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Semantic technologies are the keys to address the problem of information interaction between assorted, heterogeneous, and
distributed devices in the Internet ofThings (IoT). Semantic annotation of IoT devices is the foundation of IoT semantics. However,
the large amount of devices has led to the inadequacy of the manual semantic annotation and stressed the urgency into the research
of automatic semantic annotation. To overcome these limitations, a device-oriented automatic semantic annotation method is
proposed to annotate IoT devices’ information. The processes and corresponding algorithms of the automatic semantic annotation
method are presented in detail, including the information extraction, text classification, property information division, semantic
label selection, and information integration. Experiments show that our method is effective for the automatic semantic annotation
to IoT devices’ information. In addition, compared to a typical rule-based method, the comparison experiment demonstrates that
our approach outperforms this baseline method with respect to the precision and 𝐹-measure.

1. Introduction

The Internet of Things (IoT) is a new dynamic network
generated by information communication between people
and things [1], which is capable of realizing the information
exchange and seamless connection among IoT entities [2].
It enables IoT entities possessing sensorial and computing
capabilities towork together efficiently [3] and provides a new
way for the fine management, operation, and maintenance
of smart city [4]. To enhance the intelligent interoperability
in heterogeneous environments [5], semantic technologies
are always applied to facilitate the semantic data access and
integration, semantic reasoning, and knowledge extraction
[6], so that the information in IoT can be understood
by machines. For example, as an extension of Internet,
semantic Web applies XML, RDF, and ontology technologies
to semantically annotate the resources and information on
the traditional Internet. Ontology is a conceptualized and
formalized specification of domain knowledge. Moreover,
ontology individuals are instances of ontology. As a key
index in semantic Web, semantic similarity is applied in
many fields including semantic Web service discovery [7],
semantic Web service clustering [8], and P2P grids [9]. In
the service-oriented architecture, to improve the ability of
collaboration between heterogeneous entities, the function

of entities and data from the physical world are described
by the forms of semantic services accessed by unified inter-
face. Consequently, the semantization and servitization of
IoT are able to promote the automation and dynamism
of entity discovery, selection, negotiation, and so on. As
one of the most important semantic technologies, semantic
annotation is the key ingredient to make the information in
IoT machinery understandable and to acquire semantic IoT
services.

Semantic annotation in the area of text annotation is the
process of associating machine-understandable labels (i.e.,
semantic information, ontology concepts’ URI) to a word
or a sentence from text [10]. Similarly, semantic annotation
for IoT entities, especially for IoT devices, can be treated as
the process to annotate IoT entities with semantic labels and
further transform them into semantic IoT services. In this
way, they can be depicted by the unified and rich semantic
forms and support semantic service discovery. Alongwith the
development of wireless network technology, the number of
IoT devices, a typical kind of IoT entities, is in a rapid growth.
It is estimated that there will be around 50 billion IoT devices
by 2020 [11]. Due to the large-scale and heterogeneity feature
of data flows generated by IoT [12] and continuous changes
in the state of IoT devices as well as data and volatility of
IoT environments, semantic data handling in IoT becomes
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more challenging and fraught with technical difficulties.
Recently, the researches on semantic annotationmainly focus
on manual or semiautomated annotation [2, 13–18]. Since
the manual or semiautomated annotation methods for such
massive amount of IoT devices are often inefficient, the
automated semantic annotation of IoT devices is becoming
a challenging issue to be addressed.

The purpose of this paper is to describe a device-oriented
automatic semantic annotation method in IoT, including
a series of processes and corresponding algorithms. The
remainder of this paper is organized as follows. Section 2
mainly introduces the related work of semantic annotation
and Section 3 provides a device description framework in
IoT. The process and corresponding algorithms of automatic
semantic annotation of IoTdevices are presented in Section 4.
The experiments of our methods, analysis of experiment
parameters, and method comparison are described in Sec-
tion 5. We close the paper by describing some conclusions
and presenting our future work.

2. Related Work

In the past several decades, the main concentration of
the researches on semantic annotation is semantic anno-
tation tools and platforms, semantic annotation of Web
documents, and semantic annotation in IoT. In particu-
lar, semantic annotation of Web documents occupies the
majority of all researches. Semantic annotation tools and
platforms mainly consist of two categories: pattern-based
tools andmachine learning-based tools.While pattern-based
tools include GATE (https://gate.ac.uk/), AeroDAML [21],
AeroSWAR [10], and SMT [22],machine learning-based tools
contain MnM [23], Armadillo [10], and so on.

Semantic annotation of Web documents transforms Web
content into semantic Web documents. De Maio et al.
[10] proposed a fuzzy-based automatic semantic annota-
tion method (FBASAM) of Web documents based on for-
mal concept analysis and relational concept analysis. The
approach is that, starting from Web resources, content with
a high level of abstraction is obtained: concepts, connections
between concepts, and instance-population are identified
and arranged into ontology. The framework is designed to
process resources from different sources and to generate an
ontology-based annotation. Charton et al. [19] proposed an
automated semantic annotation method for named entities
(ASAM4NE). The method is based on an algorithm that
compares the set of words appeared before and after the
named entities with the content of Wikipedia articles and
identifies the most relevant one by means of a similarity
measure. Then, it establishes a connection between the
named entities and some URI in the semantic Web. Diallo
et al. [20] proposed an ontology-based semantic annotation
approach (OBSAA) to automate the semantic annotation of
texts using Natural Language Processing (NLP) technology.
Based on concept frequency (TF) and inverse document
frequency (IDF), the method selects ontology concepts from
an existing biomedical ontology to semantic annotate texts.
Rong [6] summarized seven semantic annotationmethods of
Web documents and proposed a similar rule strategymethod

(SRSM) and amethod on the basis of tree conditional random
fields (MTCRF).

Currently, a few of existing researches on semantic anno-
tation in IoT focus on sensor network data. Barnaghi et al.
[13] discussed a semantic model (SM2SS) to describe the
sensor streams and to demonstrate how data from sensor
streams can be published, indexed, queried, and discovered
in a distributed network. Kolozali et al. [14] proposed a
knowledge-based approach for real-time IoT data stream
(KBA4IoTDS) annotation and processing. The framework
aims to support semantic annotation of IoT stream data by
taking dimensionality and reliability into account to enable
delivery of large volume of data using Message Queuing Pro-
tocol (AMPQ). Wei and Barnaghi [15] discussed a semantic
annotationmethod of sensor data (SAM4SD) and focused on
the idea of semantic sensor Web by extending the discussion
of semantic annotation using concepts taken from various
domain ontologies. Chenyi [16] proposed a service-oriented
entity semantic annotation framework (SOESAF), which
manually annotates the function, state, and basic information
of entities. It discussed a semantic annotation ontologymodel
of IoT entities, which manually packages the information of
IoT entities to Web services and annotates the function of
IoT entities using Web services after clustering [8]. Bing [17]
proposed a semantic annotation method for IoT documents
(SAM4IoTD). This method selects an appropriate concept in
ontology to add semantic information to files (documents,
pictures, etc. in IoT). Junling et al. [2] created a template of
IoT resource description to facilitate resource semantic anno-
tation. Ming [18] proposed a semantic annotation method
for WSDL files of Web services (SAM4WSDL). This method
classifies Web services into particular domain ontology. In
addition to text annotation, semantic annotation of Web
services also needs to match the Web service interfaces of
domain ontologies according to user input/output data and
function descriptions.

In previous researches on semantic annotation, the
researches have focused on the semantic of Web documents,
and a few researches pay attention to semantic annotation
in the environment of IoT. As shown in Table 1, we have
compared the previous semantic annotation methods in five
aspects: “Automatic,” “Training Set,” “Application Domain,”
“Data Type,” and “Main Technology.”

Table 1 shows the comparison results of many semantic
annotation methods from five aspects and indicates the
following:

(1) Most of automatic semantic annotation methods
focus on the Internet field and are applied for Web
documents.

(2) The researches of semantic annotation methods for
Web documents mainly pay attention to automatic
semantic annotation methods.

(3) Most of the researches on semantic annotation meth-
ods in the environment of IoT are manual annotation
semanticmethods.Moreover, they primarily focus on
data models and annotation frameworks.

https://gate.ac.uk/
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Table 1: Comparison of semantic annotation methods.

Methods Automatic
(yes/no)

Training Set
(yes/no)

Application
Domain Data Type Main Technology

FBASAM [10] Yes No Internet Web documents Rule, formal, and relational
concept analysis

ASAM4NE [19] Yes No Internet Web documents Semantic similarity, linked
data

OBSAA [20] Yes No Biomedicine Biomedical texts NLP, TF-IDF
SRSM and MTCRF [6] Yes No Internet Web documents Rule, CRFs

SM2SS [13] No Yes IoT Sensor
Network Sensor networks Sensor streams model

KBA4IoTDS [14] No No IoT IoT data streams IoT data model

SAM4SD [15] No Yes IoT Sensor
Network Sensor networks Sensor streams model

SOESAF [16] No No IoT IoT entity
information

Entity semantic annotation
framework

SAM4IoTD [17] No No IoT Documents Rule

SAM4WSDL [18] No No IoT WSDL files of Web
services Rule, machine learning

In summary, the existing semantic annotation tools and
platforms are mainly utilized for the annotation of Web
documents, and the results are single ormultiple independent
semantic ontology resources. Those resources cannot be
organized structurally. Therefore, the tools and platforms
are not suitable for IoT devices whose resources should be
organized structurally. Besides, existing semantic annotation
methods mainly focus on Web documents whose annotation
objects are Web documents. They do not meet users’ require-
ments when annotating the information of IoT devices due to
physical properties of IoT devices (space, time, environment,
etc.). The researches on semantic annotation in IoT mainly
concentrate on sensor data and manual annotation methods.
However, manual or semiautomatic semantic annotation
methods are often inefficient for numerous IoT devices and
unable to meet the demands of semantic annotation in IoT.
Thus, the existing semantic annotation methods of Web
documents and IoT are not suitable for themassive amount of
IoT devices. Automatic semantic annotation methods in IoT
remain a central challenge to be addressed.

3. Our Device Description Framework in IoT

As the basis of automatic semantic annotation of IoT devices,
device description framework is a description pattern of
devices’ information. The device description framework in
IoT relies on the characteristics of IoT devices. Although
the definition of IoT devices is different from different
perspective of IoT, they commonly have the following several
characters:

(1) An IoT device should be provided with a unique
identification.

(2) An IoT device can be accessed through information
networks via the communication interface.

(3) Spatial-temporal characteristics.
(4) IoTdevices have computing power and storage ability.
(5) IoT devices can not only obtain information from

the surrounding environment but also process this
information.

The nature of IoT is the bridge of the physical and
information world. In this paper, IoT devices are classi-
fied into three categories: sensor devices, processor devices,
and actuator devices. Sensor devices correspond to device
between the physical world and informationworld. Processor
devices refer to the information world and information
world. Actuator devices associate with the information world
and physical world. According to the characteristics of IoT
devices, we propose a device description framework in IoT
to describe IoT devices, as shown in Figure 1.

Figure 1 illustrates multiple components of the device
description framework. The arrows in Figure 1 refer to the
relationship in device ontology. For example, the arrow
“hasIdentification” means that device concept in device
ontology has an attribute “Identification.” The details of each
component are shown as follows:

(1) Identification. It provides recognition of description
information for IoT devices and is applied to describe
the identity characteristics of IoT devices. A device
can obtain a unique identification when it is associ-
ated with IoT.

(2) Performance. It refers to the technical specifications,
operating parameters, voltage, and so on. It is applied
to describe some characteristics of IoT devices, such
as computing power, storage ability, and energy effi-
ciency.

(3) Function: it identifies the function description of
devices and is an important basis of user queries
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Figure 2: The process of automatic semantic annotation in IoT.

and device discovery, including input, output, and
profile.

(4) State. It is applied to describe the devices’ state in
IoT. The state of a device is generated from hard-
ware devices which monitor this device in real-time.
It relates to spatial-temporal characteristics of IoT
devices.

(5) Interface. It describes the interface and the commu-
nication between devices and networks, including
access method. When a device is accessed to IoT,
the device can obtain the interface information, such
as Bluetooth and IP. It relates to the communication
interface of IoT devices.

(6) Working Condition. It indicates the surrounding envi-
ronment for devices’ normal work, including tem-
perature, humidity, operating voltage, and working
current.

The state component above contains some dynamic
characteristics, such as mobility, location, and other char-
acteristics that embody the space, time, and environment
characteristics of IoT devices.

4. Our Automatic Semantic Annotation
Approach in IoT

4.1. The Process of Automatic Semantic Annotation. The se-
mantic annotation of IoT devices’ information can be con-
sidered as the process that extracts special information from
this piece of information and marks the information of IoT
devices with semantic labels. It needs to address five issues
as follows: (1) the representation and description of IoT
devices’ information, (2) the extraction of key information,
(3) the selection of semantic labels, (4) the generating of
device ontology, and (5) the expansion of device ontology.
Theprocess of automatic semantic annotation in IoT is shown
in Figure 2.

The process of automatic semantic annotation in IoT
consists of the following five steps:

(1) Preprocessing. The text information of IoT devices,
such as instructions, contains some information
which users are not interested in, such as the specific
internal structure, outline, and specific installation
process. Thus, the text information should be filtered
manually. Only the text information that describes
devices’ function and some technical parameters
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remained. Each message in the filtered text informa-
tion occupies a row. This step is shown in step (1) in
Figure 2.

(2) The Information Extraction of Devices’ Function.
While the information about function is unformatted
and disorganized texts, however, there are three types
of IoT devices. Therefore, the goal of this step, shown
as step (2) in Figure 2, is to divide devices’ information
into two components: function description and non-
function description. The two components are dealt
with in different approaches.

(3) The Information Classification of Devices’ Function.
According to the description of step (2), devices need
to be classified using devices’ function description.
This is the scope of NLP. The purpose of this step,
shown as step (3) in Figure 2, is to classify devices’
function description using text processing technolo-
gies.

(4) Property Information Division. There are five proper-
ties in our device description framework. After the
classification of function description in step (3), the
information of other properties is dispersed in non-
function description, shown as step (4) in Figure 2.

(5) Information Integration and Semantic Label Selection.
The aimof this step (shown as step (5) in Figure 2) is to
integrate the results of step (3) and step (4), select the
semantic labels for annotation, and obtain the result
of automatic semantic annotation.

4.2. Algorithms Description. For the text information of IoT
devices, while function description is commonly described by

unformatted texts, nonfunction description which includes
the information about the performance, interface, and work-
ing condition of our device description framework in IoT
generally has a particular format. Each step in Figure 2 applies
different approaches to process data, as shown in Figure 3.

Figure 3 shows the process and the corresponding algo-
rithms of automatic semantic annotation. The details of each
algorithm are shown as follows.

(1) Devices’ Function Information Extraction. For devices text
information in IoT such as instructions, devices’ function
description is usually between pluralities of subtitles. For
example, it may be between “Product Overview” subtitle and
“Model Description” subtitle or between “Product Overview”
subtitle and “Product Features” subtitle. This process consists
of two phases: training phase and extraction phase. In the
training phase, this process trains the classifier using subtitle
training set and then learns a dictionary which contains
words and corresponding word frequency appeared in the
training set. In the extraction phase, a new sample is matched
with trained dictionary and this process recognizes the
subtitles appeared in the new sample. Then, this process
extracts the content between adjacent recognized subtitles
and the extracted content is reorganized into a document.
This document is named function description in step (1) in
Figure 3.

(2) Devices’ Function Classification. Devices’ function de-
scription is unformatted and disorganized text. There are
three types of IoT devices: sensor devices, processor devices,
and actuator devices. Different categories of devices have
different input and output. For sensor devices, such as a
humidity sensor, the input is stimulation and the output
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is data. For processor devices, the input and output are
both data. For actuator devices, the input is data and
the output is action. Different categories of devices have
different functions. Many text classification algorithms can
be applies in devices’ function classification, such as SVM
[1], Näıve Bayes [2], Decision Tree [2], Artificial Neural
Networks [3], and KNN [4]. However, SVM has a high
training time complexity. Decision Tree is actually a rule-
based classifier with inadequate scalability and constructed
tree is huge when the scale of text sets is large. Artificial
Neural Networks require multiple iterations and have heavy
computing burden. KNN needs to compare all texts in the
training set when determining the category of a new sample
text and the result of classification is especially susceptible
by unbalanced sample data. Thus, in this paper, we select
a relatively simple and effective Näıve Bayes algorithm for
experiments. First of all, a text classification training set
should be constructed manually and the devices’ function
description of which is manually annotated their category.
Then, the training set is applied to train Naı̈ve Bayes text
classifier. Finally, a new sample can apply the trained classifier
to determine its category.

(3) Annotation Dictionary Generating and Matching Algo-
rithm. In our device description framework in IoT, the
identification of devices is obtained when accessed to IoT.
Relating to dynamic characteristics, the state of devices
is generated from hardware devices which monitor those
devices in real-time. Thus, nonfunction description only
contains three components: performance, interface, and
working condition. Nonfunction description is a text, the
format of which has been processed in step (1) in Figure 2.
Each row of the text represents a message. Therefore, the
problem of property information division can be considered
as a classification problem that is to classify the message
of each row in nonfunction description. Annotation dic-
tionary generating and matching algorithms are proposed
to address this classification problem and include two
phases: annotation dictionary training phase and classifica-
tion phase.The structure of annotation dictionary is shown in
Figure 4.

Annotation dictionary contains three subdictionaries
corresponding to the performance, interface, and working
condition in our device description framework. The word
frequency dictionary TF has the same structure as the
annotation dictionary 𝐷 and the two dictionaries are corre-
sponding to each other. In the phase of dictionary training,
the content of each property in training set is segmented to a
sequence of words that are added to 𝐷 and TF. The specific
process of annotation dictionary training phase is given in
Algorithm 1.

In Algorithm 1, the input is a training set 𝑁𝑓that has
fixed format, and the outputs are the annotation dictionary
𝐷 and the word frequency dictionary 𝑇𝐹. Each component
of 𝑁𝑓 is segmented into a sequence of words that are
added to 𝐷. Meanwhile, the word frequency of each word is
gathered statistically and added to 𝑇𝐹 in Step 1. All results
are combined in Step 2. Given the average word number of
𝑊𝑠𝑖 𝑛 and the scale of𝐷 𝑚, the time and space complexity of
Algorithm 1 are O(𝑛𝑚).

In the phase of annotation dictionary classification, this
algorithm divides the nonfunction description into multiple
components. The main idea of this algorithm is to segment
the nonfunction description into a sequence of wordsmarked
as 𝑊. Then this algorithm matches each word in 𝑊 with an
annotation dictionary and a word frequency dictionary. The
nonfunction description is divided according to thematching
results. In particular, if there are multiply results that match
success, the result with maximum word frequency will be
the most appropriate. The detailed process of annotation
dictionary matching algorithm is shown in Algorithm 2.

In Algorithm 2, the inputs are an annotation dictionary
𝐷 generated in Algorithm 1, a word frequency dictionary 𝑇𝐹
generated in Algorithm 1 and a sample text 𝑁𝑛𝑓. The output
is a property division result that has the same structure as
a text in training set 𝑁𝑓 (as shown in Algorithm 1). 𝑁𝑛𝑓
is segmented and this algorithm obtains a word sequence
𝑁𝑤 in Step 1. Each word in 𝑁𝑤 is matched with 𝐷 and 𝑇𝐹
and a matching result 𝐿 is obtained in Step 2. 𝑁𝑤 is divided
according to 𝐿 in Step 3. Let 𝑝 denote the average word
number of 𝑁𝑛𝑓 and 𝑚 denote the scale of 𝐷; the time and
space complexity of Algorithm 2 are O(𝑝𝑚).

(4) Ontology Concept Matching Based on Semantic Similar-
ity. The processes of information integration and semantic
label selection include information integration phase and
semantic label selection phase. The classification results
of function description and the property division results
of nonfunction description are combined in information
integration phase. In semantic label selection phase, each
piece of key information has a label that has no semantic
meaning. Taking the information of devices as the example,
“operating temperature: 20∼30∘C,” the label of “20∼30∘C”
is “operating temperature” but this label has no semantic
meaning.Thus, semantic label selection achieves themapping
between nonsemantic labels and semantic labels. In order
to enable machine to understand labels, ontology is intro-
duced to our approach and semantic similarity is applied
to measure the similarity degree between two words or two
phrases.
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Input:
Non-function description training set: The format of each element in training set is 𝑁𝑓(Pref, Inter, WorkCond) and 𝑁𝑓
contains three components, i.e., Pref, Inter and WorkCond, respectively meaning the content about the performance,
interface and working condition of our device description framework.

Output:
A dictionary 𝐷 that contains three sub-dictionaries 𝑑𝑖(𝑖 ∈ {1, 2, 3}) as shown in Figure 4.
A word frequency dictionary 𝑇𝐹(𝑡𝑓𝑖, 𝑖 ∈ {1, 2, 3}) that has the same structure as 𝐷.

Step 1. For each component 𝑁𝑓𝑖 that can be Pref, Inter and WorkCond in 𝑁𝑓:
segment word 𝑁𝑓𝑖 and obtain a word sequence 𝑊𝑠𝑖.
For each 𝑊𝑠𝑖,𝑗 in 𝑊𝑠𝑖:

If 𝑊𝑠𝑖,𝑗 is not in 𝑑𝑖, add 𝑊𝑠𝑖,𝑗 to 𝑑𝑖 and add 1 to 𝑡𝑓𝑖
Else find the position of 𝑊𝑠𝑖,𝑗 in 𝑑𝑖, marked as 𝑝. Then, set 𝑇𝐹[𝑝] = 𝑇𝐹[𝑝] + 1.

Step 2. Obtain a dictionary 𝐷 and 𝑇𝐹
Return: 𝐷 and 𝑇𝐹

Algorithm 1: Annotation dictionary generating algorithm.

Input:
An annotation dictionary 𝐷, a word frequency dictionary TF and a new non-function description 𝑁𝑛𝑓.

Output:
A property division result𝑁𝑛𝑓𝑅, which contains three components, i.e., Pref, Inter and WorkCond. Those three components
are the contents about the performance, interface and working condition of our device description framework.

Step 1. Obtain a word sequence 𝑁𝑤 after segment 𝑁𝑛𝑓.
Step 2. For each 𝑁𝑤𝑖 in 𝑁𝑤:

If 𝑁𝑤𝑖 in 𝑑𝑗, the category that 𝑁𝑤𝑖 belongs to 𝑙𝑖 = 𝑗.
(i) find the position of 𝑁𝑤𝑖 in 𝑑𝑗 and 𝑡𝑓𝑗, marked as 𝑝𝑖 and 𝑓𝑖.
(ii) IF 𝑗 has more than one, choose a 𝑗 which can maximize 𝑓𝑖.

Else 𝑙𝑖 = 0.
Then obtain a position sequence 𝐿: (𝑙1, 𝑙2, . . . , 𝑙𝑞).

Step 3. For each 𝑁𝑤𝑖 in 𝑁𝑤:
(i) If 𝑙𝑖 = 0, If 𝑖 ̸= 1, add 𝑁𝑤𝑖 to the component of 𝑁𝑛𝑓𝑅 that 𝑙𝑖−1 belongs to.
(ii) If 𝑙𝑖 = 1, add 𝑁𝑤𝑖 to 𝑁𝑛𝑓𝑅.𝑝𝑟𝑒𝑓.
(iii) If 𝑙𝑖 = 2, add 𝑁𝑤𝑖 to 𝑁𝑛𝑓𝑅.𝐼𝑛𝑡𝑒𝑟.
(iv) If 𝑙𝑖 = 3, add 𝑁𝑤𝑖 to 𝑁𝑛𝑓𝑅.𝑊𝑜𝑟𝑘𝐶𝑜𝑛𝑑.

Return: 𝑁𝑛𝑓𝑅

Algorithm 2: Annotation dictionary matching algorithm.

The main process of semantic label selection for a
nonsemantic label is to compute the semantic similarity
between nonsemantic labels with all concepts in the device
ontology and to find an ontology concept that can maxi-
mize the semantic similarity. If the semantic similarity is
greater than a certain threshold, the selected concept’s URI
that is the semantic label will be returned; otherwise, null
value will be returned. The specific process of ontology
concept matching based on semantic similarity is shown in
Algorithm 3.

The inputs of the proposed algorithm are device ontology
𝐷, a threshold 𝛿, a word, or a phrase 𝑊 and the component
𝐶 which 𝑊 belongs to in our device description framework.
C can be “Identification,” “Performance,” “Interface,” and so
on. The output of Algorithm 3 is the URI of a concept in 𝐷.
The concept𝐶𝑐which is related to𝐶 and all concepts 𝑆 linked
with 𝐶𝑐 are found in Step 1. In Step 2, two parameters are
set. MaxSimilarity means the maximum value in 𝑆 and MS
represents the index ofMaxSimilarity. In Step 3, each element

𝑆𝑖 in 𝑆 is computed semantic similarity with 𝑊, and the URI
of a concept in 𝐷 that can maximize the semantic similarity
is returned in Step 4. Assuming that the average number of
𝑆 is 𝑞 and the scale of ontology 𝐷 is 𝑟, the time and space
complexity of Algorithm 3 are O(𝑞𝑟).

The text classification results of function description, the
property division results of nonfunction description, and the
selected semantic labels are reorganized to the final results of
automatic semantic annotation.

4.3. Algorithms Improvement. Those algorithms above can
substantially complete the process of automatic semantic
annotation of IoT devices. Moreover, a device ontology
expansion algorithm and an annotation dictionary expansion
method are proposed to take consideration of the scalability
of our approach.

4.3.1. Device Ontology Expansion Algorithm Based on Seman-
tic Similarity. The prerequisite of Algorithm 3 is a given



8 Journal of Sensors

Input:
A word or a phrase 𝑊 and the component 𝐶 which 𝑊 belongs to in our device description framework.
A device ontology 𝐷
A contain threshold 𝛿

Output:
The URI of an ontology concept in ontology 𝐷

Step 1. Find the concept 𝐶𝑐 which is related to 𝐶 in ontology 𝐷 and obtain all ontology concepts which are linked with 𝐶𝑐 in D,
marked as 𝑆: (𝑆1, 𝑆2, . . . , 𝑆𝑛).

Step 2. Assuming that 𝑀𝑎𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 0, 𝑀𝑆 = 0.
Step 3. For each 𝑆𝑖 in 𝑆:

(i) For 𝑆𝑖, obtain 𝑠𝑛𝑖 after extract concept’s name.
(ii) compute the semantic similarity between 𝑊 and 𝑠𝑛𝑖, obtain 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦.
(iii) If 𝑀𝑎𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, set 𝑀𝑎𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, 𝑀𝑆 = 𝑖.

Step 4. If 𝑀𝑎𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 𝛿, set 𝑆𝑀𝑆 = 𝑛𝑢𝑙𝑙
Return: 𝑆𝑀𝑆

Algorithm 3: Ontology concept matching based on semantic similarity.

Input:
A device ontology Device.
A contain threshold 𝛿.
A sub-tree expected to be expanded 𝑆𝑇: (𝑃, 𝑆, 𝑉).

Output:
An extended ontology Device.

Step 1. For each ontology concept 𝐶𝑖 in Device:
(i) compute the semantic similarity between 𝐶𝑖 and ST which is the top concept of 𝑆𝑇: (𝑃, 𝑆, 𝑉), obtain 𝑆𝑖.
(ii) find the maximum in 𝑆: (𝑆1, 𝑆2, . . . , 𝑆𝑛), obtain 𝑆𝑚 and the corresponding ontology concept 𝐶𝑚.

Step 2. If 𝑆𝑚 > 𝛿, add ST’s child concepts 𝑃, 𝑆 and 𝑉 as the child of 𝐶𝑚, as shown in Figure 7(a).
Else If :

(i) assuming that Tmp = ST, set ST = P or ST = S or ST = 𝑉, and return to Step 1.
(ii) If 𝑆𝑚 > 𝛿, let Tmp becomes a child concept of Device and adds a link named “TogetherHas” between 𝐶𝑚 and Tmp.

The link means 𝐶𝑚 and Tmp has a same child concept, as shown in Figure 7(b).
Else let ST becomes a child concept of Device, as shown in Figure 7(c).

Return: Device

Algorithm 4: Device ontology expansion algorithm based on semantic similarity.

device ontology. However, there is no related and useable
ontology in IoT recently. For example, there is a task to
find a suitable concept in the device ontology for “operating
temperature,” and the result may be “humidity” if there is
no suitable concept in ontology. Treating “humidity” concept
as the semantic label of “operating temperature” is obviously
wrong. Thus, in order to obtain correct semantic labels,
“operating temperature” should be expanded into the device
ontology as an ontology concept. In this paper, we propose
a device ontology expansion algorithm based on semantic
similarity.Themain idea of this algorithm is to initialize small
device ontology and to add a subtree (as shown in Figure 5)
to the device ontology.

Nonfunction description contains three components:
performance, interface, and working condition. The con-
tent of each component can be obtained by Algorithm 2.
For example, the “working condition” concept may contain
many subconcepts, such as ambient temperature, humidity,
and altitude. An example of creating a subtree is shown
as follows.

(1) The root of subtree is the “working condition” con-
cept.

(2) The children of the root are the content of “working
condition,” such as ambient temperature, humidity,
and altitude.They are the subconcepts of the root and
the structure of a created subtree is shown in Figure 6.

The structure shown in Figures 5 and 6 can be represented
by 𝐶: (𝑃, 𝑆, 𝑉), where 𝐶 is the top concept of this structure
and 𝑃, 𝑆, and 𝑉 are the subconcepts of 𝐶. The specific
algorithm is shown in Algorithm 4.

In Algorithm 4, the inputs are a device ontology Device,
a subtree ST, and a threshold 𝛿. The output is the ontology
Device after extension. In Step 1, semantic similarity between
the top concept 𝐶 in ST and each concept in Device is
computed and is marked with 𝑆. The maximum Sm in 𝑆 and
the corresponding ontology concept 𝐶𝑚 are found. In Step 2,
if 𝑆𝑚 > 𝛿, this algorithm adds the subconcepts of 𝐶 under
the concept 𝐶𝑚 (as shown in Figure 7(a)). Otherwise, similar
to the process in Step 1, a matching process of subconcept
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Figure 5: The structure of the subtree.

Working condition

Ambient
temperature Humidity Altitude

Figure 6: An example of the subtree in Figure 5.

(including 𝑃, 𝑆 and 𝑉) of 𝐶 is started. This algorithm
supposes 𝑃 match success and then links 𝐶𝑚 and 𝑃 with
the “TogetherHasP” relationship (as shown in Figure 7(b)).
If all concepts (including 𝐶, 𝐷, 𝑃, and 𝑉) fail to match, this
algorithm adds 𝐶 and the subconcept of 𝐶 under the top
concept of Device (as shown in Figure 7(c)). Let 𝑟 denote the
scale of ontology 𝐷, and the time and space complexity of
Algorithm 4 are O(𝑟).

4.3.2. Annotation Dictionary Learning Based on Semantic
Similarity. The annotation dictionary is associated directly
with the classification of nonfunction description and plays
a leading role in semantic annotation in IoT. When a new
sample contains some new words that are not included in
the annotation dictionary, the results of semantic annotation
are incorrectly using the original annotation dictionary. For
example, if a new sample contains a “frequency” word which
is not included in the annotation dictionary, the classification
result of the “frequency” word often has a strong possibility
of error. The solution is to expand the annotation dictionary
before classifying. The process of this phase is similar to
Algorithm 1 except the sources of the training set. The
training set of this process can be obtained by Algorithm 2
or built by users.

5. Experiments

5.1. Setup of Experiments. We used three experiments to
demonstrate the effectiveness of the proposed approach in
this paper.The first experiment is to illustrate and analyze the
annotation results of our approach.The second experiment is
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(c) All concepts in 𝐶: (𝑃, 𝑆, 𝑉) fail to match

Figure 7

applied to indicate the influence of the experiment parame-
ters on the annotation results of our approach. In the third
experiment, we supplied a comparative experiment to eval-
uate our approach. IoT devices include temperature sensors,
pressure sensors, RFID intelligent devices, transmitters, and
current transformers.The data in this paper are the specifica-
tions of IoT devices. The experiments data contain different
types of temperature sensors, pressure sensors, zero sequence
current transformers, infrared gas sensors, gas measuring
equipment, temperature transmitters, humidity transmitters,
and so on. They are from different companies with a total
88 specifications of IoT devices. Using cross validation in the
experiments, 88 datasets are divided into 8 groups and each
group contains 11 datasets. Eight experiments are designed
to evaluate the annotation effect of our approach and each
experiment selects 7 groups of datasets as the training set
while selecting 1 group of datasets as the test set. In the
experiments, the text classification algorithm in this paper
is Naı̈ve Bayes algorithm and the experiment parameter 𝛿 is
assigned to 0.5.

5.2. Experiments Evaluation. The description of automatic
semantic annotation results is shown as follows: the format
of each annotation result is “<label>content</label>.” The
component <label> is semantic label and its content is
the URI of a concept matching from the device ontol-
ogy using the method shown in step (4) in Section 4.2.
For example, the content of component <label> can be
“http://com.scut/owl/Ontology/#Voltage.” The content com-
ponent is the key information extracted in step (1) in Sec-
tion 4.2, for example, “0.38∼66KV.”The component </label>
represents the end of an annotated result and its content is
the same as the component <label>. An automatic semantic
annotation result of our method is showed in Box 1.
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<http://com.scut.emos/owl/Ontology/Device/#Identification>B:002</http://com.scut.emos/owl/Ontology/Device/
#Identification>
<http://com.scut.emos/owl/Ontology/Device/#Performance>

<http://com.scut.emos/owl/Ontology/Device/#Voltage>0.38 KV∼66KV
</http://com.scut.emos/owl/Ontology/Device/#Voltage>

<http://com.scut.emos/owl/Ontology/Device/#GridFrequency>50Hz
</http://com.scut.emos/owl/Ontology/Device/#GridFrequency>

<http://com.scut.emos/owl/Ontology/Device/#Start>“L1” side the second as “K1”
</http://com.scut.emos/owl/Ontology/Device/#Start>
</http://com.scut.emos/owl/Ontology/Device/#Performance>
<http://com.scut.emos/owl/Ontology/Device/#Function>

<http://com.scut.emos/owl/Ontology/Device/#FunInput>data</http://com.scut.emos/owl/Ontology/Device/
#FunInput>
<http://com.scut.emos/owl/Ontology/Device/#FunProfile>handling

device</http://com.scut.emos/owl/Ontology/Device/#FunProfile>
<http://com.scut.emos/owl/Ontology/Device/#FunOutput>data</http://com.scut.emos/owl/Ontology/Device/
#FunOutput>
<http://com.scut.emos/owl/Ontology/Device/#FunType>http://com.scut.emos/owl/Ontology/Device/#Zero
</http://com.scut.emos/owl/Ontology/Device/#FunType>

</http://com.scut.emos/owl/Ontology/Device/#Function>
<http://com.scut.emos/owl/Ontology/Device/#State>NULL</http://com.scut.emos/owl/Ontology/Device/#State>
<http://com.scut.emos/owl/Ontology/Device/#Interface>NULL</http://com.scut.emos/owl/Ontology/Device/#Interface>
<http://com.scut.emos/owl/Ontology/Device/#WorkingCondition>

<http://com.scut.emos/owl/Ontology/Device/#AmbientTemperature> −10
</http://com.scut.emos/owl/Ontology/Device/#AmbientTemperature>

<http://com.scut.emos/owl/Ontology/Device/#AtmosphericPressure>80∼110 KPa
</http://com.scut.emos/owl/Ontology/Device/#AtmosphericPressure>

<http://com.scut.emos/owl/Ontology/Device/#RelativeHumidity>90% (25∘C) 50% (40∘C)
</http://com.scut.emos/owl/Ontology/Device/#RelativeHumidity>
</http://com.scut.emos/owl/Ontology/Device/#WorkingCondition>

Box 1: An automatic semantic annotation result of our approach.

The contents of five properties, which are the iden-
tification, performance, function, interface, and working
condition of our device description framework in IoT, are
displayed in Box 1 and each property corresponding to a
URI (e.g., http://com.scut/owl/Ontology/#Performance).The
content of each property is embedded between <label> and
</label>.

The goal of semantic annotation in IoT is to annotate
IoT devices with semantic labels and further transform the
results of semantic annotation into semantic IoT services.
In this way, IoT devices can be depicted by the unified and
rich semantic form and support semantic service discovery.
Ontology technology is the crucial elements of semantic
IoT services. The results of automatic semantic annotation
can be directly transformed into ontology individuals. An
annotation result of our method represented by N3 nota-
tion (https://www.w3.org/TeamSubmission/n3/) is shown in
Box 2.

For the convenience of illustration, an ontology in-
dividual represented by N3 notation is shown in Box 2.
It is named “B:002” and consists of four parts segmented
by a blank line. In the first part, the first line is ap-
plied to specify that the namespace of “device” is “http://
com.scut.emos/owl/Ontology/Device/#” and the third line
is applied to indicate that “B:002” is an individual of

“Device” ontology. The next few lines are applied to
illustrate the relationships the “B:002” rule has. For
example, the fourth line indicates that the “B:002” rule
owns the “device:hasPerformance” relationship that points
to the “device:PerformanceB002” concept. The second
part is applied to describe the “device:PerformanceB002”
concept which has the “device:hasVoltage” relationship
and the “device:hasGridFrequency” relationship. The
“device:hasVoltage” relationship points to “0.38 KV∼66KV”,
which means that “B:002” has a “Voltage” attribute whose
value is “0.38 KV∼66KV”. While the third part is applied to
describe the “device: FunctionB002” concept, the fourth part
is applied to indicate the “device: WorkingConditionB002”
concept.

Two evaluation indexes, precision and recall, are applied
to evaluate the annotation ability of our approach. To
demonstrate the effectiveness of our approach, the results of
automatic semantic annotation, marked as AR, are compared
with the results of manual semantic annotation, marked as
MR. For each message of IoT devices’ information, such as
“the voltage is 0.38–66KV,” the format of each annotated
message is “<label>content</label>,” which contains two
components: content and label. An annotated message is
correct if and only if content and label are both correct. The
calculation formulas are as follows: 𝑃1 = 𝐴/𝐸, 𝑃2 = 𝐵/𝐹,

https://www.w3.org/TeamSubmission/n3/
http://com.scut.emos/owl/Ontology/Device/
http://com.scut.emos/owl/Ontology/Device/
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@prefix device: <http://com.scut.emos/owl/Ontology/Device/#>
device: B:002
a device:Device
device:hasPerformance device:PerformanceB002
device:hasFunction device:FunctionB002
device:hasState NULL
device:hasInterface NULL
Device:hasWorkingCondition device:WorkingConditionB002
device:PerformanceB002
device:hasVoltage “0.38 KV∼66KV”
device:hasGridFrequency “50Hz”
device:FunctionB002
device:hasFunInput “data”
device:hasFunProfile “handling device”
device:hasFunOutput “data”
device:hasFunType NULL
device:WorkingConditionB002
device:hasAmbientTemperature “−10”
device:hasAtmosphericPressure “80∼110 KPa”
device:hasRelativeHumidity “90% (25∘C) 50% (40∘C)”

Box 2: A result of semantic annotation represented by N3 notation.

Table 2: The average of precision and recall in each experiment.

Experiment 1 2 3 4 5 6 7 8
𝑃1 0.848 0.902 0.867 0.889 0.853 0.854 0.879 0.883
𝑃2 0.874 0.912 0.879 0.901 0.868 0.870 0.863 0.908
𝐶1 0.906 0.910 0.891 0.922 0.896 0.903 0.883 0.711
𝐶2 0.901 0.887 0.886 0.917 0.896 0.884 0.898 0.927

𝐶1 = 𝐴/𝐶, and 𝐶2 = 𝐵/𝐷, where 𝑃1 and 𝑃2, respectively,
represent the precision of content and label components in
AR, 𝐶1, and 𝐶2, respectively, mean the recall of content and
label components inAR.Thequantity of correct content com-
ponent and correct label component in AR is, respectively,
denoted as 𝐴 and 𝐵, and 𝐸 and 𝐹, respectively, represent the
total amount of content and label components in AR, while
𝐶 and 𝐷, respectively, mean the total number of content and
label components in BR.

Each device specification corresponds to a four-tuple (𝑃1,
𝑃2, 𝐶1, and 𝐶2), and the average of four indexes in each
experiment is calculated. The results are shown in Table 2.

The combined precision 𝑃 and recall 𝐶 are computed
according to Table 1 by the calculating formulas

𝑃 = 𝛼𝑃1 + (1 − 𝛼) 𝑃2

𝐶 = 𝛽𝐶1 + (1 − 𝛽)𝐶2,
(1)

where 𝛼 and 𝛽 are weight and can be set according to users’
specific requirements. In this paper, we set 𝛼 = 0.5 and 𝛽 =
0.5. The combined results are shown in Table 3.

The precision and recall of 𝑖th group of datasets are
marked as 𝑃𝑖 and 𝐶𝑖, respectively. The average precision 𝑃𝑧
and the average recall 𝐶𝑧 of our approach are calculated by
computing arithmetic average according to the combined

Table 3: The combined precision and recall of each experiment.

Experiment 1 2 3 4 5 6 7 8
𝑃 0.861 0.907 0.873 0.896 0.860 0.862 0.840 0.900
𝐶 0.903 0.898 0.889 0.920 0.896 0.894 0.891 0.919

Table 4: The average precision 𝑃𝑧 and recall 𝐶𝑧.

Index Value
𝑃𝑧 0.8743
𝐶𝑧 0.9012

precise and recall in Table 3.The calculating formula is shown
as follows:

𝑃𝑧 =
𝑁

∑
𝑖=1

𝑃𝑖
𝑁

𝐶𝑧 =
𝑁

∑
𝑖=1

𝐶𝑖
𝑁

,

(2)

where 𝑁 is the number of the groups of cross validation
experiments. In this experiment, 𝑁 is set 8. The computing
results are given in Table 4.
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Table 5: The results of experiment parameters analysis.

Index 𝛿
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

𝑃1 0.848 0.867 0.852 0.860 0.850 0.864 0.863 0.857 0.858 0.873 0.873
𝑃2 0.867 0.885 0.872 0.878 0.871 0.884 0.885 0.877 0.880 0.895 0.895
𝐶1 0.915 0.897 0.904 0.908 0.900 0.903 0.899 0.898 0.890 0.894 0.890
𝐶2 0.899 0.894 0.899 0.904 0.897 0.899 0.900 0.893 0.888 0.892 0.890
𝑃𝑧 0.858 0.876 0.862 0.869 0.860 0.874 0.876 0.867 0.870 0.884 0.884
𝐶𝑧 0.907 0.896 0.901 0.906 0.898 0.901 0.899 0.895 0.889 0.893 0.890
𝐹-measure 0.882 0.885 0.881 0.887 0.879 0.888 0.886 0.880 0.879 0.888 0.886

Table 4 shows that the average precision and recall of our
approach are 87.43% and 90.12%, 𝐹-measure that combines
precision and recall is defined as

𝐹 = 2𝑃𝐶
𝑃 + 𝐶

. (3)

Actually, 𝐹-measure is the geometric average of precision
and recall.The larger the𝐹-measures are, the better the results
of semantic annotation are. The 𝐹-measure of our approach
is 0.8876, which means that our approach can correctly
annotate 88.76%of IoTdevices’ information.This experiment
demonstrates that our approach has great precision, recall,
and𝐹-measure. It also proves that our approach is an efficient
and effective method for semantic annotation of IoT devices.

5.3. Analysis of Experiment Parameters. In this paper, Algo-
rithms 3 and 4 are related to semantic similarity which
contains a threshold 𝛿. In Algorithm 3, the parameter 𝛿 is
applied to select semantic labels from the device ontology.
It is easy to get an error and meaningless semantic label
(this wrong information may be rather trouble in service
discovery than null value) when 𝛿 is set too low. Few appro-
priate semantic labels are found when 𝛿 is set too high. In
Algorithm 4, 𝛿 is applied to ontology concept matching.
Unrelated concepts are easy to be matched successfully when
𝛿 is set ridiculously low, while related concepts are matched
unsuccessfully when 𝛿 is set ridiculously high. Thus, it is
extremely important to set an appropriate value of the
parameter 𝛿.

In this section, we carry out an experiment to analyze the
influence of the parameter 𝛿 on semantic annotation results.
The parameter 𝛿 has been set from 0.01 to 0.99. After cross
validation and the evaluation of semantic annotation results
using the indexes provided in Section 5.2, we obtain the
experiment results as shown in Table 5.

Table 5 displays that the influence of different values of
parameter 𝛿 on the results is not serious, and the fluctuation
range of the results is in the range of 10%. The 𝐹-measure
of our approach floats around 0.885. There are two reasons
that cause those situations. Firstly, the device ontology that
is applied to semantic label selection is large enough after
training and expansion, so that most of words or phrases
can accurately choose semantic labels with a high semantic
similarity that near 1.0.Thus, difference values of parameter 𝛿
cannot obviously affect the semantic annotation results.

Secondly, the process of semantic label selection and ontology
concept matching is to select ontology concepts that have
maximum semantic similarity with corresponding words or
phrases. Those weaken the influence of parameter 𝛿 on the
results to an extent.

5.4. Method Comparison. In this section, our experimental
evaluation aims to show the performance of our approach.
The evaluation is achieved by comparing our method
with General Architecture of Text Engineering (GATE)
framework. GATE is open source software that has ability
of solving almost text processing problems, including
semantic annotation and information extraction named
entity recognition. A Nearly-New IE System (ANNIE)
(https://gate.ac.uk/sale/tao/splitch6.html#x9-1200006)
which has processing resources of sentence splitter, POS
Tagger, and JAPE transducer is an information extraction
system in GATE. JAPE (https://gate.ac.uk/sale/tao/splitch8
.html#x12-2070008) is a language to define rules for in-
formation extraction and allows users to recognize regular
expressions in annotation on text. GATE provides a rule-
based automatic semantic annotation method and will
extract the relevant information according to the extraction
rules defined by users. Those extraction rules are described
by JAPE.

The experiment was conducted as follows. Firstly, a lot of
necessary extraction rules are described by JAPE to define the
information that expects to be extracted from devices’ infor-
mation. Secondly, all JAPE documents defined by users are
added to GATE for information extraction. Besides, ontology
concepts of the device ontology are selected to annotate the
results of information extraction. Then, we obtain the results
of automatic semantic annotation usingGATE. Finally, all the
two approaches are competitive in aspects of precision, recall,
and 𝐹-measure. The results returned in this comparative
experiment are achieved and shown in Figure 8.

As illustrated in Figure 8, both of two approaches are
comparative in aspects of precision, recall, and 𝐹-measure.
Our approach obviously performs better than GATE in terms
of precision and 𝐹-measure. Nevertheless, GATE has a better
performance with respect to recall.The average content recall
𝐶1 of GATE arrives beyond 92% and the average label
recall 𝐶2 of GATE achieves even above 96%. The detailed
causes of this result are as follows: (1) GATE is a semantic
annotation method based on predefined rules and there are

https://gate.ac.uk/sale/tao/splitch6.html#x9-1200006
https://gate.ac.uk/sale/tao/splitch8.html#x12-2070008
https://gate.ac.uk/sale/tao/splitch8.html#x12-2070008
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P1 P2 C1 C2 Pz Cz F-measure
0.6338 0.621 0.9292 0.9619 0.6337 0.9456 0.7588GATE

Our approaches 0.8642 0.8845 0.9029 0.8995 0.8743 0.9012 0.8876

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 8: The performance of our approach and GATE.

some intercrossing relationships between rules. The error
ratio of semantic annotation of GATEwill extremely increase
along with the growth of the rules and the intercrossing
relationships among them. Moreover, the error ratio has a
negative impact on the precision index. However, based on
machine learning, our approach possesses excellent scala-
bility and overcomes the limitations of rule-based methods.
It is extremely robust with the increase of IoT devices. (2)
As a rule-based semantic annotation method, the GATE can
almost extract all the accurate information from IoT devices’
information, so that GATE performs better in aspects of
recall.

6. Conclusions

With the rapid growth in the number of IoT devices, manual
and semiautomatic methods of semantic annotation can
hardly meet the increasing requirements due to inefficiency.
In this paper, we propose a device-oriented automatic seman-
tic annotation method for information of IoT devices. The
method can automatically extract key information, divide
information, expand the device ontology, andmatch concepts
in the device ontology. Although there are a number of
semantic annotation methods, few of them focus on the
information of IoT devices and deal with the automation
of semantic annotation. The main contribution of our work
consists of four parts: (1) considering the characteristics of
IoT devices, we put forward a devices description framework
to describe IoT devices; (2) we propose the process of auto-
matic semantic annotation which consists of five steps; (3)
we introduce a series of algorithms in the annotation process
including annotation dictionary generating and matching
algorithm and the algorithm for ontology concept matching;
(4) taking the scalability into consideration, we propose an
algorithm for device ontology extension based on semantic
similarity to expand the device ontology and present an algo-
rithm for annotation dictionary extension. The experiments
show that our method for automatic semantic annotation
is effective and outperforms the rule-based method, GATE.
Although our method of automatic semantic annotation is
also appropriate for general IoT entities and lays a foundation

for IoT service discovery, there is still no principled approach
for automatic service encapsulation. In our future work, we
will focus on the method of encapsulating the semantic
annotated information of IoT devices into semantic IoT
services for efficient service discovery.
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