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This paper studies controller design for feedback systems in the presence of asymmet-
rically bounded signals, using a case study. An asymmetric objective functional is used
to consider the asymmetrically bounded signals, which makes possible to derive a linear
programming problem. Solving this LP makes possible to design controllers that mini-
mize certain outputs, fulfilling at the same time hard constraints on certain signals. The
method is presented by application to a hydrogen reformer, a system in petrochemical
plants that produces hydrogen from hydrocarbons: a mixed sensitivity problem is stated
and solved, with an additional constraint given by the asymmetric limitations on the
magnitude and rate of the control signal, and the asymmetricity in the disturbances.

Copyright © 2006 M. Naib et al. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In many control engineering problems, there are constrained variables (in magnitude,
rate, acceleration, etc.), whose limits are not symmetric with respect to the nominal work-
ing point. This paper studies a novel extension of the ¢, control theory, to directly handle
the asymmetrical aspect of bounded signals.

The topic of designing control systems that maintain stability (and performance) in
the presence of these constraints is a topic of continuing interest (see, e.g., Eun et al. [7],
Mesquine et al. [9], and references therein), because real plants always present constraints
on signals (e.g., there is always saturation of the control signal due to the limited range of
the actuators). Most of the approaches proposed in the literature are based on constraint
avoidance: preventing the saturation, the closed-loop system stays in a region of linear
behavior.

From the available approaches, we select the £} norm optimization concept (Dahleh
and Diaz-Bobillo [3]), because the synthesis problem is solved using linear program-
ming, and applications to real process have already been published (Malaterre and Kam-
mash [8]; Tadeo and Grimble [14]; Tadeo et al. [16]), albeit for the symmetric case. In
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Vidyasagar [17] this problem was first formulated. Some basic results on this theory were
presented in Dahleh and Pearson [4, 5]. These results showed that the ¢, -optimal control
problem could be stated as linear programming problem. Since then, many other results
and extensions have been presented (Blanchini and Sznaier [2], Sokolov [13]), but no
extension to asymmetric signals has been published.

Then, this paper studies a novel extension of the ¢; control theory, to directly handle
the asymmetrical aspect of bounded signals. The authors introduced this extension from
a purely theoretical point of view in a previous paper (Naib et al. [11]), following the
methods proposed for positive invariance (Dambrine et al. [6]; Benzaouia and Burgat
[1]). This proposed extension to asymmetric signals is necessary because when the con-
sidered signal u is constrained to evolve in an asymmetrical domain (i.e., signal u is such
that —umin < u(k) < Umax, Where Umin = 05 tmax = 05 tmin # Umax)» in this case the peak-
to-peak norm of the signal u (by definition, ||ulle = maxg (|u(k)|) = max(Umax> Umin))
gives a quite conservative information on the signal amplitude, so a new functional must
be defined that takes separately into account the positive and negative deviations of the
signals. This paper presents how the functional defined in (Naib et al. [11]) can be ex-
tended to a multiblock synthesis problem for a real engineering problem: the control of a
hydrogen reformer plant in petrochemical industry, which prompted us the development
of this technique.

The paper is organized as follows. Section 2 gives a description of the hydrogen re-
former plant. Section 3 presents the reformulation of the ¢, optimal control theory tak-
ing into account the asymmetrical aspect of the considered signals. Section 4 is devoted
to the application of this theoretical issue to the hydrogen reformer. Some conclusions
end this paper.

2. Description of the hydrogen reformer control problem

The development of this extension of ¢; was prompted by a process control problem in
an oil refinery, which had asymmetric constraints on the control signal and asymmet-
ric disturbances. This process is the so-called hydrogen reformer: the objective of this
system, in petrochemical plants, is to produce hydrogen from desulphurized hydrocar-
bons by catalysis (Tadeo and Grimble [14]). A schematic diagram of the system is shown
in Figure 2.1. To generate the hydrogen, the hydrocarbons are mixed with superheated
steam before entering the reformer tubes, where a nickel catalyst, heated at high tem-
perature (about 750 C), produces the hydrogen. The high temperature that is reached to
speed up the reaction is produced by burning fuel in the reformer. The fuel flow must
be controlled to maintain the desired catalyst temperature, despite the presence of asym-
metric disturbances and the fact that nominal flow is not near the middle of the allowed
flow range.

The control system should maintain the desired catalyst temperature by modifying
the amount of fuel that is fed to the reformer. The catalyst temperature and the fuel
flow are measured for the implementation of the cascaded control structure shown in
Figure 2.2.

In the real process, there are several disturbances, such as varying feed flow, fuel gas
quality, steam temperature, and so forth. The most important disturbance is from the
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Figure 2.2. Control system in a hydrogen reformer.

steam temperature variation, which modifies the catalyst temperature directly. The con-
trol system must attenuate this (asymmetric) disturbance as much as possible by acting
on the fuel flow set point (which is also asymmetric).

From a control engineering point of view, the control design problem is to design an
advanced controller for this system that could improve the disturbance rejection proper-
ties, taking into account the nonsymmetric constraints on the amplitude and rate of the
controlled variable (fuel flow).

First the existing control system was investigated and the slave flow control loop was
considered adequate, so only the design of a master controller for the outer loop will be
presented.

Summing up, reducing the existing slave loop, a schematic of the controller structure
used for design is shown in Figure 2.3, which will be the topic of the rest of the paper. The
main objective is to obtain tight control of the output, taking into account that the dis-
turbance is asymmetric and the control signal is limited in amplitude nonsymmetrically.
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3. ¢ analysis using asymmetric signals

This section presents the objective functional proposed by the authors (Naib et al. [11]),
which replaces the peak-to-peak-norm normally used in the ¢; analysis when asym-
metric signals are used. For simplicity reasons, the method is presented for the single-
input/single-output case, although it is very simple to extend it to the multivariable case,
as it is discussed later on.

3.1. Motivation. First, let us take a look in the ¢; norm of a transfer function G repre-
senting a SISO discrete linear time-invariant system governed by an asymmetrical control
signal w (z = Gw). It is well known that

[E41PS
lwlle’

IGll; = max where [|wlle = mkaxw(k), Gl =D 1], (3.1)

i=0

and {¢;, i = 0,..., 00} denotes the impulse response of the transfer function G (i.e., G(z) =
SiZodizh).

One drawback of using this definition of the ¢, norm is that the co norm of a signal
only retains the worst-case deviation of the signal, without taking into account if the
worst-case negative deviation is different from the worst-case positive deviation. This
increases the conservativeness of the controllers designed based on minimizing the ¢;
norm.

3.2. Asymmetric objective functional. To solve this drawback, the following objective
functional (denoted by ¢(w)) was proposed by the authors (Naib et al. [11]), to give

information on the signal amplitude, retaining information on the asymmetricity, and
being valid for multivariable systems:

o(w) = [Iﬂ , (3.2)

where w' = max{0, max;(w(k))} and w~ = max{0, — ming(w(k))}.
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By extension for a vector of signals z € R”, we denote

z* . _ -
o(z) = [z}’ wherefori=1,...,n (z%),= (zi)+, (z7);= (1) . (3.3)
Hence, ¢(z) < Z, where Z = [ ] is equivalent t0 —Zmin < Z < Zmax, the inequalities con-
sidered componentwise. In the proposed context, this objective functional is used to han-
dle the asymmetrical aspect of any set of bounded signals, as it is now presented.

3.3. Asymmetric analysis. The following result, which is an extension to MIMO systems
of the theorem proposed in Naib et al. [11], gives necessary and sufficient conditions for
a vector of signals to avoid the constraints, that is, ¢(z) < Z for any bounded vector of
inputs ¢(w) < W such that z = Mw.

THEOREM 3.1. The output vector z € R" of an LTI system is constrained in the nonsymmet-
rical domain defined by ¢(z) < Z for any input vector w € R™ such that ¢(w) < W if and

only if
YW <Z, (3.4)

where

=0

>4 l:zogbf [6/1;; = max{[¢i]; ;,0},
v .

| ® ; (3.5)
Sor S (¢ ];; = max{—[¢1]; >0},
1=0 =0

and {¢ € R™™, | =0,...,00} denote the elements of the impulse response of the matrix
transfer function M of the system (i.e., z = Mw).

Remark 3.2. 1f the constraints were symmetric (Wmin = Wmax and Zmin = Zmax), then the
second set of rows in the definition of ¥ is redundant, and the standard ¢; condition
problem is obtained: >.;2 (¢} + ¢} ) Wimax < Zmax-

3.4. Controller design for asymmetric signals. The following controller design tech-
nique is now discussed: calculate a stabilizing controller K that minimizes a certain gen-
eralized output vector z; when the generalized input signal w is bounded in magnitude
and hard limitations are imposed on an output vector z, (in the hydrogen reformer w
corresponds to a vector composed by the reference and the disturbance signals, z; is the
control signal, and z; corresponds to the measured output deviations). This problem can
be expressed mathematically as follows:

min ||¢(z1)|], st ¢(z2) <Z,. (3.6)
p(w)<Ww

We denote by M(K) the matrix transfer function from the generalized input vector
w to the generalized output vector z;. This M(K) is usually composed of several char-
acteristic (matrix) transfer functions, such as the sensitivity S = (1 + KG) ™!, the control
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sensitivity M = K§, the complementary sensitivity T = I — S, and so forth, and maybe
weighted by transfer functions W; given by the design specifications, as is usual in robust
control. Then, using the result in the previous section, (3.6) can be expressed as calculat-
ing a stabilizing controller K that solves the following minimization problem:

H}(II‘IH“Pl(K)WHOO st. YV, W<Z<2,. (3.7)

The good news is that (3.7) can be transformed to a LP problem, following a method
parallel to that already proposed for solving the following ¢, optimization:

min[ My (K, st MK, < 2. (3.8)

where M; and M, are the matrix transfer functions from w to z; and z, respectively.

Unfortunately the description of the resulting LP problem in the general case is too
cumbersome: as it corresponds to small modifications on the ¢, optimization technique
only a short sketch is now presented for a one-block SISO problem, where only the main
modifications are discussed. The detailed example in next section should clarify any re-
maining issue.

The original ¢; optimization problem (3.8) can be solved by separating the positive and
negative terms of the corresponding matrix of impulse responses (Dahleh and Pearson

[5]):
M =D ¢tz =D¢nz, My=> ¢z =D ¢z (3.9)
i=0 i=0 i=0 i=0
The following LP problem is then obtained:

m

min_ e st dn<e D5t D ¢35 < Zomax (3.10)
i=0 i=0 i=0 i=0

8p<DT,w<1>T,»®§p‘1>z’ij:0

The first set of constraints in (3.10) are the so-called norm constraints; the second set
correspond to the signal constraints, with additional interpolation, feasibility, and rank
constraints that are equivalent for both problems, so they are omitted for clarity.

In the presence of asymmetric signal, the proposed functional can be used, being only
necessary to replace the norm constraint in (3.10) given by the ¢, norm with the con-
straint given the objective functional presented in the previous section, obtaining the
following LP:

m m
min g+ | stYW=se VoW =<2, (3.11)
€l,e7 07, 07,03,05; 0 =0

where ¢ = [e*,e7]%, and e*,e” € R™ are column vectors with dimensions equal to the
1 1 ot — +ym - —m
number of generalized outputs in z;: €© = {sj Loe = {sj }j=0'
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The example in the next section clarifies the proposed method.

4. Regulator design for a hydrogen reformer

This section studies the application of the controller design technique proposed in Section
3 to the hydrogen reformer control problem presented in Section 2. The design will be
based on solving a mixed sensitivity problem in the proposed objective functional, with
an additional constraint given by the control signal saturations. The transformation into
a linear programming problem will be presented in detail. The solution of this LP will
give the desired controller.

4.1. Control specifications. The main objectives to attend are the following.
(i) To reduce the effect of the unknown but nonsymmetrical bounded disturbances
in the output signal.

(ii) To weight the effect of the reference signal in the output signal.

(iii) To respect the constraints on the control signal. In our problem there are asym-
metric bounds in the control signal # as —tmin < #(k) < Umax. Using the objective
functional proposed, this can be written as ¢(u) < U, where U' = [tmax Umin -
Thus, the control signal is constrained to evolve in an asymmetrical set ), given
by

ueQ={ulk)eR/p(u) <U; U=1[0.6,2.27]"}. (4.1)

(iv) Moreover, the expected amplitude of the disturbance signal is known to be asym-
metric (in our example, decreases in temperature are bigger than positive de-
viations). This means that d(k) is such that —dpni, < d(k) < dmax Which can be
rewritten as ¢(d) < D, where D' = [dmax, dmin]. Then, the disturbance signal af-
fecting this plant belongs to the following asymmetrical set:

de® = {d(k) e R/¢(d) < D; D = [1.9,0.1]"}. (4.2)

(v) In addition to this, the expected variations in the reference signal are known a
priori: the reference is asymmetrically bounded by —Rpin < (k) < Rmay, OF, in
more compact form using the proposed objective functional, this can be rewritten
as ¢(r) < R. Thus, the reference signal can be assumed to be constrained in the
following set:

reR = {r(k) €eR/¢(r) <R; R=[1,5]"}. (4.3)

In summary, all of these problems can be stated as designing a controller that ensures that
¢(u) < U when ¢(d) < D and ¢(r) < R, while minimizing the output deviation.

4.2. Transformation into a linear programming problem. The transformation into an
LP is now discussed for the general problem.
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Following the usual method in robust control, the control objectives can be achieved
by solving (3.6), where z; = u, z; = y, and w = [ Wir wad ]*. This can be expressed as the
following mixed sensitivity problem.

Search among all the internally stabilizing controllers for the one which minimize the
following cost function:

min (p[W,S W, T]) st ¢(KS)(R+D) < U, (4.4)

where S = 1/(1+ KG) represents the sensitivity, K is the controller, T = KG/(1+KG) is
the complementary sensitivity, and W, and W, are weighting transfer functions.

Since the control signal is given by u = KS(r — d), then the constraints are respected if
the following inequality is fulfilled:

»(KS)(R+D) < U, (4.5)

where D = [0.1, 1.9]* represents the constraint vector on the signal —d.

To simplify the transformation into an LP, in this study the optimization problem is
expressed directly on the coefficients of the impulse response of the considered transfer
functions (Dahleh and Pearson [5], Tadeo and Grimble [14]): if we denote the impulse
responses of W1 S, W, T, and K, respectively, to be ¢, ¢», and ¢s, then, using the previ-
ous formalism, our problem can be rewritten as

min (e +ey +ed +&5)
€181 56,62, P 1P 03,0, P35, 3,

-

™e

(‘/)11 max + @1 dmin) < &1,

Il
(=]

™e

(‘/511 mln+¢lz dmax) < €7,

Il
f=}

™Me

(‘pzﬂ'max + ¢21rm1n) <&, (4.6)

I
(=}

s.t. A
(‘pzﬂ'mm + ¢21rmaX) =&,

(¢31 (T'max + dmm) + ¢3z (rmm + dmax)) < Umax>

Me IMe IMe

(¢31 (rmm + dmax) + ¢3z (rmax + dmm)) = Umin-

,
I
(=]

To solve this problem, it is necessary to add some feasibility constraint equalities to make
the link between ¢;,¢,, and ¢s:

S+T=1, S+GKS = 1. (4.7)
These equalities can be rewritten as

dwy * nwy k ¢1 +nwy x dwy x ¢y = nwy *k nwy,
(4.8)
dwi *x dg * ¢1 +ng * nwy * ¢ = nw; * dg,
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where W, = nw,/dw,, W, = nw,/dw,, and G = ng/dg, with nw,, dw,, nw,, dw,, ng, and
dg coprime polynomials.

Further, additional constraints (or namely interpolation constraints) must be added
to ensure the internal stability of the system, as in standard ¢; optimization. These con-
straints mean that any unstable pole (resp., zero) of the plant cannot be cancelled by any
zero (resp., pole) of the controller. If we denote by {qx, k = 1,...,n} the unstable zeros of
the plant and by {p;, [ = 1,...,m} its unstable poles, then

K(zfl)G(z*I)HZ:qk must be equal to 0,

4.9
K(zH)G(z )| |Z=p1 should tend to infinity. (4.9)

In this problem, taking into account the feasibility constraints, the interpolation con-
straints are redundant.

The obtained linear programming problem has infinite number of variables and con-
straints. In order to obtain a finite-dimensional problem, this semi-infinite linear pro-
gramming problem is truncated as is frequently done in ¢; optimization. The dimension
of the new linear programming problem, denoted by p, can be calculated from the dual
problem. Finally, we have a linear programming problem in 3y + 4 variables which can
be summarized as follows:

minc'x  s.t. Ax < b, Aggx = beg, (4.10)

where x is formed by the variables €], €5, €1, &, ¢1, &1, ¢3, ¢, , #3, and ¢5. The vector
c is such that c'x = &f +&; +& +¢;. Matrices A, A,y and vectors b and b, are given
according to the linear programming problem defined in (4.6).

4.3. Controller calculation. The linear model of the plant that will be used to design the
controller is

—0.032z71(1+0.2453z71) (1 - 0.62325721) (1+0.9999z")
" (1+0.58958z71) (1 —0.615995z1) (1+0.81983z 1)

G(z™)

(4.11)
(1+15.4484z71)[(1+0.788216z7")" + 1.566429?]

(1-0.910085z1)[ (1 +0.419267z-1)% +0.3799152]

The model was obtained in transfer-function form from the input (u: fuel-flow set-
point) to the output (y: outlet temperature) and includes the flow controller dynamics.
In this case, a simplified model was previously obtained by modeling and identification
using data from the real plant (Shakoor, [12]).

Note that this plant has a stable nonminimum phase model with three zeros outside
the unit circle, at z = 15.45 and z = 0.79 + 1.57j.
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Figure 4.1. The ®;.

The disturbance model W, was also identified using the available data from the real
plant and it is given by

—0.032z71(1+0.2453z7") (1 - 0.623257z"")
- (1+0.58958z71) (1 —0.615995z1)
(1+0.9999z71) (1+15.4484z~1) [ (1+0.788216z71)" + 1.5664292]

(1+0.81983z-1) (1 — 0.910085z-1) [ (1 +0.419267z~1)* +0.3799152]
(4.12)

Wa(z™)

The weights W; and W, were selected based on a tradeoff between the specifications
obtained from the system analysis and the control effort. These weights are, respectively,
the discrete-time equivalents of the following continuous-time transfer functions: (0.5s +
0.005)/(s+107%) and (50s+0.5)/(0.1s+ 1) for a sampling time T, = 30.

This linear problem can be solved with the “linprog” optimization function of Mat-
lab, for increasing values of y until no improvement is obtained. The obtained impulse
responses for ¢ = 20 are shown in Figure 4.1.

The characteristic transfer functions S, T, and M can be computed from any ¢;. The
frequency responses are shown in Figure 4.2.

The controller can be calculated from the relation that defines any of the charac-
teristic transfer functions. For example, using the relation which defines the sensitivity
(8= (1+KG)™"), one can compute the corresponding regulator from K = G 1(S™! - 1),
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Closed-loop transfer functions S, T, and M
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Figure 4.2. Frequency response of the closed-loop transfer functions S, T, and M.

giving

0.0642(1 — 0.9101z71) (1 +0.9898z1) (1 +0.8198z"!)
(1—z1)(1+0.9999z-1) (1 — 0.6233z1)

K(z'') =

1 —0.4485z71)2 +0.4968%z 2]
1-0.4235z71)2+0.38022z2]

(1-0.6160z"") (1+0.5896z"1)
(1+0.5593z-1) (1+0.2453z"1)
[
[(1

( [(
( [(

(1 +0.0716271)2+0.50792z 2] [ (1 +0.4193z"1)2 +0.37992z 2]
) 11(

(1+0.2806z71)2+0.44802z2]"
(4.13)

0.0204z71)2+0.47382z2

Since the controller is of high order (11th order), to make it feasible for implementa-
tion, it is necessary to calculate a reduced-order controller which maintains the same
performances of the original controller. For this, we can use, for example, the “invfreqz”
function of Matlab. In Figure 4.3, the frequency response of the reduced-order regulator
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Optimal regulator K and reduced-order regulator K,
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Figure 4.3. Frequency response of the optimal controller K and the reduced-order controller K.

is depicted on the original controller. It is possible to see that over the 4th order the two
controllers give a similar response, so a 4th-order controller is selected.

5. Conclusion

In this paper, a new way to handle asymmetrical signals has been presented. Using a new
asymmetric objective functional, instead of the usual peak-to-peak norm, necessary and
sufficient conditions are given to check if some performance specifications are fulfilled.
In the next step, the analysis and the synthesis problems are also formulated with respect
to this new objective functional. As in the ¢;-optimal control, this approach leads to a
linear programming problem which can be solved by available optimization tools. Com-
pared with the linear problem obtained using standard ¢;-optimal control, no additional
variables are added to the primal problem, but the number of constraints is doubled, to
cope with the asymmetricity. The technique has been demonstrated on a system from
petrochemical industry: a hydrogen reformer.
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