experts (from Tablel, N = 8) and Y is set
through experimentation equal to ten. The neurons are fully
interconnected and a bias is applied on each neuron. The
transfer function is selected to be sigmoid so as to address
nonlinearities of the input data set. For the training of the
weights, the typical back propagation method was used.
The optimum number of training iterations and training
parameters was set heuristically. Convergence was achieved
after 500 iterations.

3. Benchmark Database

The developed fusion schemes were tested on the publicly
available XM2VTS face and speech database [13, 14]. The
XM2VTS database contains facial and speech data from
295 subjects, recorded during four sessions taken at one-
month intervals. It includes similarity scores from five face
experts and three speech experts. The protocol consists of
two sets: the development (training) set and the evaluation
(validation) set. The development set, which is used for
training, contains scores from three multimodal recordings
for each of 200 client users and eight transactions from each
of the 25 impostors. The evaluation set, which is used for
testing the system, contains scores from two multimodal
recordings of the (same) 200 client users and eight trans-
actions for each of the 70 (new) impostors. The impostors
in the evaluation set are different from the impostors in the
development. Thus, the development set contains 600 (200 X
3) client transactions and 40000 (25 X 200 x 8) impostor
transactions whereas the evaluation set contains 400 (200 X
2) client transactions and 112000 (70 x 200 X 8) impostor
transactions.

Two metrics are computed: the False Acceptance Rate
(FAR) and the False Rejection Rate (FRR) defined as
number of accepted impostors
number of impostor transactions’

FAR =
. . (8)
number of rejected clients
number of client transactions’

The Half Total Error Rate (HTER) is also reported which
is defined as

FRR =

FAR + FRR

HTER = 9)

The Equal Error Rate (EER) is computed as the point
where FRR = FAR; in practice, FRR and FAR are not contin-
uous functions and a crossover point might not exist. In this
case, the interval [EERIo, EERAi] should be reported. Also,
another useful tool for the evaluation of the performance of a
biometric system is the Rate Operating Characteristic (ROC)
curve, which is produced by plotting FAR versus FRR.

The EERs of the unimodal experts for the XM2VTS
database are shown in Table 1.

Figure 3 shows indicative FAR-FRR diagrams for two
face and voice unimodal biometrics experts of the XM2VTS
database. It can be seen from the threshold T range that
the expert scores that characterize someone as impostor or
genuine differ significantly. However, this does not pose a
problem for the fusion algorithms.
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FiGure 3: FAR-FRR diagrams and EER for (a) two face and (b) two voice biometrics experts of the XM2VTS database.
TaBLE 2: Summary table of verification results of different fusion methods for the XM2VTS database.
Fusion Training set Test set
method FAR (%) FRR (%) HTER (%) FAR (%) FRR (%) HTER (%)
SVM 0 0 0 0.0 0.5 0.25
FES 0 0.005 0.0025 0.15 0.75 0.45
NN 0.0025 0.33 0.17 0.0 1 0.5
GMM 0.0225 0.33 0.18 0.028 1 0.51
OR 12.63 0 6.31 19.46 0.0 9.73
AND 0.22 12.83 6.52 0.0 19.75 9.87




TaBLE 3: Performance comparison of fusion schemes for the
XM2VTS database.

Fusion scheme HTER (%)
Product 3.50
Max 2.35
Min 1.13
Dempster-Shafer 0.76
Sum 0.75
Weighted sum 0.63
SVM 0.52
SumPro 0.31
Presented SVM 0.25

4. Test Results

4.1. Comparative Results. Table 2 summarizes the results of
the investigated machine learning algorithms for multimodal
fusion. More specifically, the classification of the XM2VTS
patterns was performed using the SVM, GMM, FES, and
NN fusion schemes. Furthermore, some simple combination
rules (AND, OR) were also tested. The first conclusion we
can reach from the results illustrated in the table is that
all of the fusion schemes perform better than the best
performing unimodal expert (i.e., expert 6 with EER 1.09%)
and the classification absolute improvement using the SVM
fusion method is 0.84% (SVM HTER = 0.25%, ~77%
relative improvement over unimodal expert 6 classification
error). This corroborates the statement that the effective
combination of information coming from different experts
can improve significantly the performance of a biometric
system. Moreover, this table also confirms the superiority
of the SVM fusion scheme over the other machine learning
techniques. More specifically, the FAR and FRR using the
SVM fusion classifier on the XM2VTS database are 0.0% and
0.5%, respectively. The superior performance of the SVM
fusion classifier over the second best FES, which is 0.2%,
is mainly attributed to the more efficient modelling of the
feature space. Moreover, the SVM fusion expert performs
very satisfactory when the number of the feature vectors
(comprised of the matching scores in this case) is relatively
large, as in the case of the XM2VTS database, where there are
8 unimodal experts.

4.2. Comparison with State-of-the-Art Methods. An exper-
imental study was also conducted to compare the devel-
oped schemes with state-of-the-art fusion methods on the
XM2VTS database. The same unimodal experts and the same
protocol were employed so that any performance gain or
decrease can be attributed only to the fusion algorithm. The
following table illustrates the HTER values of various fusion
schemes, as reported in [15].

The first conclusion from Table 3 is that the reported
results are inferior compared to the results presented in the
previous section. Specifically, the best result, in terms of
HTER, is 0.31%, whereas the best result of the algorithms
presented in this paper is 0.25%. Moreover, it can be seen
that the accuracy achieved in [15] for SVM classification
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is lower than the authentication accuracy produced by our
implementation of the SVM fusion scheme. This could be
attributed partly to the different implementation of the
algorithm. The comparison results validate the superiority of
the developed SVM scheme and indicate its appropriateness
for the application scenarios examined within HUMABIO
(16, 17].

5. Conclusions

Four machine learning algorithms were developed for the
fusion of several biometric modalities in order to detect the
most efficient one for use within the project HUMABIO.
The algorithms were Gaussian Mixture Models, an Artificial
Neural Network, a Fuzzy Expert System, and Support Vector
Machines. The algorithms were trained and tested using a
well-known biometric database which contains samples of
face and speech and similarity scores of five face and three
speech biometric experts. The fusion results were compared
against existing fusion techniques and also against each
other, showing that the fusion schemes presented in this
paper produce better biometric accuracy from conventional
methods. From the four algorithms, the most efficient one
proved to be the support vector machines-based one offer-
ing significant performance enhancement over unimodal
biometrics, over more traditionally combined multimodal
biometrics, but also over the SoA.
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