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Abstract. Today, Cloud computing proposes an attractive alternative to building large-scale distributed computing environments
by which resources are no longer hosted by the scientists’ computational facilities, but leased from specialised data centres only
when and for how long they are needed. This new class of Cloud resources raises new interesting research questions in the fields
of resource management, scheduling, fault tolerance, or quality of service, requiring hundreds to thousands of experiments for
finding valid solutions. To enable such research, a scalable simulation framework is typically required for early prototyping,
extensive testing and validation of results before the real deployment is performed.

The scope of this paper is twofold. In the first part we present GroudSim, a Grid and Cloud simulation toolkit for scientific
computing based on a scalable simulation-independent discrete-event engine. GroudSim provides a comprehensive set of features
for complex simulation scenarios from simple job executions on leased computing resources to file transfers, calculation of
costs and background load on resources. Simulations can be parameterised and are easily extendable by probability distribution
packages for failures which normally occur in complex distributed environments. Experimental results demonstrate the improved
scalability of GroudSim compared to a related process-based simulation approach.

In the second part, we show the use of the GroudSim simulator to analyse the problem of dynamic provisioning of Cloud
resources to scientific workflows that do not benefit from sufficient Grid resources as required by their computational demands.
We propose and study four strategies for provisioning and releasing Cloud resources that take into account the general leasing
model encountered in today’s commercial Cloud environments based on resource bulks, fuzzy descriptions and hourly payment
intervals. We study the impact of our techniques to the overall execution time, overall cost and cost per unit of saved time with
respect to various instance types offered by the Amazon EC2.
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1. Introduction resource uptime for a certain price). In contrast to other
paradigms such as Software as a Service (SaaS) or
Platform as a Service (PaaS), IaaS platforms are espe-

cially attractive to scientific computing providing op-

Cloud computing is becoming one of the main mar-
ket-leading trends in the current IT business, emerg-

ing as a paradigm for “anything computing” embraced
by more and more companies to label their products or
ideas. For the lack of a standard definition explaining
the term Cloud computing, the interpretations are split
in a broad spectrum from leased resources for stor-
age and computation to complete business solutions
for enterprises [30]. The scientific community is highly
interested in the Infrastructure as a Service (laaS) in-
terpretation characterised by leasing of raw computa-
tion, storage, databases, and other resources from spe-
cialised providers under certain Quality of Service and
Service Level Agreement conditions (usually a certain

portunities to embed legacy codes in virtual machines,
which can be easily deployed and executed on raw
Cloud infrastructure resources.

This new class of Cloud resources raises new re-
search questions in the field of resource management
(e.g., when to provision new resources, of what type,
and at what cost) or scheduling (e.g., how to optimally
map applications on existing Cloud resources). Many
of these problems are NP-complete and require hun-
dreds to thousands of simulation experiments for vali-
dating new approximate solutions. To obtain results in
a reasonable timeframe, a scalable simulation frame-
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work is typically required for early testing and val-
idation before the real deployment is performed. In
general, there are two main advantages of using simu-
lation alongside real executions: (1) they allow investi-
gation of a larger number of parameter configurations,
machine sizes, or scenarios that are too difficult or im-
possible to achieve in practice; (2) the simulation time
for testing validating a solution is significantly lower
compared to a real execution. In Clouds, the role of
a simulator becomes even more important, since com-
puting cost models are an integrated part of any Cloud
environment, in contrast to computational Grids where
resources are assumed to be freely shared.

In previews work [25], we studied the possibility
of extending Grid infrastructures with IaaS Cloud re-
sources to improve the execution of large-scale work-
flow applications that do benefit from sufficient Grid
resources as required by their computational demands.
When extending scientific Grids with Clouds, an im-
portant issue is to minimize their leasing cost while
maximizing the contribution to reducing the overall
workflow execution. From this point of view, laaS
Clouds are different than other infrastructures such as
business Grids for several reasons. First, Cloud re-
sources are rented by providers in predefined bulks
(also called instances) and for a fixed duration (usually
one hour), each partial interval consumed being billed
as full. Second, Cloud providers advertise virtual re-
sources in fuzzy terms, which makes global schedul-
ing optimizations extremely difficult or impossible to
make. For example, Amazon Elastic Compute Cloud
(EC2) advertises its resources in EC2 Compute Units
(ECU) representing the speed of a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon-equivalent processor, which are
difficult to map to today’s multicores processor and
may offer a significantly different performance than
expected. In this context, there is a lack of support in
the community for scalable and easy to use simulation
frameworks able to support combined Grid and Cloud
scientific research. Existing simulators such as Grid-
Sim [28] and CloudSim [5] follow a process-based ap-
proach that runs a separate thread for each entity in the
system resulting in poor scalability when the number
of entities in the system becomes large.

The paper is organized in two parts to address these
issues. In the first part, we describe GroudSim, a new
an event-based simulator for scientific applications on
Grid and Cloud environments that requires one simula-
tion thread only (instead of one thread per entity). We
present experimental results that demonstrate the scal-
ability of approach with respect to sequential and par-

allel job submissions and file transfers, as well as the
superiority over the process-based approach for simu-
lating the execution of two real-world workflows. As
a case study, we use in the second part of the paper
our new simulator to investigate the problem of dy-
namically provisioning of additional Cloud resources
to large-scale scientific workflows running in Grid in-
frastructures with respect to four important aspects:
(1) Cloud start representing when is sensible to extend
the Grid infrastructure with Cloud resources, (2) in-
stance size quantifying the amount of Cloud resources
that shall be provisioned; (3) Grid rescheduling in-
dicating when to move computation from Cloud to
the Grid, if new fast resources become available; and
(4) Cloud stop meaning when it is sensible to release
Cloud resources if no longer necessary considering
their hourly payment interval. We analyse the impact
of these four aspects with respect to the overall execu-
tion time, overall cost, as well as cost per unit of saved
time for using Cloud resources.

The paper is organised as follows. Section 2 sum-
maries the related work, followed by an introduction
to the discrete-event simulation technology. Section 3
presents the GroudSim simulator in detail, including a
scalability and a comparative evaluation against other
related simulators. In Section 4, we present a case
of using our simulator for studying the four dynamic
Cloud resource provisioning strategies. Section 5 con-
cludes the paper.

2. Related work

GridSim [28] is a simulation toolkit for resource
modelling and application scheduling for Grid com-
puting. GridSim uses SimJava [19] as the underlying
simulation framework, which is a process-based dis-
crete event simulation package that runs a separate
thread for each entity in the system resulting in poor
performance. Evaluation results show that this toolkit
suffers when simulating more than 2000 Grid sites
concurrently, followed by an “out of memory” error.
CloudSim [5] extends GridSim by modelling and sim-
ulating Cloud computing infrastructures and services
showing the same scalability problems.

SimGrid [6] is a simulation framework for evalu-
ating cluster, Grid, and peer-to-peer algorithms and
heuristics. The approach is comparable to the one used
in GroudSim, but uses C instead of Java as the main de-
velopment language, which makes its integration with
existing Java tools and services such as the ASKALON
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Grid application development and computing environ-
ment [11] more difficult. Currently, we are integrat-
ing GroudSim into ASKALON to allow the user to
easily switch from simulations to real executions from
the same unique graphical user interface. Integration
of C-based SimGrid into ASKALON using the Java
Native Interface technology would break the “compile
once, run everywhere” advantage of Java. Our goal is
to achieve a simulation framework that can be run on
any architecture directly from the browser using Java
Webstart technology, which is not possible using the
C language that needs to be compiled for each archi-
tecture and operating system separately. This and other
integration reasons such as user interfaces for config-
uring the simulation and direct communication within
a Java container to eliminate Web services overheads
lead us to the decision of developing a new Java-based
simulator. Furthermore, since SimGrid does not ad-
dress simulation of Cloud infrastructures, we were un-
able to compare its performance with GroudSim.

There are several Grid systems such as Tycoon [17]
and Spawn [31] designed to operate using market
mechanisms. However, Cloud providers are the first
to make computational and storage resources com-
mercially available on pay-per-use basis at production
level. The work in [12] compares Grid with Cloud re-
sources and shows the potential for their combination,
which the approach presented in this paper, is adapting
to provide a hybrid environment using booth resource
types by adopting their similarities.

There are a number of important projects showing
a growing interest in Cloud computing in the scien-
tific and open source communities. The Nimbus [15]
package provides a scientific Cloud middleware de-
ployed in an informal group of four university Clouds
called Science Cloud. Hadoop [2] is a toolkit for dis-
tributed computing allowing map-reduce applications
to be developed and executed in a complete tool chain
that supports Cloud resources and Grids. A commer-
cial open-source implementation of a Cloud middle-
ware compatible with EC2 is provided by Eucalyp-
tus [23].

Provisioning of Cloud resources for SaaS architec-
tures is addressed in [20], which is a different method
of enabling scientific applications less general and flex-
ible than IaaS (in particular for the deployment of
legacy codes), but has other advantages such as easier
use and possibly less middleware overheads. The de-
veloped methods try to minimise the resource cost for
concurrent SaaS executions, which is a different execu-
tion scenario that cannot be applied on scientific work-
flow executions, as analysed in this paper.

In [10], several extensions to BPEL for using Cloud
resources in cases of peak load situations are proposed.
The approach does not optimise the use of the Cloud
resources, nor is well-suited for parallel scientific ap-
plications, as one of the constrains of the proposed ex-
tensions is that execution servers may handle multi-
ple requests simultaneously. This assumption conflicts
with classical scientific computing scenarios, which
rely on local resource management systems for exclu-
sive access to processing resources.

The scientific work presented in [27] is comparable
to our approach, but focused on fault tolerant schedul-
ing that does not optimise the schedule for Cloud us-
age and cost. The work in [9] is limited to using Cloud
resources for executing an image mosaic workflow,
and considers second billing intervals instead of hourly
billing intervals that are common in today’s commer-
cial Cloud environments, leading to a unrealistic cost
analysis.

3. GroudSim

In this section, we describe the technical details of
GroudSim by referencing to the most important Java
API classes available at [4]. We start by introducing
the main concepts of discrete-event simulation, which
is the main technology underneath our approach.

3.1. Discrete-event simulation

A discrete system [22] is one in which the state
variables change only at discrete points in time called
events, whose a chronological sequence describe the
behaviour of the system. The following terms are im-
portant when working with a discrete-event simula-
tion system: (1) event being an instant occurrence that
changes the state of a system; (2) future event list
(FEL) being a list of future events that is ordered by
their occurrence in time; (3) clock being a variable rep-
resenting the time at which the simulation currently
stands; (4) entity being any object or component in
the system that requires explicit representation in the
model; and (5) system state being a collection of vari-
ables that contain all the information necessary to de-
scribe the system at any time. In our case, the system
variables are the Grid and Cloud resources which get
jobs assigned and, using their computational power,
save the future job finish events in the FEL.

Further, a discrete-event simulation system also
needs a so-called time advance algorithm, which is
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used to advance the simulation clock when there are
no more external requests. An event scheduling algo-
rithm is another very important part of a discrete-event
simulator, responsible for the correct processing order
of events. An event can influence other events that are
stored in the FEL that might need to be removed or al-
tered, leading to a critical dependency in the order of
event processing.

The main advantage of the discrete-event simulation
method is that it makes use of a single thread and is
therefore much more scalable, as we will demonstrate
in Section 3.10.1. In contrast, existing simulators such
as GridSim [28] and CloudSim [5] follow a process-
based approach that runs a separate thread for each en-
tity in the system resulting in poor scalability when the
number of entities in the system becomes large.

3.2. Entities

SimEngine is the main GroudSim class which im-
plements the time advance algorithm, the clock, and
the FEL, and keeps track of the so-called registered en-
tities used for tracing during a simulation. There are
three options when starting a simulation: (1) simulate
as long as there are events in FEL; (2) simulate for a
specified simulation time; and (3) simulate until an ar-
bitrary point in time and shutdown the SimEngine
afterwards.

The Grid and Cloud resources classes share most of
the common functionality implemented in the groud
package, and override the specialised behaviour in the
groud.grid and groud.cloud packages. To al-
low manipulation of the state of entities (e.g.,
CloudSite, GridSite), a level of indirection for
forwarding events directly to the destination entity is
added. GroudEntity is an abstract class which pro-
vides all method stubs for manipulating the state of en-
tities.

Several Cloud instances of the same Instance-
Type can be acquired using one Resource-
Reservation as possible using the Amazon EC2
API to save acquisition time when requesting mul-
tiple instances. Each Cloud instance is an object
of type CloudSite registered properly with the
simulation engine. On release of a CloudSite,
the simulator checks if there are jobs still running
which need to be cancelled before the release of
the ResourceReservation is confirmed. We de-
signed the functionality of the Cloud instances to
match the one of Amazon EC2, which is also used by
academic and commercial Cloud middlewares such as
Eucalyptus [23] and Nimbus [15].

3.3. Jobs

A GroudJob has an identifier, a problem size (in
million of instructions (MI)), a source (needed for
cancelling it), and can be executed on a Grid or
a Cloud site. A GroudJob also has a state which
is changed during the execution of the specific
JobEventTypes: unsubmitted, submitted,
queued, activated, finished, failed and
cancelled. Grid and Cloud jobs that specialise a
GroudJob differ in their execution policy. Grids fol-
low a job queuing policy by putting the jobs into a
waiting queue until a CPU becomes available. For us-
ing a Cloud, resources, also called instances, need first
to be acquired, after which a resource policy shar-
ing upon job arrival is applied (no queuing mecha-
nism employed). For each state in the job state tran-
sition diagram, there exists a corresponding event
type in the groud. event . job package implement-
ing a callback method on the source of the event,
on its destination, or on both. The only classes
that the end-user directly needs to use in his
simulation are JobSubmitEventType for submit-
ting JobCancelEventType for cancelling jobs.

Figure 1 shows the interaction of three possible enti-
ties: a user, a SimEngine, and one GridSite. The
first step has to be initiated by the user, while the rest
are done automatically by GroudSim:

1. The user adds a JobSubmitEventType to the
SimEngine;

2. The submit event occurs and the submitJob
method of the target Grid site is called. The job
is in state submitted;

3. The Grid site creates a JobQueuedEvent-
Type and adds it to the SimEngine;

4. The queued event occurs and the handle-
JobQueued method of both the user and the
Grid site is called. The job is in state queued;

5. The user needs to implement the handle-
JobQueued method. The Grid site adds Job-

@ (2) (4) (6) (7)

SimEngine g
User Crid site
(3)(S)

Fig. 1. Job submission workflow. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-2011-0321.)
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ActivatedEventType and JobFinished-
EventType events to the SimEngine, as it al-
ready knows how much time the job will need to
finish;

6. The activated event occurs and the
handleJobActivated method of both the
user and the Grid site is called. The job is in state
activated. The Grid site resets the consumed
MI of the job, indicating that it is starting to run;

7. The finished event occurs and the handle-
JobFinished method of both the user and the
Grid site is called. The job is in state £inished.
The Grid site releases the CPU occupied by the
job and calculates its costs. The user can now
analyse the costs, the runtime, or submit new
jobs.

3.4. File transfer

Each Groud (i.e., GridSite and CloudSite)
has a NetworkLink representing its connection
to any other Groud. A FileTransfer knows
the size of the file and the bandwidth of the simu-
lated NetworkLink. As two different Grouds may
have different bandwidths, the actual bandwidth is
the minimum of the available bandwidths of both.
The state model is similar to the one of the Groud-
Job, except that the state queued is missing. Sev-
eral event types are handled within the file trans-
fer simulation similar as in the case of Groud-
Jobs. The classes the end-user needs to use are
FiletransferSubmitEventType and File-
transferCancelEventType, and two additional
important event types: NetworkLinkFailureET
and NetworkLinkRecoveryET.

3.5. Cost

We support two cost models in the simulation envi-
ronment. For Grid resources, the computation time is
typically free but might be limited to using different
local queues or charged in service units, similar to the
Tera Grid approach. GroudSim collects the used CPU
time and can disable Grid resources once their use limit
is reached. Cloud instances have to be paid for their
usage, typically on an hourly basis as charged by most
of today’s commercial Cloud providers. GroudSim al-
lows keeping track of the costs resulting from a sim-
ulation and supports custom billing intervals to study
their influence on the overall cost. The cost introduced
by file transfers is calculated per gigabyte of data to

allow rich simulation scenarios and detailed analysis
on Cloud or mixed resource setups. The end-user can
retrieve these costs during runtime to allow steering
of scheduling polices or at the end of the simulation
for later analysis. The cost resulting from additional
storage like Amazon EBS or Azure Blob is currently
not calculated by GroudSim as these costs rely on a
monthly usage of the storage space. An extension of
the simulator to support this additional cost in planed.

3.6. Tracing

Tracing is an essential tool to support the offline
evaluation of simulation results. GroudSim provides
two different configurable tracing types: (1) entity
state tracing for analysing the system state of all en-
tities in the current simulation including active enti-
ties like GridSites and CloudSites, and passive
entities such as users; and (2) event-based tracing is
based on the simulated events and hence more pow-
erful than the static entity-based tracing. Neverthe-
less, there are simulation results which are more in-
tuitive to gather with entity-based tracing such as
the utilisation of the current Groud entities. We de-
signed a tracing architecture similar to the one used
by java.util.logging which includes three im-
portant additional classes: (1) Tracer defines the link
between the simulation engine and the visualisation of
the tracing stream; (2) Handlers are responsible for
the visualisation of the current tracing stream, includ-
ing the writing of information to a console or a tracing
file as, well as the creation of predefined charts; and
(3) Filters are used to remove unnecessary infor-
mation from the tracing stream for a specific handler.

3.7. Probability distributions

As GroudSim is based on a time sharing system
with a lot of different initial timespans and stochas-
tic decisions, distributions are used at multiple points
in a simulation. This affects the runtime and the fail-
ure behaviour of Grid sites and Cloud instances, as
well as the distribution of the initial jobs simulated.
The groud.dist package introduces an adapter
pattern to use different stochastic distributions from
different packages while providing a homogeneous in-
terface. A wide range of different distributions includ-
ing the widely-used exponential and logarithmic, as
well as simpler distributions such as normal or uniform
are included. Our implementation uses the standard
ssj.jar stochastic package [18,29], which gives the
possibility to run deterministic and nondeterministic
simulations by using precise or random initial seeding
values.
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3.8. Failures

As real Grids and Clouds are distributed systems
prone to failures, the simulator provides the possi-
bility to let some of the registered resources fail for
certain time intervals. Furthermore, the problem size
and the occurrence probability can be configured for
each failure, thus tuning the simulation for differ-
ent degraded levels of service. The simulator pro-
vides two different types of failures implemented in
the groud. failure package: job and file transfer-
related. Each GroudEntity defines its own failure
behaviour. The standard behaviour is configurable via
the GroudSimEntityProp and follows a stochas-
tic distribution for each failure property. As already
mentioned, these properties consist of the size of the
failure, the duration of the failure and the mean time
to next failure for both jobs and file transfers. For
activating the failure behaviour for all registered en-
tities, one has to introduce and register the Groud-
FailureGenerator in the simulation engine.
From an abstract point of view, this failure generator is
another passive simulation entity registered. The fail-
ure generator iterates over all registered entities before
the simulation starts and adds one reactivation event to
the FEL for each entity. Once the simulation reaches
such a reactivation event, the failure generator gets ac-
tivated and injects a failure with the defined size at the
target entity. At the same time, events for recovering
the affected entity and for reactivating the failure gen-
erator are added to the FEL. Using this “circle” of sim-
ulated events, each failure behaviour can be simulated
for Grid, Cloud, as well as for network resources.

Currently, we are working towards integration of the
Failure Trace Archive [16] within our failure generator
by providing an interface to the FTA a standard format
for failure traces and injecting failures into the system
according to the availability traces of the different dis-
tributed systems.

3.9. Background load

GroudSim offers functionality to introduce back-
ground load into the current simulation by building
an interface to the file format of the Grid Workload
Archive [13]. The BackgroundLoader class lo-
cated in the groud.bg package contains the main
functionality of background loading able to introduce
new GroudEvents into the SimEngine and to han-
dle the generated callbacks for each GroudJob exe-
cuted. For each GWA entry that is properly parsed, the
BackgroundLoader introduces a new GroudJob
into the current simulation.

3.10. Evaluation

The purpose of our evaluation was twofold:

(1) to compare the performance of GroudSim [28]
with GridSim for simulating real workflows;

(2) to evaluate the scalability of the simulator for a
large number of parallel and sequential job sub-
missions and file transfers.

The type of Cloud resources is not relevant to these ex-
periments, as we are only interested in how fast a cer-
tain number of jobs on a certain amount of resources
can be simulated, independent of their real execution
time. We run the GroudSim evaluation experiments
on an Intel Core Duo E6750 (2.67 GHz) with 2048
megabytes DDR2-RAM using the Java™ SE Runtime
Environment (build 1.6.0_16-b01). Each experi-
mental result presented represents the average of ten
separate runs.

3.10.1. GridSim comparison

We start our evaluation by comparing GroudSim
with the GridSim [28] simulator. We implemented a
simple workflow execution environment capable of
working with both GridSim and GroudSim as back-
end and used two real-world workflow applications in
our evaluation: WIEN2k and MeteoAG. The size of the
simulated workflows can be changed using a parame-
ter x called parallelization size, which corresponds to
the problem size of the input data and the workflows
are executed on a Grid configuration comparable with
the Austrian Grid. We generated the performance mod-
els for these applications from real trace data logged in
the Austrian Grid environment over the course of the
last few years.

WIEN2k [3] is a material science workflow for per-
forming electronic structure calculations of solids us-
ing density functional theory based on the full-po-
tential (linearised) augmented plane-wave ((L)APW)
and local orbital (Io) method (see Fig. 2(a)). The
WIEN2k workflow contains two parallel sections of
size z, with sequential synchronisation activities in be-
tween. The total number of activities in a WIEN2k
workflow is: Nyjenor = 2 -« + 3.

MeteoAG [7] is a workflow designed for meteoro-
logical simulations based on the RAMS numerical at-
mospheric model (see Fig. 2(b)). The simulations pro-
duce spatial and temporal fields of heavy precipita-
tion cases over the western part of Austria to resolve
most alpine watersheds and thunderstorms. The work-
flow structure, in which a large set of simulation cases
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x (parallelization size) is modelled as a parallel loop,
where for each simulation, another nested parallel loop
is executed with different parameter values. The to-
tal number of activities in a MeteoAG workflow is:
Nmeteoag =69 1+ 2.

Figure 3 shows that for growing parallelization
sizes, the GridSim simulation time increases signifi-
cantly faster than the GroudSim for both workflows.
The reason for this advantage is in the event-based na-
ture of GroudSim, in which the number of simulated
resources (Grid sites, Cloud instances) and tasks has

very little impact on the simulation time, as demon-
strated in the following next two sections.

3.10.2. Job submission

Figure 4(a) shows the results of the parallel submis-
sion of multiple jobs to Grid sites with 32 CPUs each
and a computing power of 1000 MI per second (MIPS)
for each CPU. We ran the tests on 8 to 32,768 Grid sites
and submitted between 16,384 and 1,048,576 jobs.
Submitting four times as many jobs to a given num-
ber of Grid sites requires four times as long simulation
time to complete, slightly longer due to the Java Vir-
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sion. (d) Sequential Cloud job submission. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-0321.)

tual Machine (JVM) garbage collector. The compari-
son between the clusters shows that the simulation also
scales with the number of registered Grid sites, the ex-
ecution times being almost independent of the number
of entities except for cases when the available memory
is low. Different amounts of computing power per CPU
did not affect the runtime at all, therefore the results
of these experiments are not presented. The different
number of CPUs per Grid site means the creation of ad-
ditional objects, however, the overhead caused by this
parameter is negligible.

Figure 4(b) illustrates the results for the sequential
submission of jobs using the same setup as in the pre-
vious experiment. This scenario implies that each Grid
site executes jobs in sequence, but the jobs are submit-
ted only when the resources are available. The results
are similar to the previous experiment results, the only
difference being in simulation time which is slightly
shorter due to the smaller amount of events in the FEL
and objects in the Java Virtual Machine, resulting in a
better overall performance.

Figure 4(c) shows the results for the Cloud parallel
job submission for which the performance can be low

when the number of acquired instances is small. The
reason lies in the nature of event-based simulation and
the resource sharing policy of Cloud instances. When-
ever a new job is submitted to a CPU of a Cloud in-
stance that has a number of jobs already running, the
finish time of all of these jobs needs to be recalculated
since they are potentially influenced by the newly sub-
mitted job. In terms of implementation, this implies re-
moving all future events from the FEL corresponding
to each influenced job (i.e., the finish events), and re-
calculating and recreating the new finish events. There-
fore, the worst case scenario has an exponential run-
time which is an unrealistic use-case anyway, as no
user would run multiple programs on a single core si-
multaneously.

Figure 4(d) presents the scenario where the jobs
were submitted sequentially, showing that the simula-
tion scales linearly with the number of jobs. Moreover,
the number of acquired Cloud instances does not have
a significant impact on the simulation time, which gets
slightly worse the more Cloud instances are acquired
due to the huge amount of objects that need to be man-
aged by the JVM.
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Fig. 5. File transfer experimental results. (a) Parallel Grid file transfers. (b) Sequential Grid file transfers. (Colors are visible in the online version

of the article; http://dx.doi.org/10.3233/SPR-2011-0321.)

3.10.3. File transfers

Similar to the parallel job submission on Cloud in-
stances, the parallel file transfer results depicted in
Fig. 5(a) show an exponential simulation time for the
worst case scenario. The reason is similar, file transfers
being run on shared network links sharing their band-
width and influencing each others’ events. The finish
events of other file transfers on the same network link
need therefore to be removed, recalculated, and rein-
serted into the FEL. However, compared to the cor-
responding experiments for jobs on Cloud instances
(see Fig. 4(c)), the performance is worse because one
file transfer involves two network links for being trans-
ferred compared to one Cloud resource for computa-
tional jobs.

Figure 5(b) illustrates a linear scaling of the number
of sequential file transfers and the fact that an increas-
ing number of entities does not significantly influence
the results.

4. Optimised Cloud provisioning

As a case study, we illustrate in this section the
use of GroudSim to investigate different resource pro-
visioning strategies for scientific workflows that can
benefit from additional Cloud resources if there are
not sufficient Grid resources to support their computa-
tional requirements.

We consider scientific workflows as a set of legacy
codes called activities interconnected in a directed
graph through control flow and data flow dependen-
cies. To support this scenario, we propose several pro-
visioning strategies for Cloud resources to scientific
workflows with awareness of the minimum allocation
granularity (typically one hour per set of cores). For

this purpose, we define a new metric C'p called cost
per unit of saved time ($/T) as ratio between the total
cost Costciouq Of leasing the Cloud resources and the
time saved by using them:

Costcioud

Cr = .
T6ria — TGrid+Cloud

The terms Tiq and TGyig+cloua can be calculated or
approximated in three different ways: real execution,
simulation or using prediction models. The goal of the
dynamic provisioning is to maximise this metric by in-
creasing the amount of saved time and reducing cost of
Cloud resources used.

We assume a just-in-time workflow scheduling ap-
proach (as opposed to complete full-ahead schedul-
ing), in which each activity ready for execution is sub-
mitted on the fastest available resource (core) expected
to deliver the earliest completion time. We opted for a
just-in-time approach for several reasons: (1) the lack
of accurate performance models on virtual Cloud re-
sources with approximate characteristics may cancel
any global optimisation attempts; (2) a small number
of Cloud resources (i.e., maximum of eight cores on
the two largest Cloud providers [1,26]) share in gen-
eral one file system compared to Grid environments
hosting large clusters with hundreds of cores and one
network file system, which increases the amount of
file transfer and introduces additional communication
overhead; (3) it gives opportunities at every schedul-
ing step to decide on whether to use additional or less
Cloud resources to improve the execution.

To address this third goal, we propose in this pa-
per four dynamic resource provisioning techniques de-
scribed in the following sections: Cloud start, instance
size, Grid rescheduling and Cloud stop.
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4.1. Cloud start

In our model, an important task of the scheduler
is to dynamically complement the Grid infrastructure
with additional Cloud resources during runtime if this
presents potential for accelerating the workflow ex-
ecution. In our case, this happens when the amount
of Grid resources are insufficient for executing large
workflow parallel regions that need to be serialised (see
Fig. 6(a)). In doing so, the scheduler has to take two
important decisions such that the cost per unit of saved
time is maximised: (1) which instance type to lease,
and (2) the number of such instances.

The scheduler decides to use Cloud resources if
they are faster than the slowest Grid processors, in-
cluding the estimated resource acquisition and data
transfer times, since an improvement in the execu-
tion time is expected (see Algorithm 1, line 2). Slow
Cloud instances like m1.small offered by Amazon
EC2 might introduce a severe load imbalance that
slows down the workflow execution instead of im-
proving it, as shown in Fig. 6(b). The scheduler ap-
plies the minimum completion time (MCT) algorithm
to estimate the execution time of the workflow activi-
ties that are ready for execution, for example by using
analytical prediction models based on historical in-
formation [21]. The expected resource acquisition re-
searched in [14] and the file transfer times are consid-
ered as additional overheads in the MCT estimation.

SErializaticy

| 1" |~

Grid core 1 Job 1 Job 4

Grid core 2 Job 2 | Job 5 |

Grid core 3 Job 3 | Job 6 |

\ |
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A resource request is only considered if the estimated
Cloud-enabled execution time is lower than in the case
of using Grid resources only. Otherwise, the sched-
uler waits for new resources to become available which
happens once other jobs finish or resource availability
changes (line 4).

4.2. Instance size

After deciding to acquire Cloud resources, the
scheduler must start a number of instances sufficient to
accommodate all activities ready for execution. How-
ever, Cloud providers often lease resources in bulks
(e.g., certain amount of cores for a certain time inter-
val) and therefore, an important question is whether
to round up or down the number of leased instances
in case the bulk size is not a factor of the total num-
ber of required cores (see Algorithm 2). We designed
two strategies to address this issue: (1) generous uses
the more expensive rounding up solution which gives
a higher speedup potential since more resources than
necessary are allocated; and (2) economical uses a
smaller amount of resources which reduces costs but
introduces overheads such as serial execution of paral-
lel tasks on certain resources (see Fig. 6(a), often fol-
lowed by load imbalance as shown in Fig. 6(b)), since
less resources than necessary are allocated. We will
analyse the tradeoff between these two strategies in
Section 4.5.

Imbalance
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Grid core 1 Job 1
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Fig. 6. Serialisation and load imbalance overheads. (a) Serialisation of independent activities on fast resources. (b) Slowdown due to load
imbalanced on slow resources. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-0321.)

Algorithm 1 Cloud start

1: no more free Grid resources are available
if MCT(ready activities, Grid) > MCT(ready activities, Grid, Cloud)

2
3: then startClouds
4

else wait for jobs to finish or resources to become available
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4.3. Grid rescheduling

Additionally, there may appear special cases during
workflow execution when additional shared Grid re-
sources become available, for example because of ex-
ternal jobs completing their execution or simply due to
their availability schedule. In these cases, there may be
faster or economically more convenient if jobs running
on Clouds are stopped and resubmitted to the newly
available Grid resources.

Algorithm 3 illustrates the technical implementa-
tion of this technique, where the boolean variable
preferGrid is set by the user to indicate his inten-
tions to save costs (which might increase the execution
time). In order to be effective, this method requires a
prediction [21] and logging mechanism to estimate the
percentage of work completed by the activity running
on the Cloud, and whether a reschedule on the Grid is
profitable. If preferGrid is set to false, the follow-
ing test is performed for each job running on Cloud
resources: if the speed of the new Grid resource (in
ECU) is larger than the ratio between the Cloud speed
and the percentage of the activity that still needs to
be executed (line 3), the activity is resubmitted to the
new Grid site where it is expected to complete faster
than the instance already running on the Cloud (line 4).
Once the resubmitted job is running, the execution on
the Cloud is terminated (line 5). Whether the unused
Cloud resource is released or not depends on the next
billing period, as described in Section 4.4.

4.4. Cloud stop

Once Cloud resources are in use, the next step in
the dynamic provisioning is to stop them as early as

possible to save money, and to reschedule activities to
free Grid resources, if costs can be reduced and the
execution time kept unchanged.

Even though the Cloud instances should be stopped
as soon as possible if they are not needed by the next
activities to be executed in the workflow, there is no
benefit of releasing a resource just seconds after its
new (hourly) accounting period has started. Instead
of being stopped instantly after they become unused,
these resources are kept running until the current pay-
ment interval gets close to an end, since there may
be activities later in the workflow (not yet ready to
be started because of dependencies with not yet com-
pleted activities) that may use them. Such reuse of
Cloud resources may avoid additional deployment and
startup overheads as illustrated in Fig. 7 (i.e., “Re-
quested”, “Started” and “Running” periods). The “Ac-
cessible” period is extended until the resource uptime

Next billing
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\ // /
c
° ©
& 3 a0 o0 g 9
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© o = E =
g 2 5n e gl =
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Fig. 7. Cloud resource instantiation and release states (startup and
shutdown shown on a nonproportional scale). (Colors are visi-
ble in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0321.)

Algorithm 2 Instance size

scheduler requests n Cloud cores

if Cloud provides multiple cores per instance then

if getLess then n = Math.floor(n)
else n = Math.ceil (n)

1
2
3: n = n / cores per instance
4
5
6: start n Cloud instances

Algorithm 3 Grid rescheduling

1: new Grid cores become available
2: for all jobs running on Cloud:
3: if preferGrid or (GridECUs >
4 then resubmit Cloud job to Grid
5 cancel job on Cloud

(CloudECUs / percentage of job execution left))
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Algorithm 4 Cloud stop

scheduler starts Cloud resources

scheduler starts timer with (billingPeriod * 0.95)

if Cloud resources is not idle then

next timer trigger with (billingPeriod)

1
2
3: on timer:
4
5
6

else release Cloud resources

approaches the next payment interval. Although this
additional idle time might reduce the overall Cloud
utilisation, it does not increase the cost per unit of
saved time. In the ideal case when resources are reused,
this ratio may even increase if the saved time leads
to less hours of paid Cloud resources. Still, when re-
sources are idle and approach the next payment inter-
val, they need to be stopped in time, as also the shut-
down and resource release times are billed.

Algorithm 4 shows the pseudo-code that implements
this technique. For each Cloud resource request, which
may start one or many instances, a timer is started with
the period 95% of the payment interval (line 2) to ac-
count for the instance shutdown and release times (see
Fig. 7). Once the timer expires, the algorithm checks
whether there are activities running on the Cloud asso-
ciated with this timer and, if so, extends the new timer
with a new full billing period. Otherwise it releases the
Cloud resources and stops the timer.

4.5. Evaluation

For evaluation, we implemented the provisioning
methods on top of the GroudSim simulator. As far as
the hardware infrastructure is concerned, we chose to
simulate three sites available in the Austrian Grid and
three instance types offered by Amazon EC2 (see Ta-
ble 1). We used ECU to characterise the speed of each
resource, which we computed by executing the HPL
benchmark and normalising the result against the HPL
performance of a 1.2 GHz 2007 Opteron processor
(see [24]).

Alongside WIEN2k and MeteoAG, we decided to
use for the validation a third application called Invmod
(see Section 4.5.2) due to the nature of the evaluation
results obtained that required an additional applica-
tion with an intermediate number of activities between
WIEN2k and MeteoAG. Each workflow is charac-
terised by a parameter x defining the “parallelization
size”, which is proportional to the total number N of
activities in the workflow. We used this parameter to
simulate workflows of different sizes (from small to

Table 1
The Austrian Grid and Cloud resource testbed

Grid site/ Location Cores Cores per Speed Cost
Instance instance  (ECU) ($/hour)
karwendel Innsbruck 80 - 2.5 -
altix1.uibk Innsbruck 16 - 1.5 -
altix1.jku Linz 64 - 2.0 -
ml.small  Amazon EC2 80 1 1.0 0.095
ml.large Amazon EC2 80 2 2.0 0.38
cl.xlarge ~ Amazon EC2 80 8 2.5 0.76

very large) using historical trace information originat-
ing from real executions in the Austrian Grid envi-
ronment. We first simulated the workflows in a pure
Grid environment and then added on-demand Cloud
resources to investigate the effectiveness of our dy-
namic Cloud provisioning strategy with respect to ex-
ecution time and cost per unit of saved time.

4.5.1. WIEN2k

We first analyse the benefits of the dynamic provi-
sioning of Cloud resources for the WIEN2k applica-
tion introduced in Section 3.10.1, and then the impact
of provisioning different types of Cloud instances to
the time and cost of execution for different workflow
parallelization sizes.

First, using additional Cloud resources can lead to
a slowdown if their speed is not taken into consider-
ation, as explained in Section 4.1 (see Algorithm 1).
Figure 8(a) shows two scheduling options for paral-
lelization size 160 for which all Grid resources are ex-
hausted: serialise parallel activities on the fastest Grid
site karwendel, or request slow m1.small Cloud
resources. We observed in this experiment that request-
ing slow m1.small Cloud resources with no regard
to their speed introduces a slowdown through load im-
balance, which is much larger than the serialisation
overhead present when utilising the Grid environment
only. This slowdown is eliminated starting with the
parallelization size 240 when the Cloud start-aware
scheduler is constrained to utilise Cloud resources be-
cause of the large number of workflow activities, which
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Fig. 8. WIEN2k simulation results for different dynamic Cloud provisioning methods. (a) Cloud start provisioning. (b) Cloud stop provisioning.
(Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-0321.)

Table 2

Economic versus generous instance type provisioning

Parallel. Generous Economic
size [z] Cr ($/min) Cr ($/min)
161-167 0.0545 0
168 0.0545 0.0545
169-175 0.109 0
176 0.109 0.109
177-183 0.162 0
184 0.162 0.162
185-191 0.216 0
192 0.216 0.216
193-199 0.27 00
200 0.27 0.27
233-239 0.54 0
240 0.54 0.54

introduces Grid serialisation overheads comparable to
the Cloud load imbalance.

Second, Table 2 compares the economical and gen-
erous instance size provisioning methods, introduced
in Section 4.2 (see Algorithm 2). The economical
method requests new ml.large and cl.xlarge
resources only when enough activities are available to
entirely fill them, leading to the same execution times
as if no Cloud resources are used (because of load im-
balance) and, therefore, to an infinite cost per unit of
saved time. The generous provisioning shows a more
stable step function behaviour matched by the eco-
nomic provisioning only in the case when the paral-
lelization size is a multiple of the instance size (i.e.,
eight in case of c1.xlarge instances).

Finally, Fig. 8(b) shows the influence of the Cloud
stop optimisation described in Section 4.4 for the three

Cloud instance types (see Algorithm 4). In most cases,
this technique saves costs compared to an immedi-
ate resource release scenario. The best improvement
is achieved for a parallelization size of 545 and the
ml.small resources for which the cost is reduced by
45% from $167.2 to $92.15 with no change in execu-
tion time.

In the remainder of this section, we analyse the time
and cost benefits of dynamic Cloud provisioning to 900
different WIEN2k parallelization sizes (see Fig. 9(a)).
In the top diagram, we can observe that the time fol-
lows a step function, because the number of cores used
in each run is equal to the parallelization size = of the
two parallel sections of the workflow. The first steps
occur at parallelization sizes 80 and 144, when the
three Grid sites are used in the execution environment.
The second step is clearly larger than the first because
the altixl.uibk site is significantly slower than
the first two Grid sites. At parallelization size 160, the
Grid environment receives additional m1.large or
cl.xlarge Cloud resources, while the m1.small
instances are added only starting with the 240 paral-
lelization size to avoid load imbalance. The cost curve
follows a mixed stepped and linear cost, as shown in
the bottom chart. The c¢1 . x1arge instances show the
best overall performance for this workflow type and
also the lowest overall costs, even when compared to
the cheaper m1 . small resources that have the worst
performance.

Figure 9(b) shows the costs for saving one minute
of execution time when using Clouds. For most paral-
lelization sizes, the m1 . large instance shows simi-
lar performance to c1.xlarge, but overall the faster
and more expensive c1.xlarge resource is the best
choice.
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Fig. 9. Simulation results for different WIEN2k parallelization sizes and instance types. (a) Execution times and costs. (b) Cost per unit of saved
execution time. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-0321.)
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Fig. 10. The Invimod workflow with * = rand_runs parallelization size.

4.5.2. Invmod

Invmod [8] is a hydrological application that uses
the Levenberg—Marquardt algorithm to minimise the
least squares of the differences between the measured
and the simulated runoff for a determined time period.
The Invmod workflow displayed in Fig. 10 consists
of two levels of parallelism: (1) the outermost paral-
lel loop consists of a number of random runs x (paral-
lelization size) that perform a local search optimisation

(in a sequential loop) starting from a random initial so-
lution; (2) alternative local changes are examined for
each calibrated parameter in parallel in the inner nested
parallel loop. The total number of jobs in an Invmod
workflow is: Nimoa = 12 -2 + 1.

Invmod is a workflow with a higher level of par-
allelism than WIEN2k, whose execution time for 300
different parallelization sizes (between 13 and 3601
activities) is shown in Fig. 11(a) (top). For low par-
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Fig. 11. Simulation results for different Invmod parallelization sizes and instance types. (a) Execution times and costs. (b) Cost per unit of saved
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allelization sizes between 1 and 50, the execution
times and costs show the same characteristics as the
WIEN2k. Once the workflow is large enough to oc-
cupy the full Grid, the scheduler decides to use Cloud
resources starting with x = 99 for m1.small and
x = 41 for the faster instance types. The bottom
chart shows that the costs for using m1.small re-
sources are the lowest for smaller workflows, due to
the fact that only a small number of such instances
are used because of their low performance compared
to the fast Grid resources. Starting with z = 160,
the Grid resources are overwhelmed by the large num-
ber of activities and more m1 . small instances need
to be acquired, which increases the costs over those
required by the more cost effective m1.large and
cl.xlarge instances.

Figure 11(b) shows that the costs per unit of saved
time for cl.xlarge instances are slightly better
than for m1.large, and significantly better than for
ml.small, where the gaps in the chart are repre-
senting negative values or no saved time, which rep-
resent cases in which Cloud resources did not im-
prove the execution. This metric has a high variance
for small workflows with parallelization size below
50 in case of m1 . large and c1.xlarge instances,
and 250 in case of m1 . small instances. Large work-
flows are best supported by fast and more expensive
Cloud resources, which provide a stable cost per unit
of saved time of $0.27 for m1.large and $0.24
for c1.xlarge instances, compared to $0.76 for
ml.small instances.

4.5.3. MeteoAG
MeteoAG introduced in Section 3.10.1 is a mas-
sively parallel workflow with a large number of ac-

tivities (i.e., between 71 and 20,702) for which the
execution time increases linearly with the paralleliza-
tion size (see Fig. 12(a)). Also for this workflow, the
cl.xlarge instance delivers for all 300 paralleliza-
tion sizes the fastest, as well as the cheapest execu-
tions, followed by ml.large and ml.small in-
stances.

The m1.small instance has again the highest cost
per unit of saved time, while for parallelization sizes
below 50 there is no improvement for adding Cloud
resources (see Fig. 12(b)H). Starting with x = 100, we
exhibit a nearly constant cost per unit of saved time
of $0.62 for m1.small, $0.28 for m1.large, and
$0.22 for c1.xlarge instances.

4.5.4. Summary

Table 3 summarises the optimised Cloud provision-
ing experiments conducted with GroudSim for each
workflow application. We conducted a total of 12 thou-
sands workflow executions totalising 157 thousands
processing hours with an estimated cost of over 642
thousands USD on Amazonml .small, ml.large,
and cl.xlarge instances. To further illustrate the
importance of the GroudSim simulator in our study, we
use the experimental results from Section 3.10.1 to es-
timate the time required to conduct the same amount
of experiments using GridSim. The simulations needed
for our evaluation would have taken over 500 h using
GridSim, while using our GroudSim gave us the op-
portunity to complete the study in less than 60 h on

IFor small workflow sizes there are a few cases when using
Clouds produces no improvement in execution time, which results in
a negative or infinite C' value that cannot be represented at a log
scale in Fig. 12(b).
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Table 3

GroudSim versus GridSim simulation summary

Workflow Number of GroudSim Estimated GridSim Estimated execution Estimated execution
application executions time (h) time (h) time (h) cost ($)
WIEN2k 9600 2.31 8.06 52,074.1 181,401.0
Invmod 1200 0.67 4.11 28,704.7 89,597.2
MeteoAG 1200 56.90 495.62 77,121.8 371,240.0
Total 12,000 59.89 507.80 157,901 642,238

an AMD Opteron 885 with a 2.6 GHz processor, rep-
resenting a speedup of 8.4. Furthermore, this ratio in-
creases the larger the workflows get, as our scalability
experiments from Section 3.10.1 showed.

5. Conclusions

We presented GroudSim, a Java-based simulation
toolkit for scientific applications running on com-
bined Grid and Cloud infrastructures. GroudSim uses
a discrete-event simulation toolkit that offers improved
performance against other process-based approaches
used in related work. The developed simulation frame-
work supports modelling of Grid and Cloud compu-
tational and network resources, job submissions, file
transfers, as well as integration of failure, background
load, and cost models. A sophisticated textual and vi-
sual tracing mechanism and a library-independent dis-
tribution factory give extension possibilities to the sim-
ulator: a new tracing mechanisms can be easily added
by implementing new handlers or filters in the event
system, and additional distribution functions can be in-
cluded by adding a new library and writing an appro-

priate adapter. We provided experimental results that
demonstrate the scalability of the job submission and
file transfer mechanisms, as well as the superiority
of our solution over a related process-based approach
for simulating the execution two real-world scientific
workflow applications.

Using this simulator, we addressed the problem of
dynamic provisioning of Cloud resources to scientific
workflows that do not have sufficient Grid resources
to support their execution. In this context, we anal-
ysed the impact of four important Cloud provision-
ing aspects to the execution time and cost of three
real workflow applications in the Austrian Grid com-
bined with Amazon EC2 instances: Cloud start, in-
stance size, Grid rescheduling and Cloud stop. The
choice of the correct Cloud instance type is critical:
while cheaper resources might look attractive, their
slow characteristics degrade the performance in such
a way that the overall costs are higher. We further ob-
served that Amazon’s c1 .x1large instances offer the
best price-performance ratio for scientific applications,
followed by m1.large and ml.small. A gener-
ous provisioning strategy that allocates more resources
than necessary because of the instance bulk renting
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granularity is more beneficial than an economic strat-
egy, which may degrade performance through serial
execution of independent activities that increases costs.
Releasing Cloud resources at the end of the billing
interval can bring significant cost improvements with
no change in execution time, especially in case of
slow Cloud resources like the Amazonml . small in-
stance. For relatively small workflows, the execution
time and costs follow a step function, as more Cloud
resources are provisioned to support larger paralleliza-
tion sizes. The step function smoothes into a linear
function for large workflows with tens of thousands
of activities, as the Cloud can be used more uniform.
While this may lead to the impression that the Cloud
resources might be to expensive to support the execu-
tion of large workflows, a more detailed analysis in-
dicated that one minute of saved execution costs be-
tween $0.24 for fast c1 . xlarge instances and $0.76
for slow m1 . small resources. Although this ratio has
a high variance for small workflows and slow Cloud
resources, it meets the requirements of scientific simu-
lations by showing a very stable and predictable value,
the larger the workflows get and the faster the Cloud
instances are.

In future work, we plan to use the results from this
paper for developing analytical models that charac-
terise the provisioning of Cloud resources and the un-
derlying overheads. We intend to integrate these mod-
els into a sophisticated heuristic-based scheduler for
full-ahead mapping of workflows in combined Grid
and Cloud-based environments. The scheduler will
take data locality into account, including the possibility
of using Cloud storage resources such as Amazon S3
to compensate the lack of shared file systems in Cloud
environments.

The GroudSim framework is integrated as a back-
end in the ASKALON Grid computing environment,
which enables to perform both real and simulated ex-
ecutions of real-world applications using the same in-
tegrated development, monitoring, and analysis inter-
face.
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