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We introduce a new type of functions from a soft set to a soft set and study their properties under soft real number setting. Firstly,
we investigate some properties of soft real sets. Considering the partial order relation of soft real numbers, we introduce concept of
soft intervals. Boundedness of soft real sets is defined, and the celebrated theorems like nested intervals theorem and Bolzano-
Weierstrass theorem are extended in this setting. Next, we introduce the concepts of limit, continuity, and differentiability of
functions of soft sets. It has been possible for us to study some fundamental results of continuity of functions of soft sets such
as Bolzano’s theorem, intermediate value property, and fixed point theorem. Because the soft real numbers are not linearly ordered,
several twists in the arguments are required for proving those results. In the context of differentiability of functions, some basic
theorems like Rolle’s theorem and Lagrange’s mean value theorem are also extended in soft setting.

1. Introduction

Following the seminal work of Zadeh [1] on fuzzy set theory,
development of mathematical theory and their applications
in handling the problems under uncertain environment have
been gaining momentum day by day. Considering some
difficulties in the parametrization process in fuzzy set theory,
Molodtsov in 1999 [2] introduced an idea of soft set as a
parametrized family of sets where parameter set takes values
from an arbitrary set. He also showed the applications of soft
sets in fields like smoothness of functions, probability theory,
measure theory, and game theory.

After that Maji et al. [3, 4] defined some operations on
soft sets based on which Shabir and Naz [5] introduced soft
topologies, Aktas and Cagman [6] soft group, and Nazmul
and Samanta [7] soft topological group. Recently Das et al.
[8, 9] introduced the idea of soft metric and soft normed
linear space. In [10] Das and Samanta also introduced the
concept of soft real numbers. Using this concept they studied
some basic properties of soft real numbers. However in
their study on functions they have considered functions
over crisp sets and have used extension principle for getting

images of soft sets. In 2016 [11] Tantawy and Hassan studied
some basic operations like supremum and infimum in soft
setting.

However, no studies have been found for functions from
soft numbers to soft numbers. To deal with this type of
functions is something different from the previous one. In
this paper we have considered such type of functions and
have studied some fundamental properties of continuous
functions, like Bolzano’s property, intermediate value prop-
erty, and fixed point property. The extension of Bolzano’s
theorem in soft setting is crucial and from which some
other properties, like intermediate value property and fixed
point property, follow. We have also introduced the con-
cept of differentiation of such functions and have extended
Rolle’s theorem and Lagrange’s theorem in soft settings.

2. Preliminaries

Unless otherwise stated all over this paper 𝐴 is taken as the
parameter set and any soft set taken in this paper is assumed
to be parameterwise nonempty.
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Definition 1 (see [2] (soft set)). Let 𝑋 be a nonempty set and
𝐴 be a set which is called index set. A pair (𝐹, 𝐴), where 𝐹 :
𝐴 → 2𝑋 is a mapping, is called a soft set on𝑋.

Definition 2 (see [10] (soft element)). Let 𝑋 be a nonempty
set and 𝐴 be a nonempty parameter set. Then a function 𝜖 :
𝐴 → 𝑋 is said to be a soft element of 𝑋. A soft element 𝜖 of
𝑋 is said to belong to a soft set 𝐹 of 𝑋, denoted by 𝜖 ∈ 𝐹, if
𝜖(𝑒) ∈ 𝐹(𝑒), ∀𝑒 ∈ 𝐴. Thus a soft set 𝐹 of𝑋 with respect to the
index set 𝐴 can be expressed as 𝐹(𝑒) = {𝜖(𝑒), 𝜖 ∈ 𝐴}.

Definition 3 (see [10]). LetR be the set of real numbers, 𝑃(R)
be the collection of all nonempty bounded subsets of R, and
𝐴 be a set of parameters. Then a mapping 𝐹 : 𝐴 → 𝑃(R) is
called a soft real set. It is denoted by (𝐹, 𝐴).

If in particular (𝐹, 𝐴) is a singleton soft set, then, iden-
tifying (𝐹, 𝐴) with the corresponding soft element, it will be
called a soft real number.

We use the notation 𝑥, 𝑦, �̃� to denote soft real numbers
whereas 𝑥, 𝑦, 𝑧 will denote a particular type of soft real
numbers such that 𝑥(𝜆) = 𝑥, for all 𝜆 ∈ 𝐴 etc. Note that,
in general, 𝑥 is not related to 𝑥.

Definition 4 (see [8]). For two soft real numbers 𝑟, 𝑠we define
the following:

(1) 𝑟 ≥̃ 𝑠 if 𝑟(𝜆) ≥ 𝑠(𝜆), for all 𝜆 ∈ 𝐴.
(2) 𝑟 ≤̃ 𝑠 if 𝑟(𝜆) ≤ 𝑠(𝜆), for all 𝜆 ∈ 𝐴.
(3) 𝑟 >̃ 𝑠 if 𝑟(𝜆) > 𝑠(𝜆), for all 𝜆 ∈ 𝐴.
(4) 𝑟 <̃ 𝑠 if 𝑟(𝜆) < 𝑠(𝜆), for all 𝜆 ∈ 𝐴.

Definition 5 (see [8]). If 𝑥, 𝑦 are soft numbers, thenmodulus,
sum, difference, product, and division of soft real numbers
are denoted by |𝑥|, 𝑥 + 𝑦, 𝑥 − 𝑦, 𝑥 ⋅ 𝑦 and 𝑥/𝑦, respectively,
and defined by the following:

(i) |𝑥|(𝜆) = |𝑥(𝜆)|, for all 𝜆 ∈ 𝐴.
(ii) (𝑥 + 𝑦)(𝜆) = 𝑥(𝜆) + 𝑦(𝜆), for all 𝜆 ∈ 𝐴.
(iii) (𝑥 − 𝑦)(𝜆) = 𝑥(𝜆) − 𝑦(𝜆), for all 𝜆 ∈ 𝐴.
(iv) (𝑥 ⋅ 𝑦)(𝜆) = 𝑥(𝜆) ⋅ 𝑦(𝜆), for all 𝜆 ∈ 𝐴.
(v) (𝑥/𝑦)(𝜆) = 𝑥(𝜆)/𝑦(𝜆), 𝑦(𝜆) ̸= 0 for all 𝜆 ∈ 𝐴.

Theorem 6 (see [8]). For any soft set (𝐹, 𝐴), 𝑆𝑆(𝑆𝐸((𝐹, 𝐴))) =
(𝐹, 𝐴) (where 𝑆𝐸(𝐹, 𝐴) = {𝑥 : 𝑥(𝜆) ∈ 𝐹(𝜆), ∀𝜆 ∈ 𝐴} and
𝑆𝑆(𝐵)(𝜆) = {𝑥(𝜆) : 𝑥 ∈ 𝐵}, where 𝐵 is a set of soft real
numbers).

Definition 7 (see [3]). Let (𝐹, 𝐴), (𝐺, 𝐴) ∈ 𝑅(𝐴); then (𝐹, 𝐴)
is said to be subset of (𝐺, 𝐴) and denoted by (𝐹, 𝐴) ⊆̃ (𝐺, 𝐴),
if 𝐹(𝜆) ⊆ 𝐺(𝜆), ∀𝜆 ∈ 𝐴.

Definition 8 (see [3] (equality of soft real sets)). Let
(𝐹, 𝐴), (𝐺, 𝐴) ∈ 𝑅(𝐴); then (𝐹, 𝐴) is said to be equal to (𝐺, 𝐴)
and denoted by (𝐹, 𝐴) = (𝐺, 𝐴), if 𝐹(𝜆) = 𝐺(𝜆), ∀𝜆 ∈ 𝐴.

Definition 9 (see [3]). The union of two soft sets (𝐹, 𝐴) and
(𝐺, 𝐵) over the common universe 𝑈 is the soft set (𝐻, 𝐶),
where 𝐶 = 𝐴 ∪ 𝐵 and for all 𝑒 ∈ 𝐶

𝐻 (𝑒) =
{{{{
{{{{
{

𝐹 (𝑒) if 𝑒 ∈ 𝐴 − 𝐵
𝐺 (𝑒) if 𝑒 ∈ 𝐵 − 𝐴
𝐹 (𝑒) ∪ 𝐺 (𝑒) if 𝑒 ∈ 𝐴 ∩ 𝐵.

(1)

We write (𝐹, 𝐴) ∪ (𝐺, 𝐵) = (𝐻, 𝐶).

Definition 10 (see [3]). The intersection of two soft sets (𝐹, 𝐴)
and (𝐺, 𝐵) over the common universe𝑈 is the soft set (𝐻, 𝐶),
where 𝐶 = 𝐴 ∩ 𝐵 and for all 𝑒 ∈ 𝐶 𝐻(𝑒) = 𝐹(𝑒) ∩ 𝐺(𝑒). We
write (𝐹, 𝐴) ∩ (𝐺, 𝐵) = (𝐻, 𝐶).

Definition 11 (see [11]). A real soft set (𝐹, 𝐴) is said to be
bounded from above if there exists a soft real number 𝑟 such
that 𝑥 ≤̃ 𝑟, ∀𝑥 ∈̃ (𝐹, 𝐴).

Definition 12 (see [11]). A real soft set (𝐹, 𝐴) is said to be
bounded from below if there exists a soft real number 𝑟 such
that 𝑥 ≥̃ 𝑟, ∀𝑥 ∈̃ (𝐹, 𝐴).

Definition 13 (see [12]). In a soft normed linear space a
sequence {𝑥𝑛} of soft elements is said to be convergent and
converges to a soft element 𝑥 if, for any soft real number 𝜖 >̃ 0,
there exists a soft natural number 𝑛0 such that ‖𝑥𝑛 − 𝑥‖(𝜆) <
𝜖(𝜆), ∀𝑛 ≥ 𝑛0(𝜆), ∀𝜆 ∈ 𝐴 and is denoted by lim𝑛→∞𝑥𝑛 = 𝑥
or 𝑥𝑛 → 𝑥 as 𝑛 → ∞, where 𝑥 is called the soft limit of the
sequence {𝑥𝑛}.

Theorem 14. Let {𝑥𝑛} be a sequence in soft real set over a
finite parameter set converging to 𝑥; then {𝑥𝑛} converge to 𝑥
uniformly over parameterwise; that is, for any 𝜖 >̃ 0 there exists
a 𝑛0 ∈ N (set of natural numbers) such that |𝑥𝑛 − 𝑥| <̃ 𝜖,
∀𝑛 ≥ 𝑛0.

Theorem 15 (see [12]). A sequence 𝑥𝑛 → 𝑥 iff 𝑥𝑛(𝜆) → 𝑥(𝜆)
for all 𝜆 ∈ 𝐴.

3. Elementary Set Theory

From this section all the study has done on soft real sets.

Definition 16. If 𝑎, �̃� are two soft real numbers with 𝑎<̃�̃�; then
[𝑎, �̃�] = {𝑥 : 𝑎 ≤̃ 𝑥 ≤̃ �̃�} is said to be soft closed interval with
boundary points 𝑎 and �̃�. Clearly [𝑎, �̃�](𝜆) = [𝑎(𝜆), �̃�(𝜆)]. So
any closed soft interval [𝑎, �̃�] can be taken as a soft set, where
[𝑎, �̃�](𝜆) = [𝑎(𝜆), �̃�(𝜆)].

Definition 17. A length function 𝐿 of a soft interval [𝑎, �̃�] is
defined by 𝐿[𝑎, �̃�](𝜆) = length of the interval [𝑎(𝜆), �̃�(𝜆)] and
denoted by 𝐿[𝑎, �̃�].

Definition 18. A soft real set 𝑆 is said to be bounded if it is
bounded from above and bounded from below.
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Proposition 19. A soft real set 𝑆 is bounded iff 𝑆(𝜆) are
bounded sets in R, ∀𝜆 ∈ 𝐴.

Proof. We have a soft real set 𝑆 being bounded if there exists
a soft real number �̃� such that |𝑥| ≤̃ �̃� for all 𝑥 ∈ 𝑆 iff for any
𝜆 ∈ 𝐴, |𝑥|(𝜆) ≤̃ �̃�(𝜆) for all 𝑥 ∈ 𝑆 iff 𝑆(𝜆) are bounded sets in
R, ∀𝜆 ∈ 𝐴.

Definition 20. A soft number �̃� is said to be the least upper
bound of a soft set 𝑆 if 𝑥 ≤̃ �̃�, ∀𝑥 ∈ 𝑆, and for any 𝜖 >̃ 0 there
exists a 𝑦 ∈ 𝑆 such that �̃� − 𝜖 <̃ 𝑦 ≤ �̃�.

Definition 21. A soft number �̃� is said to be greatest lower
bound of a soft set 𝑆 if 𝑥 ≥̃ �̃�, ∀𝑥 ∈ 𝑆, and for any 𝜖 >̃ 0 there
exists a 𝑦 ∈ 𝑆 such that �̃� + 𝜖 >̃ 𝑦 ≥ �̃�.

Proposition 22. Every bounded soft real set (𝐹, 𝐴) has a least
upper bound (l.u.b.) and a greatest lower bound (g.l.b.).

Proof. Let (𝐹, 𝐴) be a bounded soft real set. Since 𝐹(𝜆)’s are
bounded set in R, l.u.b. of 𝐹(𝜆) exists; say 𝑚𝜆. Take �̃�(𝜆) =
𝑚𝜆, ∀𝜆 ∈ 𝐴. Now for 𝜖 >̃ 0, there exists 𝑦𝜆 such that 𝑚𝜆 −
𝜖(𝜆) < 𝑦𝜆 ≤ 𝑚𝜆, ∀𝜆 ∈ 𝐴; that is, �̃�(𝜆) − 𝜖(𝜆) < 𝑦(𝜆) ≤
�̃�(𝜆) where 𝑦(𝜆) = 𝑦𝜆. The proof for greatest lower bound is
similar.

Note. Uniqueness of l.u.b and g.l.b in a soft set follows from
the uniqueness of l.u.b and g.l.b of crisp set.

Theorem 23 (nested interval theorem). If 𝐼𝑛(= [𝑎𝑛, �̃�𝑛]) is a
sequence of nested soft closed intervals satisfying the properties
𝐼1 ⊇ 𝐼2 ⊇ ⋅ ⋅ ⋅ ⊇ 𝐼𝑛 ⋅ ⋅ ⋅ and 𝐿(𝐼𝑛) → 0 as 𝑛 → ∞; then ⋂∞𝑛=1 𝐼𝑛
is a singleton set 𝑎.

Proof. Since for any 𝜆 ∈ 𝐴, [𝑎𝑛, �̃�𝑛](𝜆) is a closed inter-
val [𝑎𝑛(𝜆), �̃�𝑛(𝜆)], by the definition of subset of soft sets
{[𝑎𝑛(𝜆), �̃�𝑛(𝜆)] : 𝑛 ∈ N} is a sequence of sets satisfying the
properties of nested intervals theorem. Hence ⋂∞𝑛=1 𝐼𝑛(𝜆) =
{𝑎𝜆}, which implies ⋂∞𝑛=1 𝐼𝑛 = 𝑎 (where 𝑎(𝜆) = 𝑎𝜆, ∀𝜆 ∈
𝐴).

Definition 24. A soft set is said to be soft closed if for any 𝜆 ∈
𝐴, 𝑆(𝜆) is closed set in R.

Definition 25. Let {𝑥𝑛} be sequence of soft real numbers.Then
{𝑦𝑛} is said to be a soft subsequence of {𝑥𝑛} if {𝑦𝑛(𝜆)} is a
subsequence of {𝑥𝑛(𝜆)} for all 𝜆 ∈ 𝐴.

Proposition 26 (Bolzano-Weierstrass’s form). Let {𝑥𝑛} be a
sequence of soft real numbers in a bounded soft closed set 𝑆.
Then we can construct a soft subsequence {𝑦𝑛} of {𝑥𝑛} which is
convergent in 𝑆.

Proof. Let {𝑥𝑛} be a sequence of soft real numbers in a
bounded soft closed set 𝑆. Since the sequence {𝑥𝑛(𝜆)} is
bounded and in closed set 𝑆(𝜆), by Bolzano-Weierstrass’s
theorem there exists a subsequence {𝑥𝑛𝜆

𝑘

(𝜆)} converging to
some point 𝑥𝜆 ∈ 𝑆(𝜆). Now if we construct a sequence
of soft numbers {𝑦𝑛} such that 𝑦𝑘(𝜆) is the 𝑘th member of

the subsequence {𝑥𝑛𝜆
𝑘

(𝜆)}, since for every 𝜆 ∈ 𝐴 sequence
{𝑥𝑛𝜆
𝑘

(𝜆)} is convergent to a point 𝑥𝜆 ∈ 𝑆(𝜆), then for any 𝜖 > 0
there exists 𝑛0(𝜆) such that |𝑥𝑛𝜆

𝑘

(𝜆) − 𝑥𝜆| < 𝜖(𝜆), ∀𝑛𝜆𝑘 > 𝑛0(𝜆),
which holds for all 𝜆 ∈ 𝐴. Hence |𝑦𝑘(𝜆) − 𝑥(𝜆)| < 𝜖(𝜆),
∀𝑘 > 𝑛0(𝜆), where 𝑥(𝜆) = 𝑥𝜆. Hence the sequence {𝑦𝑛} is
convergent in 𝑆.

Proposition 27 (Bolzano-Weierstrass’s theorem in finite
parameter set). If {𝑥𝑛} is a sequence in a bounded soft closed
set 𝑆, then there exists a subsequence {𝑥𝑛𝑘} of {𝑥𝑛} converging
to some 𝑥 ∈ 𝑆.

Proof. Let {𝑥𝑛} be a sequence in soft bounded closed set 𝑆
and the parameter set 𝐴 = {𝜆1, 𝜆2, . . . , 𝜆𝑚}. Then {𝑥𝑛(𝜆1)}
is a sequence in bounded closed set 𝑆(𝜆1), so by Bolzano-
Weierstrass’s theorem {𝑥𝑛(𝜆1)} has a subsequence {𝑥𝑛𝑘1 (𝜆1)}
converging to some point in 𝑆(𝜆1) (say 𝑥𝜆1). Next consider
the subsequence {𝑥𝑛𝑘1 } in soft bounded closed set 𝑆, and by
the similar arguments {𝑥𝑛𝑘1 (𝜆2)} has a subsequence {𝑥𝑛𝑘2 (𝜆2)}
converging to some point in 𝑆(𝜆2) (Say 𝑥𝜆2). Continuing
this process, we have a subsequence {𝑥𝑛𝑘𝑚 } of {𝑥𝑛}, where
{𝑥𝑛𝑘𝑚 (𝜆𝑚)} converges to some point in 𝑆(𝜆𝑚) (Say 𝑥𝜆𝑚). By
the construction it is clear that {𝑥𝑛𝑘𝑚 (𝜆𝑖)} is a subsequence
of {𝑥𝑛𝑘𝑖 (𝜆𝑖)} converging to 𝑥𝜆𝑖 for all 𝑖 = 1, 2, . . . , 𝑚. Hence
{𝑥𝑛𝑘𝑚 (𝜆𝑖)} converges to 𝑥𝜆𝑖 for all 𝑖 = 1, 2, . . . , 𝑚, which
implies 𝑥𝑛𝑘𝑚 → 𝑥, where 𝑥(𝜆𝑖) = 𝑥𝜆𝑖 for all 𝑖 = 1, 2, 3.

4. Limit and Continuity

Definition 28 (function of soft sets). Let (𝐹, 𝐴) and (𝐺, 𝐵) be
two soft real sets. Then 𝑓 is said to be a function of soft sets
from (𝐹, 𝐴) to (𝐺, 𝐵) if 𝑓 sends a soft element of (𝐹, 𝐴) to a
unique soft element of (𝐺, 𝐵).

Definition 29. A soft set 𝐷 is said to be a soft domain if, for
each 𝜆 ∈ 𝐴,𝐷(𝜆) is an open set in R.

Definition 30. A soft set 𝑆 is said to be a neighborhood of 𝑥0
if 𝑆(𝜆) is a neighborhood of 𝑥0(𝜆), ∀𝜆 ∈ 𝐴.

Definition 31. A function of soft sets 𝑓 : (𝐹, 𝐴) → (𝐺, 𝐵) is
said to be constant in a domain 𝐷 if the function of soft sets
𝑓(𝑥) = �̃�,∀𝑥 ∈ (𝐹, 𝐴), where �̃� is a fixed soft element of (𝐺, 𝐵).

Definition 32 (limit of a function of soft sets). Let𝑓 : (𝐹, 𝐴) →
(𝐺,𝐴) be a function of soft sets and 𝑥0 ∈̃ (𝐹, 𝐴). Let a function
of soft sets 𝑓 be defined in some deleted neighborhood of 𝑥0.
Then �̃� is said to be the soft limit of the function of soft sets
𝑓 as 𝑥 tends to 𝑥0 and is denoted by 𝑓(𝑥) → �̃� as 𝑥 → 𝑥0
or lim𝑥→𝑥0𝑓(𝑥) = �̃� if for any 𝜖 >̃ 0 there exists 𝛿 >̃ 0 such that
|𝑓(𝑥) − �̃�| <̃ 𝜖 whenever 0 ̸= |𝑥 − 𝑥0| <̃ 𝛿. Further if 𝑓(𝑥0) = �̃�,
then we call the function of soft sets 𝑓 continuous at 𝑥0.

Proposition 33. Soft limit of a function of soft sets is unique.

Proposition 34. Let 𝑓 : (𝐹, 𝐴) → (𝐺,𝐴) be a function of
soft sets and 𝑥0 ∈̃ (𝐹, 𝐴). Let a function of soft sets 𝑓 be defined
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in some deleted neighborhood of 𝑥0. If lim𝑥→𝑥0𝑓(𝑥) = �̃�,
then there exists soft deleted neighborhood of 𝑥0 such that 𝑓
is bounded therein.

Proof. Since lim𝑥→𝑥0𝑓(𝑥) = �̃�, so for 𝜖 = 1 there exists a 𝛿 >
0 such that |𝑓(𝑥) − �̃�| <̃ 1 whenever 0 ̸= |𝑥 − 𝑥0| <̃ 𝛿.Thus,
|𝑓(𝑥)| ≤̃ |𝑓(𝑥) − �̃�| + |̃𝑙| <̃ 1 + |̃𝑙| whenever 0 ̸= |𝑥 − 𝑥0| <̃ 𝛿,
which shows the result.

Result 1. If lim𝑥→𝑥0𝑓(𝑥) = �̃� (̃𝑙(𝜆) ̸= 0 ∀𝜆 ∈ 𝐴), then for
𝜖 = (1/2)|̃𝑙| there exists 𝛿 >̃ 0 such that |𝑓(𝑥) − �̃�| <̃ (1/2)|̃𝑙|
whenever 0 ̸= |𝑥 − 𝑥0| <̃ 𝛿.Therefore, ||𝑓(𝑥)| − |̃𝑙|| ≤ |𝑓(𝑥) −
�̃�| <̃ (1/2)|̃𝑙|. Thus, (1/2)|̃𝑙| ≤ |𝑓(𝑥)| <̃ (3/2)|̃𝑙| whenever 0 ̸=
|𝑥 − 𝑥0| <̃ 𝛿.

Definition 35. A function of soft sets 𝑓 is said to be con-
tinuous in a soft set (𝐹, 𝐴) if the function of soft sets 𝑓 is
continuous at any soft element 𝑥 ∈̃ (𝐹, 𝐴).

Proposition 36 (limit theorem of functions of soft sets). Let
𝑓 and 𝑔 be two functions of soft sets defined in some soft
domain 𝐷. Let 𝑥0 be a soft point of 𝐷. Let lim𝑥→𝑥0𝑓(𝑥) = �̃�
and lim𝑥→𝑥0𝑔(𝑥) = �̃�. Then,

(1) lim𝑥→𝑥0{𝑓(𝑥) + 𝑔(𝑥)} = �̃� + �̃�;
(2) lim𝑥→𝑥0{𝑓(𝑥) − 𝑔(𝑥)} = �̃� − �̃�;
(3) lim𝑥→𝑥0{𝑐 ⋅ 𝑔(𝑥)} = 𝑐 ⋅ �̃�;
(4) lim𝑥→𝑥0{𝑓(𝑥) ⋅ 𝑔(𝑥)} = �̃� ⋅ �̃�;
(5) lim𝑥→𝑥0{𝑓(𝑥)/𝑔(𝑥)} = �̃�/�̃� if 𝑔(𝑥)(𝜆) ̸= 0 for all 𝜆 ∈ 𝐴

in some deleted neighborhood of 𝑥0.
Proofs are exactly the same as the proofs of limit of crisp case.

Proposition 37. If 𝑓 is a function of soft sets continuous at
𝑥0 ∈̃ (𝐹, 𝐴) and 𝑓(𝑥0) <̃ 0 (o𝑟 >̃ 0), then there exists 𝛿 >̃ 0 such
that 𝑓(𝑥) <̃ 0 (o𝑟 >̃ 0) satisfying |𝑥 − 𝑥0| <̃ 𝛿.

Proof. Let 𝑓(𝑥0) = −𝜖. Then 𝜖 >̃ 0. By the continuity of 𝑓,
there exists a 𝛿 >̃ 0 such that |𝑓(𝑥) − 𝑓(𝑥0)| <̃ 𝜖 whenever
|𝑥 − 𝑥0| <̃ 𝛿; that is, 𝑓(𝑥0) − 𝜖 <̃ 𝑓(𝑥) <̃ 𝑓(𝑥0) + 𝜖 whenever
|𝑥 − 𝑥0| <̃ 𝛿; that is, −2𝜖 <̃ 𝑓(𝑥) <̃ 0 whenever |𝑥 − 𝑥0| <̃ 𝛿. The
argument for 𝑓(𝑥0) >̃ 0 is similar.

Corollary 38. If 𝑓 is a function of soft sets continuous at
𝑥0 ∈̃ (𝐹, 𝐴) and 𝑓(𝑥0)(𝜆) < 0 (o𝑟 > 0), then there exists 𝛿 >̃ 0
such that 𝑓(𝑥)(𝜆) < 0 (o𝑟 > 0) satisfying |𝑥 − 𝑥0| <̃ 𝛿.

Proof. The proof directly follows from Proposition 37 by
taking 𝜖 = 𝜖 where 𝑓(𝑥0)(𝜆) = −𝜖.

Proposition 39. Let 𝑓 be a continuous function of soft sets
on [𝑎, �̃�]. If 𝑥𝑛 → 𝑥 uniformly over parameter in [𝑎, �̃�], then
𝑓(𝑥𝑛) → 𝑓(𝑥).

Proof. Let 𝑓 be continuous at 𝑥0. Now for any 𝜖 >̃ 0 there
exists a 𝛿 >̃ 0 such that |𝑓(𝑥)−𝑓(𝑥0)| <̃ 𝜖whenever |𝑥−𝑥0| < 𝛿.

Since 𝑥𝑛 → 𝑥, there exists a soft natural number 𝑛0 such that
|𝑥𝑛 − 𝑥0| <̃ 𝛿, ∀𝑛 > 𝑛0. Hence |𝑓(𝑥𝑛) − 𝑓(𝑥0)| < 𝜖, ∀𝑛 > 𝑛0.
Thus, 𝑓(𝑥𝑛) → 𝑓(𝑥0).

Lemma 40. If lim𝑛→∞𝑎𝑛 = 𝑎 and 𝑎𝑛 >̃ 0 (<̃ 0), ∀𝑛 ∈ N, then
𝑎 ≥̃ 0 (≤̃ 0).

Proof. Let 𝑎𝑛 >̃ 0, ∀𝑛 ∈ N. If for any 𝜆 ∈ 𝐴, 𝑎(𝜆) < 0, then
for 𝜖(= −𝑎(𝜆)) there exists a soft natural number 𝑛0 such that
|𝑎𝑛 − 𝑎|(𝜆) < 𝜖(𝜆) = 𝜖, ∀𝑛 > 𝑛0(𝜆) ⇒ 𝑎(𝜆) − 𝜖 < 𝑎𝑛(𝜆) <
𝑎(𝜆)+𝜖,∀𝑛 > 𝑛0(𝜆), which is a contradiction.Hence 𝑎(𝜆) ≥ 0,
∀𝜆 ∈ 𝐴; that is, 𝑎 ≥ 0.

We are now in a position to consider the extension of
Bolzano’s theorem in soft setting. This result plays a crucial
role for several other theorems to follow immediately. The
proof of this theorem is interesting.

Proposition 41 (Bolzano’s form). If a function of soft sets 𝑓 is
continuous on [𝑎, �̃�] and 𝑓(𝑎) ⋅ 𝑓(�̃�) < 0, then for any 𝜇 ∈ 𝐴
there exists �̃� ∈ [𝑎, �̃�] such that 𝑓(�̃�)(𝜇) = 0.

Proof. Without loss of generality, let 𝑓(𝑎)(𝜇) < 0. Let us
construct a set 𝑆 = {𝑥 : 𝑓(𝑦)(𝜇) < 0 ∀𝑦 ∈ [𝑎, 𝑥]}. Since
𝑓 is continuous at 𝑎, there exists a 𝛿1>̃0 (𝑎 + 𝛿1/2<̃�̃�) such
that 𝑓(𝑥) < 0 for all 𝑥 ∈ [𝑎, 𝑎 + 𝛿1/2]. Therefore, the set 𝑆 is
nonempty. Clearly the soft real numbers form a poset under
the relation ≤̃ on 𝑆. So by Hausdorff maximality principle
there exists a maximal totally ordered subset 𝑆 = {𝑟𝛼 : 𝛼 ∈ Λ}
of 𝑆. Let �̃�(𝜆) = sup{𝑟𝛼(𝜆) : 𝛼 ∈ Λ} for all 𝜆 ∈ 𝐴. Since
𝑟𝛼 ∈ 𝑆 ∀𝛼 ∈ Λ, 𝑎 ≤̃ 𝑟𝛼 ≤̃ �̃�. Hence clearly �̃� ∈ [𝑎, �̃�]. Now if
𝑓(�̃�)(𝜇) = 0, then the theorem is proved. If not, then either
(i) 𝑓(�̃�)(𝜇) > 0 or (ii) 𝑓(�̃�)(𝜆) < 0.

Since 𝑟𝛼s are the members of the totally ordered set 𝑆, for
any 𝛼, 𝛽 ∈ Λ, [𝑎, 𝑟𝛼] ⊆ or ⊇ [𝑎, 𝑟𝛽]. Hence 𝑓(𝑦)(𝜇) < 0,
∀𝑦 ∈ ⋃𝛼∈Λ[𝑎, 𝑟𝛼].

Now we shall show that

for 𝑠 ∈ [𝑎, �̃�]

with 𝑠 <̃ �̃�,

𝑓 (𝑠) (𝜇) < 0.

(∗)

Proof. Since 𝑠 <̃ �̃� and �̃�(𝜆) = sup{𝑟𝛼(𝜆) : 𝛼 ∈ Λ} for all
𝜆 ∈ 𝐴, by the property of supremum for any 𝜆 ∈ 𝐴, there
exists a 𝑟𝛼𝜆 ∈ 𝑆 such that 𝑠(𝜆) < 𝑟𝛼𝜆(𝜆) ≤ �̃�(𝜆); that is, 𝑠(𝜆) ∈
[𝑎, 𝑟𝛼𝜆](𝜆), which implies 𝑠(𝜆) ∈ ⋃𝛼∈Λ[𝑎, 𝑟𝛼](𝜆). Since 𝜆 is
arbitrary, 𝑠 ∈ ⋃𝛼∈Λ[𝑎, 𝑟𝛼]. Hence 𝑓(𝑠)(𝜇) < 0.

Now consider the possibility (i) If 𝑓(�̃�)(𝜇) > 0. Then
by the continuity of 𝑓 at �̃� there exists a 𝛿 >̃ 0 such that
𝑓(𝑥)(𝜇) > 0 for every |𝑥 − �̃�| <̃ 𝛿 in [𝑎, �̃�]. Therefore,
we can find a �̃�0 <̃ �̃� with |�̃�0 − �̃�| <̃ 𝛿 in [𝑎, �̃�] such that
𝑓(�̃�0)(𝜇) > 0, which contradicts the (∗). Hence possibility
(i) is not possible; that is, 𝑓(�̃�)(𝜇) cannot be greater than 0.

Next consider the possibility (ii) 𝑓(�̃�)(𝜇) < 0. We show
that either there exists a point to serve the theorem or �̃� ∈ 𝑆.
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By (∗) for any 𝑠 <̃ �̃� in [𝑎, �̃�], 𝑓(𝑠)(𝜇) < 0. Choose any 𝑥 ∈
[𝑎, �̃�] with 𝑥(𝜆) = �̃�(𝜆) for some 𝜆 ∈ 𝐴 and 𝑥(𝜆) ̸= �̃�(𝜆)
for some 𝜆 ∈ 𝐴. If 𝑓(𝑥)(𝜇) = 0 for any such soft number,
then the theorem is proved. If 𝑓(𝑥)(𝜇) > 0, then proceeding
as in possibility (i) we have a contradiction. So if 𝑓(𝑥)(𝜇) ̸= 0
for such soft numbers, then 𝑓(𝑥)(𝜇) < 0; that is, 𝑥 ∈ [𝑎, �̃�]
implies 𝑓(𝑥)(𝜇) < 0. Thus, either there exists a soft number
to serve the theorem or �̃� ∈ 𝑆.

Now if �̃� ∈ 𝑆 and since �̃� ̸= �̃� (as 𝑓(�̃�)(𝜇) < 0 and
𝑓(�̃�)(𝜇) > 0, which follows from the condition𝑓(𝑎)⋅𝑓(�̃�) < 0
and 𝑓(𝑎)(𝜇) < 0), then there exists a ] ∈ 𝐴 such that �̃�(]) <
�̃�(]). Choose a 𝜖 > 0 such that �̃�(]) + 𝜖 < �̃�(]). Now if we
define �̃� as �̃�(𝜆) = �̃�(𝜆) for 𝜆(∈ 𝐴) ̸= ] and �̃�(]) = �̃�(]) + 𝜖,
then �̃� ∉ 𝑆; otherwise, it contradicts that �̃� is the supremum
of the maximal chain 𝑆. Therefore, there exists a 𝑝1 ∈ [𝑎, �̃�]
such that 𝑓(𝑝1)(𝜇) ̸< 0. If 𝑓(𝑝1)(𝜇) = 0 again, the theorem is
served. If𝑓(𝑝1)(𝜇) > 0, then, since𝑝1 ∈ [𝑎, �̃�] but𝑝1 ∉ [𝑎, �̃�],
by construction of �̃� it follows that �̃�(]) < 𝑝1(]) and 𝑝1(𝜆) ≤
�̃�(𝜆), ∀𝜆(∈ 𝐴) ̸= 𝜇. Now construct another soft number 𝑞1
such that 𝑞1(𝜆) = 𝑝1(𝜆) for 𝜆(∈ 𝐴) ̸= ] and 𝑞1(]) = �̃�(]).
Clearly 𝑞1 ∈ [𝑎, �̃�], so 𝑓(𝑞1)(𝜇) < 0 as we are considering the
remaining possibility �̃� ∈ 𝑆.

Now 𝑝1, 𝑞1 ∈ [𝑎, �̃�] and 𝑓(𝑝1)(𝜇) > 0 and 𝑓(𝑞1)(𝜇) < 0.
Take 𝑟1 = (𝑝1 + 𝑞1)/2 (∈ [𝑎, �̃�]). If 𝑓(𝑟1)(𝜇) = 0, then the
theorem is proved. If𝑓(𝑟1)(𝜇) > 0 choose𝑝2 = 𝑟1 and 𝑞2 = 𝑞1;
otherwise 𝑝2 = 𝑝1 and 𝑞2 = 𝑟1. In the similar argument
choose 𝑟𝑛 = (𝑝𝑛+𝑞𝑛)/2, and if𝑓(𝑟𝑛)(𝜇) = 0, then the theorem
is proved. If 𝑓(𝑟𝑛)(𝜇) > 0 choose 𝑝𝑛+1 = 𝑟𝑛 and 𝑞𝑛+1 = 𝑞𝑛;
otherwise 𝑝𝑛+1 = 𝑝𝑛 and 𝑞𝑛+1 = 𝑟𝑛. In this way if𝑓(𝑟𝑖)(𝜇) = 0,
then the theorem is proved. Otherwise we get sequences {𝑝𝑛}
and {𝑞𝑛} such that𝑓(𝑝𝑛)(𝜇) > 0 and𝑓(𝑞𝑛)(𝜇) < 0. Clearly the
sequence {𝐼𝑛}, where 𝐼𝑛 = [𝑞𝑛(]), 𝑝𝑛(])] for all 𝑛 ∈ N, satisfies
the nested intervals theorem.Therefore, there exists a unique
𝑧 ∈ ⋂𝑛∈N[𝑞𝑛(]), 𝑝𝑛(])] and 𝑞𝑛(]) → 𝑧 , 𝑝𝑛(]) → 𝑧 as 𝑛 →
∞. By the construction of the sequence {𝑝𝑛}, {𝑞𝑛}, 𝑝𝑛(𝜆) =
𝑞𝑛(𝜆) = 𝑝1(𝜆) for all 𝜆(∈ 𝐴) ̸= ]. Hence 𝑞𝑛 → �̃� and 𝑝𝑛 → �̃�
as 𝑛 → ∞, where �̃�(𝜆) = 𝑝1(𝜆) for all 𝜆��( ∈ 𝐴) = ] and
�̃�(]) = 𝑧. Since the sequences {𝑝𝑛}, {𝑞𝑛} only vary in the
]th parameter and are constant in the other parameter, the
sequences {𝑝𝑛}, {𝑞𝑛} converge to �̃� parameterwise uniformly.
Consequently, 𝑓(𝑞𝑛) → 𝑓(�̃�) and 𝑓(𝑝𝑛) → 𝑓(�̃�) as 𝑛 → ∞,
but𝑓(𝑞𝑛)(𝜇) < 0 and𝑓(𝑝𝑛)(𝜇) > 0 for all 𝑛 ∈ N, which shows
that 𝑓(�̃�)(𝜇) ≤ 0 and 𝑓(𝑧)(𝜇) ≥ 0. Hence 𝑓(�̃�)(𝜇) = 0.

Corollary 42. If a function of soft sets𝑓 is continuous on [𝑎, �̃�]
and if for 𝜆 ∈ 𝐴, 𝑓(𝑎)(𝜆) ⋅ 𝑓(�̃�)(𝜆) < 0, then there exists �̃� ∈
[𝑎, �̃�] such that 𝑓(�̃�)(𝜆) = 0.

Remark 43. If a function of soft sets 𝑓 is continuous on [𝑎, �̃�]
and𝑓(𝑎)⋅𝑓(�̃�) <̃ 0, then theremay not exist any �̃� ∈ [𝑎, �̃�] such
that 𝑓(�̃�) = 0, which can be shown by the following example.

Example 1. Let 𝑓 be a function of soft sets with parameter
set 𝐴 = {𝜆, 𝜇} defined on [0.1, 0.9] by 𝑓(𝑥)(𝜆) = 𝑥(𝜆) +
𝑥(𝜇) − 1 and 𝑓(𝑥)(𝜇) = (𝑥(𝜆))2 + (𝑥(𝜇))2 − 1. Clearly 𝑓 is
continuous on [0.1, 0.9], but 𝑓(𝑥)(𝜆) = 𝑓(𝑥)(𝜇) = 0 only

when 𝑥(𝜆) = 1 or 0, which does not belong to the domain
set, hence showing the result.

Proposition 44. If𝑓 is a continuous function on a soft interval
[𝑎, �̃�] over a finite parameter set 𝐴, then 𝑓 is bounded.

Proof. If possible let 𝑓 be not bounded above. Then there
does not exist any �̃� such that |𝑓(𝑥)| ≤̃ �̃� ∀𝑥 ∈ [𝑎, �̃�]; that
is, there exists a 𝜆 ∈ 𝐴, such that for every 𝑛 ∈ N there
exists a sequence {𝑥𝑛} ∈ [𝑎, �̃�] with |𝑓(𝑥𝑛)(𝜆)| > 𝑛 ∀𝑛 ∈ N

(set of natural numbers). Now since {𝑥𝑛} is sequence in [𝑎, �̃�],
by Proposition 27, there exists a subsequence {𝑥𝑛𝑘} of {𝑥𝑛}
converging to some soft number 𝑥 ∈ [𝑎, �̃�]. Since the set
parameter 𝐴 is finite, so the sequence 𝑥𝑛𝑘 → 𝑥 uniformly
over parameter, which implies 𝑓(𝑥𝑛𝑘) → 𝑓(𝑥). However,
|𝑓(𝑥𝑛𝑘)(𝜆)| > 𝑛𝑘, ∀𝑘 ∈ N, which implies |𝑓(𝑥)(𝜆)| ≥ 𝑛𝑘,
∀𝑘 ∈ N, a contradiction. Hence 𝑓 is bounded.

Note. If the parameter set is not finite then a continuous
function on a soft interval [𝑎, �̃�]may not be bounded, which
will considered by Example 2.

Lemma45. Let [0, 1] be the closed interval inR endowed with
the usual topology. If 𝑋 = ∏∞𝑛=1[0, 1], then there exists an
unbounded continuous function 𝐹 : 𝑋 → R with respect to
box topology in𝑋.

Proof. Clearly 𝑋 is a normal space and 𝐴 = ∏∞𝑛=1{0, 1} is
a closed subset of 𝑋. Now define a function 𝑓 : 𝐴 →
R such that 𝑓(𝑥1, 𝑥2, 𝑥3, . . .) = 0 if 𝑥𝑖 = 0, ∀𝑖 ∈ N,
𝑓(𝑥1, 𝑥2, 𝑥3, . . .) = 2𝑛 if 𝑥2𝑛 is the first nonzero in the
sequence {𝑥𝑖}, and 𝑓(𝑥1, 𝑥2, 𝑥3, . . .) = −(2𝑛 + 1) if 𝑥2𝑛+1 is
the first nonzero in the sequence {𝑥𝑖}. Since, with the box
topology, the subspace topology on 𝐴 is discrete topology, 𝑓
is continuous and by construction𝑓 is unbounded in𝐴. Now
since𝑋 is a normal space, by Tietze’s extension theorem there
exists a continuous function 𝐹 defined on𝑋 such that 𝑓(𝑎) =
𝐹(𝑎), ∀𝑎 ∈ 𝐴, so 𝐹 is unbounded, hence the lemma.

Example 2. Let us consider the soft interval [0, 1] and 𝐴 =
{𝜆𝑖 : 𝑖 ∈ N}. If we define a function of soft sets 𝑔 such that
𝑔(𝑥)(𝜆) = 𝐹(𝑥(𝜆1), 𝑥(𝜆2), 𝑥(𝜆3), . . .) if 𝜆 = 𝜆1 and 𝑔(𝑥)(𝜆) =
0 if 𝜆 ̸= 𝜆1, where 𝐹 is as in Lemma 45, taking any 𝑥0 ∈
[0, 1], then since 𝐹 is continuous, for any 𝜖 >̃ 0 there exists
𝛿𝑖 > 0, 𝑖 = 1, 2, 3, . . . such that |𝐹(𝑥(𝜆1), 𝑥(𝜆2), 𝑥(𝜆3), . . .) −
𝐹(𝑥0(𝜆1), 𝑥0(𝜆2), 𝑥0(𝜆3), . . .)| < 𝜖(𝜆1) whenever |𝑥(𝜆𝑖) −
𝑥0(𝜆𝑖)| < 𝛿𝑖, ∀𝑖 = 1, 2, 3, . . ., which shows that |𝑔(𝑥)(𝜆1) −
𝑔(𝑥0)(𝜆1)| < 𝜖(𝜆1) whenever |𝑥 − 𝑥0| <̃ 𝛿 (where 𝛿(𝜆𝑖) = 𝛿𝑖
for 𝑖 = 1, 2, 3, . . .) and |𝑔(𝑥)(𝜆𝑖) − 𝑔(𝑥0)(𝜆𝑖)| = 0 ∀𝑖 ̸= 1.
Hence 𝑔 is continuous but unbounded.

Proposition 46 (intermediate value property). If a function
of soft real sets is continuous on [𝑎, �̃�] and if 𝑓(𝑎)(𝜆) < 𝑘 <
𝑓(�̃�)(𝜆) for some 𝜆 ∈ 𝐴, then there exists 𝑐 between 𝑎 and �̃�
such that 𝑓(𝑐)(𝜆) = 𝑘.

Proof. Consider the function of soft sets 𝑔(𝑥) = 𝑓(𝑥) −
𝑘. Then clearly 𝑔(𝑥) is continuous in [𝑎, �̃�] and
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𝑔(𝑎)(𝜆) ⋅ 𝑔(�̃�)(𝜆) < 0. Therefore, by Corollary 42 there
exists 𝑐 ∈ [𝑎, �̃�] such that 𝑔(𝑐)(𝜆) = 0; that is, 𝑔(𝑐)(𝜆) =
𝑓(𝑐)(𝜆) − 𝑘 = 0; that is, 𝑓(𝑐)(𝜆) = 𝑘.

Proposition47 (fixed point theorem). If a function of soft real
sets 𝑓 is continuous on [𝑎, �̃�] and the value is also in the soft
interval [𝑎, �̃�], then for any 𝜆 ∈ 𝐴 there exists 𝑐 ∈ [𝑎, �̃�] such
that 𝑓(𝑐)(𝜆) = 𝑐(𝜆).

Proof. Consider the function of soft sets 𝑔(𝑥) = 𝑓(𝑥) − 𝑥.
If 𝑓(𝑎)(𝜆) = 𝑎(𝜆) or 𝑓(�̃�)(𝜆) = �̃�(𝜆), then the proof is over.
If not, then clearly 𝑔(𝑥) is continuous in [𝑎, �̃�] and 𝑔(𝑎)(𝜆) ⋅
𝑔(�̃�)(𝜆) < 0. Thus, by Corollary 42 there exists 𝑐 ∈ [𝑎, �̃�] such
that 𝑔(𝑐)(𝜆) = 0; that is, 𝑓(𝑐)(𝜆) − 𝑐(𝜆) = 0; that is, 𝑓(𝑐)(𝜆) =
𝑐(𝜆).

Result 2. Let 𝑓 be a continuous function of soft sets on [𝑎, �̃�].
Further if 𝑓 is bounded, there may not exist any soft real
number in [𝑎, �̃�] attaining the bound parameterwise.

Consider the function 𝐹 as in Lemma 45 and ℎ(𝑥) =
tan−1𝑥 in R. Clearly the range set of 𝐹 is R, so ℎ ∘ 𝐹 : 𝑋 →
R is continuous. Now if we consider the function 𝑔 as in
Example 2, taking ℎ ∘ 𝐹 in place of 𝐹, then exactly by the
similar argument 𝑔 is a continuous function of soft sets in
[𝑎, �̃�] with range set in 𝜆1 parameter being (−𝜋/2, 𝜋/2) by
Proposition 46 (intermediate value property), which shows
the result.

Proposition 48. Let a function of soft sets 𝑓 be continuous on
a soft set 𝑆 and 𝑘 be a real number. If

𝑔 (𝑥) (𝜆) =
{
{
{

𝑘 − 𝑓 (𝑥) (𝜆) for 𝜆 = 𝜇
𝑓 (𝑥) (𝜆) 𝜆 ̸= 𝜇,

(2)

then the function of soft sets 𝑔 is continuous.

Proof. Let 𝑥0 ∈ 𝑆. Since 𝑓 is continuous for any 𝜖 >̃ 0, there
exists 𝛿 >̃ 0 such that |𝑓(𝑥)−𝑓(𝑥0)| <̃ 𝜖whenever |𝑥−𝑥0| <̃ 𝛿.
By the definition of 𝑔we have |𝑓(𝑥)−𝑓(𝑥0)| = |𝑔(𝑥)−𝑔(𝑥0)|.
Hence 𝑔 is continuous.

Proposition 49. Let a function of soft sets 𝑓 be continuous on
a soft set 𝑆. If

𝑔 (𝑥) (𝜆) =
{{
{{
{

1
𝑓 (𝑥) (𝜆) for 𝜆 = 𝜇

𝑓 (𝑥) (𝜆) 𝜆 ̸= 𝜇

𝑓 (𝑥 (𝜇)) ̸= 0 ∀𝑥 ∈ 𝑆,

(3)

then the function of soft sets 𝑔 is continuous.

Proof. We have

𝑔 (𝑥) − 𝑔 (𝑥0)
 (𝜆)

=
{{{
{{{
{

𝑓 (𝑥) (𝜆) − 𝑓 (𝑥0) (𝜆)
 if 𝜆 ̸= 𝜇

𝑓 (𝑥) (𝜆) − 𝑓 (𝑥0) (𝜆)
𝑓 (𝑥) (𝜆)


𝑓 (𝑥0) (𝜆)


if 𝜆 = 𝜇.

(4)

Since 𝑓 is continuous at 𝑥0, there exists a 𝛿 > 0 such
that (1/2)|𝑓(𝑥0)(𝜇)| ≤ |𝑓(𝑥)(𝜇)| <̃ (3/2)|𝑓(𝑥0)(𝜇)| whenever
|𝑥 − 𝑥0| <̃ 𝛿 (by result 4.8), which implies 1/|𝑓(𝑥)(𝜇)| <
2/|𝑓(𝑥0)(𝜇)|. Hence for any 𝜖 > 0, |𝑔(𝑥) − 𝑔(𝑥0)|(𝜇) ≤
(2/|𝑓(𝑥0)|(𝜇))(1/|𝑓(𝑥0)(𝜇)|)|𝑓(𝑥)(𝜇)−𝑓(𝑥0)(𝜇)|, and for 𝜆 ̸=
𝜇, |𝑓(𝑥)−𝑓(𝑥0)|(𝜆) = |𝑔(𝑥)−𝑔(𝑥0)|(𝜆) can bemade less than
𝜖 directly by the continuity of 𝑓.

Remark 50. Let a function of soft sets 𝑓 from (𝐹, 𝐴) to (𝐺, 𝐴)
satisfy the condition that for any 𝜆 ∈ 𝐴, 𝑦(𝜆) = �̃�(𝜆) (�̃�, 𝑦 ∈
(𝐺, 𝐴)) implies 𝑓(𝑦)(𝜆) = 𝑓(�̃�)(𝜆). Then if we define 𝑓𝜆 :
𝐹(𝜆) → 𝐺(𝜆) for any 𝑥 ∈ 𝐹(𝜆) 𝑓𝜆(𝑥(𝜆)) = 𝑓(𝑥)(𝜆) if 𝑥 =
𝑥(𝜆), then clearly 𝑓𝜆 is a function from 𝐹(𝜆) to 𝐺(𝜆).

Proposition 51. A function of soft sets 𝑓 satisfying the prop-
erty of Remark 50 is continuous at 𝑥0 iff the function 𝑓𝜆 is
continuous at 𝑥0(𝜆), ∀𝜆 ∈ 𝐴.

Proof. Let the function of soft sets𝑓 be continuous at𝑥0. Take
any 𝜖 > 0; then for 𝜖 >̃ 0, there exists a soft element 𝛿 >̃ 0 such
that |𝑓(𝑥) − 𝑓(𝑥0)| <̃ 𝜖 whenever |𝑥 − 𝑥0| <̃ 𝛿; that is, |𝑓(𝑥) −
𝑓(𝑥0)|(𝜆) < 𝜖(𝜆) = 𝜖 whenever |𝑥 − 𝑥0|(𝜆) <̃ 𝛿(𝜆), ∀𝜆 ∈ 𝐴;
that is, |𝑓𝜆(𝑥(𝜆)) − 𝑓𝜆(𝑥0(𝜆))| < 𝜖 whenever |𝑥(𝜆) − 𝑥0(𝜆)| <
𝛿(𝜆) (since 𝑓𝜆(𝑥(𝜆)) = 𝑓(𝑥)(𝜆) is independent for the other
parameter), which shows that 𝑓𝜆 is continuous at 𝑥0(𝜆), ∀𝜆 ∈
𝐴.

Conversely, let 𝑓𝜆 be continuous at 𝑥0(𝜆), ∀𝜆 ∈ 𝐴. Take
any 𝜖 >̃ 0. Since𝑓𝜆 is continuous at 𝑥0(𝜆), ∀𝜆 ∈ 𝐴, so for every
𝜖(𝜆) > 0, there exists 𝛿𝜆 such that |𝑓𝜆(𝑥(𝜆)) − 𝑓𝜆(𝑥0(𝜆))| <
𝜖(𝜆) whenever |𝑥(𝜆) − 𝑥0(𝜆)| < 𝛿𝜆. Now if we take 𝛿(𝜆) =
𝛿𝜆, ∀𝜆 ∈ 𝐴, then we have |𝑓(𝑥) − 𝑓(𝑥0)| <̃ 𝜖 whenever |𝑥 −
𝑥0| <̃ 𝛿.

Proposition 52. Let 𝑓 be continuous function of soft sets on
[𝑎, �̃�] satisfying the property of Remark 50 iff 𝑥𝑛 → 𝑥 in [𝑎, �̃�]
implies 𝑓(𝑥𝑛) → 𝑓(𝑥).

Proof. Let 𝑓 be continuous at 𝑥0. By Proposition 51, for any
𝜆 ∈ 𝐴 and 𝜖 > 0, there exists a 𝛿 > 0 such that |𝑓(𝑥)(𝜆) −
𝑓(𝑥0)(𝜆)| < 𝜖 whenever |𝑥(𝜆) − 𝑥0(𝜆)| < 𝛿. Since 𝑥𝑛 → 𝑥,
for any 𝛿 > 0, there exists a soft natural number 𝑛0 such that
|𝑥𝑛(𝜆) − 𝑥0(𝜆)| <̃ 𝛿(𝜆) = 𝛿, ∀𝑛 > 𝑛0(𝜆). Hence |𝑓(𝑥𝑛)(𝜆) −
𝑓(𝑥0)(𝜆)| < 𝜖, ∀𝑛 > 𝑛0. Therefore, 𝑓(𝑥𝑛)(𝜆) → 𝑓(𝑥0)(𝜆).
Since 𝜆 ∈ 𝐴 is arbitrary, 𝑓(𝑥𝑛)(𝜆) → 𝑓(𝑥0)(𝜆), ∀𝜆 ∈ 𝐴; that
is, 𝑓(𝑥𝑛) → 𝑓(𝑥0).

Conversely, let 𝑥𝑛 → 𝑥 in [𝑎, �̃�] implies 𝑓(𝑥𝑛) → 𝑓(𝑥)
hold. Since the function of soft sets 𝑓 satisfies the property
of Remark 50, 𝑓(𝑥)(𝜆) is independent of other parameters
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for all 𝜆 ∈ 𝐴. Thus, 𝑥𝑛(𝜆) → 𝑥(𝜆) in [𝑎(𝜆), �̃�(𝜆)] implies
𝑓(𝑥𝑛)(𝜆) → 𝑓(𝑥)(𝜆) for all 𝜆 ∈ 𝐴; that is, 𝑥𝑛(𝜆) → 𝑥(𝜆) in
[𝑎(𝜆), �̃�(𝜆)] implies 𝑓𝜆(𝑥𝑛(𝜆)) → 𝑓𝜆(𝑥(𝜆)) for all 𝜆 ∈ 𝐴; that
is, 𝑓𝜆 is continuous for all 𝜆 ∈ 𝐴. Hence by Proposition 51𝑓 is
continuous on [𝑎, �̃�].

Proposition 53. If a function of soft sets 𝑓 is continuous on a
closed soft interval [𝑎, �̃�] satisfying the property of Remark 50,
then 𝑓 is bounded therein.

Proof. Without loss of generality, let 𝑓 be not bounded from
above, then there does not exist any �̃� such that 𝑓(𝑥) ≤̃ �̃�,
∀𝑥 ∈ [𝑎, �̃�]. That is, there exists some 𝜆 ∈ 𝐴 such that there
does not exist any real number𝑀𝜆 such that 𝑓(𝑥)(𝜆) ≤ 𝑀𝜆,
∀𝑥 ∈ [𝑎, �̃�]. That is, for any 𝑛 ∈ N there exists {𝑥𝑛} ∈
[𝑎, �̃�] such that 𝑓(𝑥𝑛)(𝜆) > 𝑛. However, the sequence of soft
numbers {𝑥𝑛} is defined on bounded soft closed interval, so by
Proposition 26 there exists soft subsequence of soft numbers
{𝑦𝑛} converging to some soft real number 𝑥(∈ [𝑎, �̃�]). Since 𝑓
is continuous and 𝑦𝑛 → 𝑥, we have 𝑓(𝑦𝑛) → 𝑓(𝑥). However,
𝑓(𝑥𝑛)(𝜆) > 𝑛, ∀𝑛 ∈ N⇒f(𝑦𝑛)(𝜆) > 𝑛, ∀𝑛 ∈ N⇒f(𝑥)(𝜆) ≥
𝑛 𝑛 ∈ N, which is a contradiction. Hence 𝑓 is bounded in
[𝑎, �̃�].

Proposition 54. Let 𝑓 be a continuous function of soft sets
on [𝑎, �̃�] satisfying the property of Remark 50 and �̃� be a soft
supremum of the set 𝑆 = {𝑓(𝑥) : 𝑥 ∈ [𝑎, �̃�]}; that is, (�̃�(𝜆) =
sup{𝑓(𝑥)(𝜆) : 𝑥 ∈ [𝑎, �̃�]}); then there exists a 𝑐 ∈ [𝑎, �̃�] such
that 𝑓(𝑐) = �̃�.

Proof. Let �̃� be supremum of 𝑆. Take 𝜆 ∈ 𝐴; then by the
l.u.b property for any 𝑛 ∈ N, there exists 𝑥𝜆𝑛 ∈ [𝑎, �̃�]
such that �̃�(𝜆) − 1/𝑛 <̃ 𝑓(𝑥𝜆𝑛)(𝜆) (= 𝑓𝜆(𝑥𝜆𝑛(𝜆))) ≤̃ �̃�(𝜆). If
we take 𝑥𝑛(𝜆) = 𝑥𝜆𝑛(𝜆), then �̃�(𝜆) − 1/𝑛 <̃ 𝑓(𝑥𝑛)(𝜆) (=
𝑓𝜆(𝑥𝜆𝑛(𝜆))) ≤̃ �̃�(𝜆) for all 𝜆 ∈ 𝐴. That is, �̃� − 1/𝑛 <̃ 𝑓(𝑥𝑛) ≤̃ �̃�.
Since the sequence {𝑥𝑛} is in bounded soft set [𝑎, �̃�], by
Proposition 26, there exists a soft subsequence {𝑦𝑛} of {𝑥𝑛}
such that {𝑦𝑛} converges to some soft number in [𝑎, �̃�] (say
𝑐). That is, 𝑦𝑛 → 𝑐 in [𝑎, �̃�]. Since �̃� − 1/𝑛 <̃ 𝑓(𝑦𝑛) ≤̃ �̃� (by
the construction of the sequence {𝑦𝑛}), by Sandwich the-
orem clearly 𝑓(𝑦𝑛) → �̃�. However, 𝑓 is continuous on
[𝑎, �̃�] satisfying Remark 50 and 𝑦𝑛 → 𝑐 in [𝑎, �̃�], so
𝑓(𝑦𝑛) → 𝑓(𝑐). Hence by the uniqueness of the limit 𝑓(𝑐) =
�̃�.

Proposition 55. If a function of soft sets is continuous on [𝑎, �̃�]
satisfying the property of Remark 50 and 𝑓(𝑎) ⋅ 𝑓(�̃�) < 0, then
there exists 𝑐 ∈ [𝑎, �̃�] such that 𝑓(𝑐) = 0.

Proof. By Proposition 41 for any 𝜆 ∈ 𝐴 there exists a 𝑐𝜆 such
that 𝑓(𝑐𝜆)(𝜆) = 0. Now if we consider a soft real number 𝑐
such that 𝑐(𝜆) = 𝑐𝜆(𝜆), then clearly 𝑓𝜆(𝑐(𝜆)) = 𝑓(𝑐)(𝜆) =
𝑓(𝑐𝜆)(𝜆) = 0.

Similarly, from Propositions 46 and 47, we have the
following.

Proposition 56 (intermediate value property). Let 𝑓 be a
continuous function of soft sets on [𝑎, �̃�] satisfying the property
of Remark 50. If 𝑓(𝑎) < �̃� < 𝑓(�̃�), then there exists 𝑐 between
𝑎 and �̃� such that 𝑓(𝑐) = �̃�.

Proposition 57 (fixed point theorem). If a function of soft sets
𝑓 is continuous on [𝑎, �̃�] satisfying the property of Remark 50
and the value is also in the soft interval [𝑎, �̃�], then there exists
𝑐 ∈ [𝑎, �̃�] such that 𝑓(𝑐) = 𝑐.

5. Differentiation

Definition 58. A function of soft sets 𝑓 defined on a soft
neighborhood of 𝑥 is said to be differentiable at 𝑥 iff 𝑓 can be
written as 𝑓(𝑥 + ℎ̃) −𝑓(𝑥) = ℎ̃(𝑔(𝑥) + 𝜖) for some function of
soft sets 𝑔, where 𝜖 → 0 as ℎ̃ → 0. Furthermore the function
of soft sets 𝑔 is said to be the derivative of 𝑓 at 𝑥 and denoted
by 𝑓(𝑥) = 𝑔(𝑥).

Example 3 (𝑓(𝑥) = 𝑥 is differentiable). 𝑓(𝑥 + ℎ̃) − 𝑓(𝑥) =
ℎ̃(1 + 𝜖) where 𝜖 = 0 as ℎ̃ → 0. Therefore, 𝑓 is differentiable
and 𝑓(𝑥) = 1̃.

Proposition 59. If 𝑓 and 𝑔 are differentiable at 𝑐, then scalar
product, sum, and differences are also differentiable at 𝑐 and

(1) (�̃�𝑓)(𝑐) = �̃�𝑓(𝑐), where �̃� is a soft number;
(2) (𝑓(𝑐) + 𝑔(𝑐)) = 𝑓(𝑐) + 𝑔(𝑐);
(3) (𝑓(𝑐) − 𝑔(𝑐)) = 𝑓(𝑐) − 𝑔(𝑐).

Proof. (1) Since𝑓 is differentiable,𝑓(𝑐+ℎ̃) − 𝑓(𝑐) = ℎ̃(𝑓(𝑐) +
𝜖) where 𝜖 → 0 as ℎ̃ → 0, which implies �̃�𝑓(𝑐 + ℎ̃) − �̃�𝑓(𝑐) =
ℎ̃(�̃�𝑓(𝑐) + �̃�𝜖) where 𝜖 → 0 as ℎ̃ → 0, that is, implies 𝑔(𝑐 +
ℎ̃) − 𝑔(𝑐) = ℎ̃(�̃�𝑓(𝑐) + �̃�𝜖) where �̃�𝜖 → 0 as ℎ̃ → 0. Hence 𝑓
is differentiable and 𝑔(𝑐) = �̃�𝑓(𝑐).

Proof of (2) and (3) is trivial.

Proposition 60. If a function of soft sets 𝑓 is constant in 𝑆,
then 𝑓 is differentiable in 𝑆 and 𝑓(𝑥) = 0, ∀𝑥 ∈ 𝑆.

Proof. Since𝑓 is constant in 𝑆, for all 𝑥 ∈ 𝑆,𝑓(𝑥+ℎ̃) − 𝑓(𝑥) =
0 for all ℎ̃ such that 𝑥 + ℎ̃ ∈ 𝑆. Choosing 𝑔(𝑥) = 0, ∀𝑥 ∈ 𝑆,
and 𝜖 = 0, we can write 𝑓(𝑥 + ℎ̃) − 𝑓(𝑥) = ℎ̃(𝑔(𝑥) + 𝜖). Hence
𝑓 is differentiable at 𝑥 ∈ 𝑆 and 𝑓(𝑥) = 0, ∀𝑥 ∈ 𝑆.

Proposition 61. If𝑓 is differentiable at 𝑥, then𝑓 is continuous
at 𝑥.

Proof. Since 𝑓 is differentiable so there exists a function of
soft sets 𝑔 such that |𝑓(𝑥 + ℎ̃) − 𝑓(𝑥)| = |ℎ̃||𝑔(𝑥) + 𝜖|, where
𝜖 → 0 as ℎ̃ → 0. Which shows that |𝑓(𝑥 + ℎ̃) − 𝑓(𝑥)| → 0 as
ℎ̃ → 0.Hence 𝑓 is continuous.

Proposition 62. If 𝑓(𝑐)(𝜆) > 0, then there exists 𝛿 > 0 such
that for any 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿), 𝑓(𝑥)(𝜆) ≷ 𝑓(𝑐)(𝜆) according to
𝑥(𝜆) ≷ 𝑐(𝜆).
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Proof. Since𝑓 is differentiable so𝑓 can bewritten as𝑓(𝑐+ℎ̃)−
𝑓(𝑐) = ℎ̃(𝑓(𝑐) + 𝜖) where 𝜖 → 0 as ℎ̃ → 0 and 𝑓(𝑐)(𝜆) > 0.
Thus, there exists 𝛿 > 0 such that (𝑓(𝑐) + 𝜖)(𝜆) > 0whenever
0 < |ℎ̃| <̃ 𝛿. Hence 𝑓(𝑐 + ℎ̃)(𝜆) − 𝑓(𝑐)(𝜆) ≷ 0 according to
ℎ̃(𝜆) ≷ 0. That is, 𝑓(𝑥)(𝜆) ≷ 𝑓(𝑐)(𝜆) according to 𝑥(𝜆) ≷
𝑐(𝜆).

Definition 63. A function of soft sets 𝑓 is said to be differen-
tiable on [𝑎, �̃�] iff 𝑓 is differentiable at 𝑥, ∀𝑥 ∈ [𝑎, �̃�].

Proposition 64. Let 𝑓 be a bounded function of soft sets
differentiable on [𝑎, �̃�]. If for some 𝜆 ∈ 𝐴, 𝑓(𝑎)(𝜆) = 𝑓(�̃�)(𝜆)
and 𝑓 attains bound for parameter 𝜆 in an interior point of
[𝑎, �̃�], then there exists 𝑐 ∈ [𝑎, �̃�] with 𝑐(𝜆) ∈ (𝑎(𝜆), �̃�(𝜆)) such
that 𝑓(𝑐)(𝜆) = 0.

Proof. Choose 𝜆 ∈ 𝐴. Let𝑀 = sup{𝑓(𝑥)(𝜆) : 𝑥 ∈ [𝑎, �̃�]} and
𝑚 = inf{𝑓(𝑥)(𝜆) : 𝑥 ∈ [𝑎, �̃�]}. If 𝑚 = 𝑀, that is, 𝑓(𝑥)(𝜆) =
𝑚, ∀𝑥 ∈ [𝑎, �̃�], then for any point 𝑥, 𝑥 + ℎ̃ ∈ [𝑎, �̃�] 𝑓(𝑥 +
ℎ̃)(𝜆) − 𝑓(𝑥)(𝜆) = 0; that is, ℎ̃(𝜆)(𝑓(𝑥)(𝜆) + 𝜖(𝜆)) = 0 where
𝜖 → 0 as ℎ̃ → 0. Since ℎ̃ is arbitrary and 𝜖 → 0 as ℎ̃ → 0,
𝑓(𝑥)(𝜆) = 0 for all𝑥 ∈ [𝑎, �̃�]. If𝑀 ̸= 𝑚, then either𝑚 or𝑀 is
different from 𝑓(𝑎)(𝜆) = 𝑓(�̃�)(𝜆). Without loss of generality,
let𝑀 ̸= 𝑓(𝑎)(𝜆) = 𝑓(�̃�)(𝜆), so there exists 𝑐 ∈ [𝑎, �̃�] such that
𝑓(𝑐)(𝜆) = 𝑀. Now if 𝑓(𝑐)(𝜆) > 0, then there exists 𝛿1 > 0
such that 𝑓(𝑐 + ℎ̃)(𝜆) > 𝑓(𝑐)(𝜆) when 0 < ℎ̃ < 𝛿1, which
contradicts the supremum of 𝑓 in [𝑎, �̃�]. Similarly it can be
shown that 𝑓(𝑐)(𝜆) ̸< 0.Hence 𝑓(𝑐)(𝜆) = 0.

Proposition 65. Let 𝑓 be bounded function of soft sets
attaining the bound parameterwise in an interior point of [𝑎, �̃�]
and differentiable on [𝑎, �̃�]. Then for any 𝜆 ∈ 𝐴 there exists
𝑐 ∈ [𝑎, �̃�] such that 𝑓(�̃�)(𝜆)−𝑓(𝑎)(𝜆) = (�̃�(𝜆)−𝑎(𝜆))𝑓(𝑐)(𝜆).

Proof. If we take 𝑔(𝑥) = 𝑓(𝑥) − ((𝑓(�̃�) − 𝑓(𝑎))/(�̃� − 𝑎))𝑥,
then 𝑔(𝑎) = 𝑔(�̃�). Therefore, by Proposition 64, for any
𝜆 ∈ 𝐴 there exists 𝑐 ∈ [𝑎, �̃�] such that 𝑔(𝑐)(𝜆) = 0. That is,
𝑓(𝑐)(𝜆) − (𝑓(�̃�)(𝜆) − 𝑓(𝑎)(𝜆))/(�̃�(𝜆) − 𝑎(𝜆)) = 0. That is,
𝑓(�̃�)(𝜆) − 𝑓(𝑎)(𝜆) = (�̃�(𝜆) − 𝑎(𝜆))𝑓(𝑐)(𝜆).

6. Conclusion

In this paper we have dealt with continuity and differen-
tiability of functions of soft real sets and extended some
celebrated theorems, like Bolzano’s theorem, fixed point
theorem, intermediate value property, and Rolle’s theorem,
in soft settings. There is a huge scope for further study such
as defining higher order derivatives together with extending
Taylors theorem, integration theory, and theory of functions
of several variables in soft setting.
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