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We analyze the dynamics of a fractional order modified Leslie-Gower model with Beddington-DeAngelis functional response and
additive Allee effect by means of local stability. In this respect, all possible equilibria and their existence conditions are determined
and their stability properties are established. We also construct nonstandard numerical schemes based on Grünwald-Letnikov
approximation. The constructed scheme is explicit and maintains the positivity of solutions. Using this scheme, we perform
some numerical simulations to illustrate the dynamical behavior of the model. It is noticed that the nonstandard Grünwald-
Letnikov scheme preserves the dynamical properties of the continuous model, while the classical scheme may fail to maintain
those dynamical properties.

1. Introduction

The dynamical interaction of predator and prey is one of
important subjects in ecological science. In recent years,
one of the most important species interactions is predator-
prey model [1]. One of well-known mathematical models
which describe the dynamics of prey-predator interaction is
the modified Leslie-Gower model proposed by Aziz-Alaoui
and Okiye [2]. In this model, the growth rate of predator is
in the form of logistics-type where its carrying capacity is
proportional to the prey number and environment protection
for predator. One of important parameters describing the
prey-predator interaction is the functional response which
describes the predator’s rate of prey consumption per capita.
Aziz-Alaoui and Okiye [2] and Yu [3] have considered a
modified Leslie-Gowermodel withHolling type II functional
response, while Yu [4] considered the same model but with
Beddington-DeAngelis functional response. In the normal-
ized variables, the modified Leslie-Gower equation with
Beddington-DeAngelis functional response can be written as

𝑑𝑁
𝑑𝑡 = 𝑁 (1 − 𝑁) − 𝜔𝑁𝑃

𝑎 + 𝑏𝑁 + 𝑐𝑃
𝑑𝑃
𝑑𝑡 = 𝑠𝑃 (1 −

𝑃
𝑁 + 𝑘) ,

(1)

where𝑁 = 𝑁(𝑡) and 𝑃 = 𝑃(𝑡) denote population densities of
prey and predator at time 𝑡, respectively. The pa rameters 𝜔,
𝑎, 𝑏, 𝑐, 𝑠, and 𝑘 are positive constants.

One of other factors that influence the interaction of
predator and prey is Allee effect, referring to a decrease in
per capita fertility rate at low population densities. Allee effect
may occur under several mechanisms, such as difficulties
in finding mates when population density is low or social
dysfunction at small population sizes. When such a mech-
anism operates, the per capita fertility rate of the species
increases with density; that is, positive interaction among
species occurs [5–8]. Recently Indrajaya et al. [9] investigate a
modified Leslie-Gower equationwith Beddington-DeAngelis
functional response and additive (both weak and strong)
Allee effect on prey

𝑑𝑁
𝑑𝑡 = 𝑁(1 − 𝑁 − 𝑚

𝑁 + ℎ) −
𝜔𝑁𝑃

𝑎 + 𝑏𝑁 + 𝑐𝑃
𝑑𝑃
𝑑𝑡 = 𝑠𝑃 (1 −

𝑃
𝑁 + 𝑘) ,

(2)

with initial conditions𝑁(0) > 0 and 𝑃(0) > 0. The criteria of
the Allee effect are as follows [7, 8]:

(i) If 0 < 𝑚 < ℎ, then the Allee effect is weak.
(ii) If𝑚 > ℎ, then the Allee effect is strong.
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It is shown in system (2) that the growth rates of both
prey and predator depend only on the current state. In many
situations, the growth rate is also dependent on the history
of variable or its memory. With the rapid development of
fractional calculus, fractional differential equations have been
implemented in various fields including biological system.
This is due the fact that fractional differential equations are
naturally related to the real life phenomena with memory
which exists in most of biological system [10–16]. To describe
such memory effect, we first recall the definition of fractional
integral operator as well as fractional differential operator.

Definition 1 (see [17]). The Riemann-Liouville 𝛼-order frac-
tional integral operator of any function 𝑢 ∈ 𝐿1[0, 𝑎], 𝑥 ∈
[0, 𝑎] is defined by

𝐽𝛼𝑢 (𝑥) = 1
Γ (𝛼) ∫

𝑎

0
(𝑥 − 𝑡)𝛼−1 𝑢 (𝑡) 𝑑𝑡, (3)

where Γ(⋅) is the Euler Gamma function.

Definition 2 (see [17]). Let 𝑚 be an integer which satisfies
𝑚 − 1 < 𝛼 < 𝑚. The Riemann-Liouville 𝛼-order fractional
derivative of function 𝑢 ∈ 𝐿1[0, 𝑎] is defined as

𝐷𝛼𝑅𝐿𝑢 (𝑥) fl 𝑑𝑚
𝑑𝑥𝑚 𝐽

𝑚−𝛼𝑢 (𝑥)

= 1
Γ (𝑚 − 𝛼)

𝑑𝑚
𝑑𝑥𝑚 ∫

𝑎

0
(𝑥 − 𝑡)𝑚−𝛼−1 𝑢 (𝑡) 𝑑𝑡,

(4)

where 𝑑𝑚/𝑑𝑥𝑚 is the common𝑚-order derivative.

The Riemann-Liouville fractional derivative is histori-
cally the first concept of fractional derivative and theoretically
well established. However, in the case of Riemann-Liouville
fractional differential equation, the initial value is usually
given in the form of fractional derivative, which is not
practical. Consequently, one applies the Caputo fractional
derivative which is defined as follows.

Definition 3 (see [17]). The Caputo fractional differential
operator of order 𝛼 > 0, with 𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ 𝑁, is
defined by

𝐷𝛼𝐶𝑢 (𝑥) fl 𝐽𝑚−𝛼𝑢(𝑚) (𝑥)
= 1
Γ (𝑚 − 𝛼) ∫

𝑎

0
(𝑥 − 𝑡)𝑚−𝛼−1 𝑢(𝑚) (𝑡) 𝑑𝑡. (5)

For simplicity, the Caputo fractional derivative of function
𝑢(𝑡) of order 𝛼 is denoted by 𝑑𝛼𝑢(𝑡)/𝑑𝑡𝛼.

From Definition 3, we see the 𝛼-order fractional deriva-
tive at time t is not defined locally; it relies on the total
effects of the commonly used m-order integer derivative on
the interval [0, 𝑡]. So it can be used to describe the variation
of a system in which the instantaneous change rate depends
on the past state, which is called the “memory effect” in a
visualized manner [18].

In this paper we reconsider system (2). By assuming that
the growth rates of both prey and predator at time 𝑡 do

not only depend instantaneously on the current state but
also depend on the past state, we replace the first order
derivatives in system (2) with the fractional order Caputo
type derivatives:

𝑑𝛼𝑁
𝑑𝑡𝛼 = 𝑁(1 − 𝑁 − 𝑚

𝑁 + ℎ) −
𝜔𝑁𝑃

𝑎 + 𝑏𝑁 + 𝑐𝑃
𝑑𝛼𝑃
𝑑𝑡𝛼 = 𝑠𝑃 (1 −

𝑃
𝑁 + 𝑘) ,

(6)

where 0 < 𝛼 < 1. Hence we have a system of fractional dif-
ferential equation. In the following we discuss the dynamical
properties of system (6). To study the stability of equilibrium
points, we apply the following stability theorem.

Theorem 4 (see [19]). Consider the following autonomous
nonlinear fractional order system:

𝑑𝛼𝑢⃗ (𝑡)
𝑑𝑡𝛼 = ⃗𝑓 (𝑢⃗ (𝑡)) ; 𝑢⃗ (0) = 𝑢⃗0; 0 < 𝛼 < 1. (7)

The equilibrium points of the above system are solutions to the
equation ⃗𝑓(𝑢⃗(𝑡)) = 0. An equilibrium point 𝑢⃗∗ is locally as-
ymptotically stable if all eigenvalues (𝜆𝑗) of the Jacobianmatrix
𝐽 = 𝜕 ⃗𝑓/𝜕𝑢⃗ evaluated at equilibrium 𝑢⃗∗ satisfy |arg (𝜆𝑗)| >𝛼𝜋/2.
2. Equilibria and Their Stability

Based on Theorem 4, equilibria of model (6) can be deter-
mined by solving the following system:

𝑁(1 − 𝑁 − 𝑚
𝑁 + ℎ) −

𝜔𝑁𝑃
𝑎 + 𝑏𝑁 + 𝑐𝑃 = 0

𝑠𝑃 (1 − 𝑃
𝑁 + 𝑘) = 0.

(8)

System (8) has been solved by Indrajaya et al. [9], and the
obtained equilibria are as follows:

(1) The equilibria of system (6) for the weak Allee effect
case are

(a) trivial equilibrium 𝐸𝑤0 = (0, 0), that is, the ex-
tinction of both prey and predator point,

(b) two axial equilibria, that is, the prey extinction
point 𝐸𝑤1 = (0, 𝑘) and the predator extinction
point 𝐸𝑤2 = (𝑁𝑤2, 0) where

𝑁𝑤2 = 1
2 (1 − ℎ + √(1 − ℎ)

2 + 4 (ℎ − 𝑚)) , (9)

(c) positive or coexistence equilibrium 𝐸∗𝑤 = (𝑁∗𝑤,𝑃∗𝑤 = 𝑁∗𝑤 + 𝑘), where 𝑁∗𝑤 are all possible real
positive solutions of cubic equation

𝑁3 + 3𝜂1𝑁2 + 3𝜂2𝑁 + 𝜂3 = 0, (10)
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where

𝜂1 = −(𝑏 + 𝑐) (1 − ℎ) − (𝑎 + 𝑐𝑘) − 𝜔3 (𝑏 + 𝑐) ,

𝜂2 = −(𝑎 + 𝑐𝑘) (1 − ℎ) + (𝑏 + 𝑐) (ℎ − 𝑚) − 𝜔 (ℎ + 𝑘)3 (𝑏 + 𝑐) ,

𝜂3 = −(𝑎 + 𝑐𝑘) (ℎ − 𝑚) − ℎ𝜔𝑘(𝑏 + 𝑐) .

(11)

(2) The equilibria of system (6) for the strong Allee effect
case are

(a) trivial equilibrium 𝐸𝑠0 = (0, 0), that is, the
extinction of both prey and predator point,

(b) three axial equilibria that are the prey extinction
point 𝐸𝑤1 = (0, 𝑘) and two predator extinction
points: 𝐸𝑠2 = (𝑁𝑠2, 0) and 𝐸𝑠3 = (𝑁𝑠3, 0), where

𝑁𝑠2 = 1
2 (1 − ℎ + √(1 − ℎ)

2 + 4 (ℎ − 𝑚)) ,

𝑁𝑠3 = 1
2 (1 − ℎ − √(1 − ℎ)

2 + 4 (ℎ − 𝑚)) ,
(12)

(c) positive or coexistence equilibrium point 𝐸∗𝑠 =(𝑁∗𝑠 , 𝑃∗𝑠 = 𝑁∗𝑠 +𝑘), where𝑁∗𝑠 are also all possible
real positive solutions of cubic equation (10).

Using transformation 𝑧 = 𝑁∗ + 𝜂1, (10) can be reduced to

ℎ (𝑧) = 𝑧3 + 3𝑝𝑧 + 𝑞 = 0, (13)

where 𝑝 = 𝜂2 − 𝜂21 and 𝑞 = 𝜂3 − 3𝜂1𝜂2 + 2𝜂1. Implementing
Cardan’s method as performed by Cai et al. [7], we obtain the
existence of the positive equilibria as follows.

Lemma 5 (existence of positive equilibria). Let (𝑁∗, 𝑃∗) be
the interior equilibrium of model (6) for both weak and strong
Allee effects where𝑁∗is a real positive solution of (10).Then the
following statements hold:

(a) If 𝑞 < 0, then (13) has a single positive root 𝑧1. As a
result, model (6) has a unique positive equilibrium
point, that is,𝐸∗ = (𝑁∗, 𝑁∗+𝑘) = (𝑧1−𝜂1, 𝑧1−𝜂1+𝑘),
with 𝑧1 > 𝜂1.

(b) Suppose that 𝑞 > 0 and 𝑝 < 0, then
(b1) If 𝑞2 + 4𝑝3 = 0, then (13) has a positive root of

multiplicity two. Thus, model (6) has a unique
positive equilibrium point, that is, 𝐸∗ = (𝑁∗,
𝑁∗ + 𝑘) = (√−𝑝,√−𝑝 + 𝑘).

(b2) If 𝑞2 + 4𝑝3 < 0, then (13) has two positive
roots 𝑧1 and 𝑧2. Thus, model (6) has two positive
equilibrium points, namely, 𝐸1∗ = (𝑁1∗, 𝑁1∗ +𝑘) = (𝑧1 −𝜂1, 𝑧1 −𝜂1 +𝑘) and 𝐸2∗ = (𝑁2∗, 𝑁2∗ +𝑘) = (𝑧2−𝜂1, 𝑧2−𝜂1+𝑘), with𝐸1∗ = (𝑁1∗, 𝑁1∗+𝑘) 𝑧1,2 > 𝜂1.

(c) If 𝑞 = 0 and 𝑝 < 0, then (13) has a unique positive
root 𝑧1 = √−3𝑝. As a result, model (6) has a unique
positive equilibrium point, that is,𝐸∗ = (𝑁∗, 𝑁∗+𝑘) =
(√−3𝑝,√−3𝑝 + 𝑘) with 𝑞|𝑚=0 = 0.

Moreover, algebraic computations show that if (13) has
two positive roots, then they are

𝑧1 =
(−4𝑞 + 4√4𝑝3 + 𝑞2)2/3 − 4𝑝
2 (−4𝑞 + 4√4𝑝3 + 𝑞2)2/3

,

𝑧2 = −𝑧12 + √𝑧31 + 4𝑞
2√𝑧1 .

(14)

If (13) has a positive root, then it must be

𝑧1 =
(−4𝑞 + 4√4𝑝3 + 𝑞2)2/3 − 4𝑝
2 (−4𝑞 + 4√4𝑝3 + 𝑞2)2/3

. (15)

To check the local stability of each equilibrium point, we
linearize system (6) around the equilibrium and verify all
eigenvalues of the Jacobian matrix evaluated at the equilib-
rium. The stability properties of trivial and axial equilibrium
points for the case of weak and strong Allee effect are,
respectively, stated inTheorems 6 and 7.

Theorem 6. Stability of trivial and axial equilibrium for weak
Allee effect (0 < 𝑚 < ℎ):

(i) the trivial equilibrium 𝐸𝑤0 = (0, 0) and the axial equi-
librium 𝐸𝑤2 = (𝑁𝑤2, 0) are always unstable;

(ii) the axial equilibrium 𝐸𝑤1 = (0, 𝑘) is asymptotically
stable if ℎ − 𝑚 < ℎ𝜔𝑘/(𝑎 + 𝑐𝑘).

Proof. (i) The Jacobian matrix at 𝐸𝑤0 is 𝐽(𝐸𝑤0) = ( 1−𝑚/ℎ 0
0 𝑠

),
and the eigenvalues are 𝜆1 = 1 − 𝑚/ℎ > 0 and 𝜆1 = 𝑠 >
0. It is clear that arg(𝜆1,2) = 0 < 𝛼𝜋/2, 𝛼 > 0. Hence
𝐸𝑤0 is unstable. The Jacobian matrix at 𝐸𝑤2 is 𝐽(𝐸𝑤2) =
( 1−2𝑁∗𝑤2−𝑚ℎ/(2𝑁∗𝑤2+ℎ)2 −𝜔𝑁∗𝑤2/(𝑎+𝑏𝑁∗𝑤2)

0 𝑠
) where one of its eigen-

values is 𝜆 = 𝑠 > 0 and therefore 𝐸𝑤2 is unstable because
arg(𝜆) = 0 < 𝛼𝜋/2, 𝛼 > 0.

(ii) The Jacobian matrix at 𝐸𝑤1 is 𝐽(𝐸𝑤1) =
( 1−𝑚/ℎ−𝜔𝑘/(𝑎+𝑐𝑘) 0

0 −𝑠
). The eigenvalues of 𝐽(𝐸𝑤1) are 𝜆1 = −𝑠 <0 and 𝜆2 = 1 − 𝑚/ℎ − 𝜔𝑘/(𝑎 + 𝑐𝑘). Thus arg(𝜆1) = 𝜋 > 𝛼𝜋/2

and arg(𝜆2) = 𝜋 > 𝛼𝜋/2 whenever ℎ − 𝑚 < ℎ𝜔𝑘/(𝑎 + 𝑐𝑘).
This proves part (ii).

Using the same argument as in the proof of Theorem 6,
we obtain the following stability properties of equilibria for
the case of strong Allee effect.

Theorem7. Stability of trivial and axial equilibrium for strong
Allee effect (𝑚 > ℎ):

(i) the trivial equilibrium𝐸𝑠0 = (0, 0); the axial equilibria:𝐸𝑠2 = (𝑁𝑠2, 0) and 𝐸𝑠3 = (𝑁𝑠3, 0) are always unstable;
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(ii) the axial equilibrium 𝐸𝑠1 = (0, 𝑘) is always asymptoti-
cally stable.

The stability properties of positive (coexistence) equilib-
rium for the case of weak and strong Allee effect are stated in
Theorems 8 and 9.

Theorem 8. Stability of coexistence equilibrium for weak Allee
effect (0 < 𝑚 < ℎ):

suppose 𝐽(𝐸∗𝑤) is the Jacobianmatrix at coexistence equilib-
rium 𝐸∗𝑤. Equilibrium 𝐸∗𝑤 is asymptotically stable if one of the
following mutually exclusive conditions holds:

(i) Trace(𝐽(𝐸∗𝑤)) < 0; Det(𝐽(𝐸∗𝑤)) > 0 and Δ =
Trace2(𝐽(𝐸∗𝑤)) − 4Det(𝐽(𝐸∗𝑤)) ≥ 0.

(ii) Det(𝐽(𝐸∗𝑤)) > 0, Δ < 0 and
√|Δ|

Trace (𝐽 (𝐸∗𝑤)) > tan(𝛼𝜋2 ) . (16)

Proof. The characteristics equation of 𝐽(𝐸∗𝑤) is given by

𝜆2 − Trace (𝐽 (𝐸∗𝑤)) 𝜆 + Det (𝐽 (𝐸∗𝑤)) = 0. (17)

(i) If Trace(𝐽(𝐸∗𝑤)) < 0; Det(𝐽(𝐸∗𝑤)) > 0; and Δ ≥ 0 then
𝜆1,2 < 0; hence arg(𝜆1,2) = 𝜋 > 𝛼𝜋/2 and the result
follows.

(ii) If 𝜆 is an eigenvalue of 𝐽(𝐸∗𝑤) and Δ < 0, then 𝜆
is also an eigenvalue. Using √|Δ|/Trace(𝐽(𝐸∗𝑤)) >
tan (𝛼𝜋/2), we have that |(𝜆 − 𝜆)/(𝜆 + 𝜆)| =
|Im (𝜆)/Re(𝜆)| = |arg (𝜆)| > tan(𝛼𝜋/2). Therefore
the stability of 𝐸∗𝑤 follows.

Similarly we have Theorem 9 for the stability of coexis-
tence equilibrium for strong Allee effect case.

Theorem 9. Stability of coexistence equilibrium for strong
Allee effect (𝑚 > ℎ):

suppose 𝐽(𝐸∗𝑠 ) is the Jacobian matrix evaluated at the
coexistence equilibrium 𝐸∗𝑠 . Equilibrium 𝐸∗𝑠 is asymptotically
stable if one of the following mutually exclusive conditions
holds:

(i) Trace(𝐽(𝐸∗𝑠 )) < 0; Det(𝐽(𝐸∗𝑠 )) > 0; and
Δ = Trace2 (𝐽 (𝐸∗𝑠 )) − 4Det (𝐽 (𝐸∗𝑠 )) ≥ 0. (18)

(ii) Det(𝐽(𝐸∗𝑠 )) > 0, Δ < 0, and
√|Δ|

Trace (𝐽 (𝐸∗𝑠 )) > tan(𝛼𝜋2 ) . (19)

Based on the above theorems it can be seen that the
stability properties of both trivial and axial equilibriumpoints
are not dependent on 𝛼 (order of fractional derivative). But
𝛼 may influence significantly the stability of coexistence

equilibrium point. Coexistence point can be asymptotically
stable although the eigenvalue of Jacobian matrix has posi-
tive real part, provided that conditions of Theorem 8(ii) or
Theorem 9(ii) are met. This is in contrast to the coexistence
equilibrium point of the integer-order model (2) where
coexistence point is asymptotically stable only if all real parts
of the eigenvalues of the Jacobian matrix are negative [9].

3. Numerical Simulations

To solve system (6), we implement a nonstandard Grünwald-
Letnikov scheme which is a combination of the Grünwald-
Letnikov approximation [20] and the nonstandard finite
difference (NSFD) method [21, 22]. According to [20], the
explicit (or implicit) Grünwald-Letnikov (GL) approxima-
tion for a fractional differential equation with initial value

𝑑𝛼𝑦 (𝑡)
𝑑𝑡𝛼 = 𝑓 (𝑦 (𝑡)) , 𝑦 (0) = 𝑦0 (0 < 𝛼 < 1) (20)

is given by

𝑦 (𝑡𝑛+1) −
𝑛+1

∑
V=1

𝑐𝛼V 𝑦 (𝑡𝑛+1−V) − 𝑟𝛼𝑛+1𝑦0 = Δ𝑡𝛼𝑓 (𝑦𝑛)

(or = Δ𝑡𝛼𝑓 (𝑦𝑛+1)) ,
(21)

where 𝑐𝛼V = (1 − (𝛼 + 1)/V)𝑐𝛼V−1; 𝑐𝛼1 = 𝛼; and 𝑟𝛼𝑛+1 =
Δ𝑡𝛼𝑟𝛼0 (𝑡𝑛+1) = (𝑛 + 1)−𝛼/Γ(1 − 𝛼). Here, Δ𝑡 represents the
time step of numerical integration. The Grünwald-Letnikov
approximation is proceeding iteratively but the sum in the
scheme becomes longer and longer which represents the
memory effects. Scherer et al. [20] have shown that the
coefficient 𝑐𝛼V is positive and satisfies 0 < 𝑐𝛼𝑛+1 < 𝑐𝛼𝑛 < ⋅ ⋅ ⋅ <
𝑐𝛼1 = 𝛼 for 𝑛 ≥ 1. Observe that in the standard Grünwald-
Letnikov approximation (21), the right hand side of (20) is
approximated locally. We implement a nonstandard method
which is adopted from the NSFD method [23]. A numerical
scheme for an initial value problem

𝑑𝑢⃗
𝑑𝑡 = ⃗𝑓 (𝑡, 𝑢⃗) ; 𝑢⃗ (0) = 𝑢⃗0 (22)

is called a NSFD method if at least one of the following
conditions is satisfied [21, 22]:

(i) The left hand side is approximated by the generaliza-
tion of forward difference scheme

𝑑𝑢⃗𝑛
𝑑𝑡 ≈ 𝑢⃗𝑛+1 − 𝑢⃗𝑛

𝜓 (Δ𝑡) . (23)

The nonnegative denominator function has to satisfy
𝜓(Δ𝑡) = Δ𝑡 + 𝑂(Δ𝑡2).

(ii) The approximation of 𝑓(𝑡, 𝑢⃗) is nonlocal.
By implementing the Grünwald-Letnikov approximation

for the fractional derivative and the nonlocal approximation
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Figure 1: Phase portrait of system (6). The values of parameters are 𝑠 = 1, 𝑘 = 0.5, 𝑚 = 0.2, ℎ = 0.1, 𝜔 = 0.7, 𝑎 = 1, 𝑏 = 0.5, 𝑐 = 0.05, and
Δ𝑡 = 0.1.

for the right hand side of system (6) we get the following
scheme:

𝑁𝑛+1

= 𝑟𝛼𝑛+1𝑁0 + ∑𝑛+1𝑗=1 𝑐𝛼𝑗𝑁𝑛+1−𝑗 + Δ𝑡𝛼𝑁𝑛
1 + Δ𝑡𝛼 (𝑁𝑛 + 𝑚/ (𝑁𝑛 + ℎ) + 𝜔𝑃𝑛/ (𝑎 + 𝑏𝑁𝑛 + 𝑐𝑃𝑛))

𝑃𝑛+1 =
𝑟𝛼𝑛+1𝑃0 + ∑𝑛+1𝑗=1 𝑐𝛼𝑗 𝑃𝑛+1−𝑗 + Δ𝑡𝛼𝑠𝑃𝑛

1 + Δ𝑡𝛼𝑠𝑃𝑛/ (𝑁𝑛 + 𝑘) .

(24)

Observe that scheme (24) is explicit and hence it is simple
and easy to be implemented. Besides that, the nonstandard
Grünwald-Letnikov scheme (24) alsomaintains the positivity
solutions.

To verify our stability analysis as well as the effective-
ness our numerical scheme, we perform some numerical
simulations. First we use hypothetic values of parameters
𝑠 = 1, 𝑘 = 0.5, 𝑚 = 0.2, ℎ = 0.1, 𝜔 = 0.7, 𝑎 = 1,
𝑏 = 0.5, 𝑐 = 0.05, and Δ𝑡 = 0.1. Model (6) with these
parameters has four equilibrium points: (0, 0), (0.1298, 0),
(0.7701, 0), and (0, 0.5). According to Theorem 7, only axial
equilibrium (0, 0.5) is stable for any order of fractional
derivative (𝛼), where 0 < 𝛼 < 1. This stability behavior is
confirmed by our numerical solutions; see Figures 1 and 2.
This shows that strong Allee effect may lead to an extinction
of prey population. It is shown in Figure 2 that our numerical
solutions for 𝛼 = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 are convergent
to the axial equilibrium (0, 0.5), indicating that equilibrium
(0, 0.5) is stable asymptotically for any order of fractional
derivative. Detail observation shows that as the order of
fractional derivative increases the convergence of solution is
faster and the solution of system (6) closes to the integer-
order model (2).

Next, we set 𝑠 = 0.02 and ℎ = 0.3 and keep the rest
of parameters as in Figure 1. This weak Allee case has a
trivial equilibrium (0, 0); two axial equilibria: (0.8217, 0) and
(0, 0.5); and two interior points: 𝐸∗𝑤1 = (0.0128, 0.5128) and
𝐸∗𝑤2 = (0.1373, 0.6373). Theorems 7 and 9 state that axial
equilibrium (0, 0.5) is locally stable for 0 < 𝛼 < 1 and interior
point 𝐸∗𝑤2 = (0.1373, 0.6373) is locally stable if 𝛼 < 𝛼∗ =
0.886, and other equilibria are always unstable. Such behavior
is in accordance with our numerical results depicted in
Figures 3(a) and 3(b). It is clearly seen in Figure 3(a) that
𝛼 = 0.8 produces bistable dynamic where depending on the
initial values, solutions may be convergent to the extinction
of prey point (0, 0.5) or to interior point. In other words,
the solution of system (6) is highly sensitive to the initial
conditions. An initially relatively small prey will converge to
the prey extinction point. On the other hand, if the prey is
initially relatively large then prey and predator will coexist.
If we increase the order of derivative such that 𝛼 = 0.95, the
axial equilibrium (0, 0.5) is still locally stable but the interior
point becomes unstable; see Figure 3(b). In latter case, there
exists a stable limit cycle which shows that both prey and
predator are fluctuating around the interior point. However,
the appearance of limit cyclemay be suppressed by increasing
the coefficient of predator interference. For example we
plot in Figure 4(a) the numerical solution using the same
parameters as in Figure 3(b) but with 𝑐 = 0.1. We see that
the interior point is now stable while the axial equilibrium
point (0, 0.5) is unstable. It can be said that relatively large
predator interference can stabilize the interior point. On the
other hand, strong Allee effect can destabilize or even remove
the interior equilibrium and can cause the extinction of
prey population. For example, we show numerical simulation
using parameters the same as in Figure 3(b) except 𝑚 = 0.3.
This simulation shows that all initial values converge to the
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Figure 2: Solutions of system (6) with initial value (1, 0.2) and parameter values: 𝑠 = 1, 𝑘 = 0.5, 𝑚 = 0.2, ℎ = 0.1, 𝜔 = 0.7, 𝑎 = 1, 𝑏 = 0.5,
𝑐 = 0.05, and Δ𝑡 = 0.1, for various values of 𝛼. All numerical solutions are convergent to axial equilibrium (0, 0.5). Solution of system (6)
with larger order of fractional derivative (𝛼) has faster convergence compared to that with smaller 𝛼.
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Figure 3: Phase portrait of system (6). The values of parameters are 𝑠 = 0.02, 𝑘 = 0.5,𝑚 = 0.2, ℎ = 0.3, 𝜔 = 0.7, 𝑎 = 1, 𝑏 = 0.5, 𝑐 = 0.05, and
Δ𝑡 = 0.1.

axial equilibrium (0, 0.5) which shows the extinction of prey
population but predator species can still survive in the habitat
because there is an enough environmental protection; see
Figure 4(b).

Finally, we compare our numerical results obtained by the
NSGL scheme to those obtained by the standard GL scheme
using parameters 𝑠 = 0.02, 𝑘 = 0.5,𝑚 = 0.2, ℎ = 0.3,

𝜔 = 0.7, 𝑎 = 1, 𝑏 = 0.5, 𝑐 = 0.1, and 𝛼 = 0.95; see Figure 5.
We see that both NSGL and GL schemes using Δ𝑡 = 0.005
produce solutions where their difference cannot be observed
in the scale of Figure 5. Using Δ𝑡 = 0.01, the numerical
solutions of both NSGL and GL schemes are in excellent
agreement with those of both schemes using Δ𝑡 = 0.005. If
we take time step Δ𝑡 = 0.1, both schemes have comparable
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Figure 5: Phase portrait of system (6) calculated using nonstandard (NSGL) and standard (GL) schemes. The values of parameters are
𝑠 = 0.02, 𝑘 = 0.5,𝑚 = 0.2, ℎ = 0.3, 𝜔 = 0.7, 𝑎 = 1, 𝑏 = 0.5, 𝑐 = 0.1, and 𝛼 = 0.95.

solutions which are initially distorted from solutions with
much smaller time step; see Figure 5(a). In Figure 5(b), we
plot solutions using relatively large time step (Δ𝑡 = 2.0 and
Δ𝑡 = 2.25). Although the NSGL scheme has solutions which
are quantitatively different from solution with Δ𝑡 = 0.005,
nevertheless those solutions still have the same behavior as
before; that is, they are always positive and convergent to the
correct equilibrium point. However, the GL scheme in this

case gives unrealistic negative value for prey population. If the
time step is further increased, the GL scheme will be unstable
and leads to blowing up solutions.

4. Conclusion

The dynamic of a fractional order modified Leslie-Gower
model with Beddington-DeAngelis functional response and
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additive Allee effect has been analyzed. Our model has four
types of equilibria that are the trivial (extinction of both
prey and predator) equilibrium, two axial equilibria (the
prey extinction point and the predator extinction point), and
the interior (coexistence) point. The trivial and the predator
extinction for both weak and strong Allee effects are always
unstable. For the case of weak Allee effect, the prey extinction
is conditionally stable while for that of strong Allee effect,
the prey extinction is always stable. Our analysis also shows
that the interior point for both weak and Allee effects is
conditionally stable. The order of fractional derivative may
influence the stability of interior point. Here, when the order
𝛼 is larger than critical order 𝛼∗, then the interior point may
be destabilized. These dynamical properties are confirmed
by our NSGL schemes which shows the effectiveness of
NSGL scheme. It is also shown that the NSGL scheme
preserves the positivity of numerical solutions. Furthermore,
our numerical results show that the NSGL scheme produces
numerical solutions which satisfy the dynamical behavior
of our model. However, the standard GL scheme may fail
to preserve such properties; for example, it can produce
nonrealistic negative solutions.
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