
Research Article
A Mathematical Model of Malaria Transmission with Structured
Vector Population and Seasonality

Bakary Traoré, Boureima Sangaré, and Sado Traoré

Department of Mathematics, Polytechnic University of Bobo Dioulasso, 01 BP 1091, Bobo-Dioulasso 01, Burkina Faso

Correspondence should be addressed to Boureima Sangaré; mazou1979@yahoo.fr
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In this paper, we formulate a mathematical model of nonautonomous ordinary differential equations describing the dynamics of
malaria transmission with age structure for the vector population.The biting rate of mosquitoes is considered as a positive periodic
function which depends on climatic factors. The basic reproduction ratio of the model is obtained and we show that it is the
threshold parameter between the extinction and the persistence of the disease. Thus, by applying the theorem of comparison and
the theory of uniform persistence, we prove that if the basic reproduction ratio is less than 1, then the disease-free equilibrium is
globally asymptotically stable and if it is greater than 1, then there exists at least one positive periodic solution. Finally, numerical
simulations are carried out to illustrate our analytical results.

1. Introduction

Malaria is an infectious disease caused by plasmodium
parasite which is transmitted to humans through the bites of
infectious female mosquitoes. According to the estimations
of World Health Organization (WHO) in 2015, 3.2 billion
persons were at risk of infection and 2.4 million new cases
were detected with 438,000 cases of deaths. However sub-
Saharan Africa remains the most vulnerable region with high
rate of deaths due to malaria.

To reduce the impact of malaria in the world, many
scientific efforts were done including mathematical models
construction. The first model of malaria transmission was
developed by Ross [1]. According to Ross, if the mosquito
population can be reduced to below a certain threshold,
then malaria can be eradicated. Later, Macdonald did some
modifications to the model and included superinfection. He
showed that reducing the number of mosquitoes has little
effect on the epidemiology of malaria in areas of intense
transmission [2]. Nowadays, several mathematical models
have been developed in order to reduce the malaria death
rate in the world [3, 4]. In spite of the efforts made, it is
still difficult to predict future malaria intensity, particularly
in view of climate change.

It must be noticed that transmission and distribution
of vector-borne diseases are greatly influenced by envi-
ronmental and climatic factors. Seasonality and circadian
rhythm of mosquito population, as well as other ecological
and behavioural features, are strongly influenced by climatic
factors such as temperature, rainfall, humidity, wind, and
duration of daylight [5]. Moreover, in most mathematical
models, the mosquito life cycle is generally ignored because
eggs, larvae, and pupae are not involved in the transmission
cycle. That is a useful simplification of the system but unfor-
tunately the results of these models do not predict malaria
intensity in most endemic regions. Thus, it is necessary to
consider the life cycle of mosquitoes and the seasonality
effect, which are very important aspects of the dynamics of
malaria transmission.

Recently, Moulay et al. [6] have formulated a mathe-
matical model describing the mosquito population dynamics
which takes into account autoregulation phenomena of eggs
and larvae stages. They have defined a threshold and proved
that the growth of the mosquito population is governed
by that threshold. Considering the climatic factors and the
mosquitoes life cycle, we formulate a mathematical model
describing the dynamics of malaria transmission. We analyze
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the impact of the model describing the mosquito population
dynamics on the model of malaria transmission. Besides, by
using the comparison theorem and the theory of uniform
persistence, we, respectively, study the global stability of the
nontrivial disease-free equilibrium [7–10] and the existence
of positive periodic solutions.

This paper is organized as follows. In Section 2, we
formulate the mathematical model of our problem. Section 3
provides the mathematical analysis of the model. Compu-
tational simulations are performed in Section 4 in order
to illustrate our mathematical results. In the last section,
Section 5, we conclude and give some remarks and future
works.

2. Model Formulation

Motivated by the compartmental models in [6, 11], we derive
an age-structured malaria model with seasonality to account
for the cross infection between mosquitoes and humans.
The human population is divided into four epidemiological
categories representing the state variables: the susceptible class𝑆ℎ, exposed class 𝐸ℎ, infectious class 𝐼ℎ, and recovered class 𝑅ℎ
(immune and asymptomatic, but slightly infectious humans).
In the life cycle of anopheles, there are mainly two major
stages: mature stage and aquatic stage. Therefore, we divide
the mosquitoes population into these stages: immature and
mature.The immature stage is divided in two compartments:
eggs class 𝐸, larvae and pupae class 𝐿. In the mature stage,
we have three compartments: the susceptible class 𝑆𝑚, exposed
class𝐸𝑚, and infectious class 𝐼𝑚. At any time, the total number
of humans and mature mosquitoes is given, respectively, by𝑁ℎ (𝑡) = 𝑆ℎ (𝑡) + 𝐸ℎ (𝑡) + 𝐼ℎ (𝑡) + 𝑅ℎ (𝑡) , (1)𝐴 (𝑡) = 𝑆𝑚 (𝑡) + 𝐸𝑚 (𝑡) + 𝐼𝑚 (𝑡) . (2)

It is assumed throughout this paper that

(H1) all vector population measures refer to densities of
female mosquitoes,

(H2) the mosquitoes bite only humans,
(H3) there is no vertical transmission of malaria,
(H4) all the new recruits are susceptibles.

2.1. Interactions between Humans and Mosquitoes. When an
infectious mosquito bites a susceptible human, the parasite
enters the body of the human with a probability 𝑐𝑚ℎ and the
human moves into the exposed class 𝐸ℎ. Some time after, he
leaves from class 𝐸ℎ to class 𝐼ℎ with rate 𝛼. Infectious humans
migrate into the class 𝑅ℎ after acquisition of their immunity
with rate 𝑟ℎ.The immunized lose their immunity with rate 𝛾 if
they do not have continuous exposure to infection. Humans
leave the total population through natural death rate 𝑑ℎ and
malaria death rate 𝑑𝑃.

Similarly, when a susceptible mosquito bites an infectious
human, it enters the class 𝐸𝑚 with a probability 𝑐ℎ𝑚. Some
time after, it leaves from class 𝐸𝑚 to infective class 𝐼𝑚 with
rate ]𝑚 where it remains for life. Mature mosquitoes leave the
population through natural mortality 𝑑𝑚.

Using the standard incidence as in the model of Ngwa
and Shu [4], we define, respectively, the infection incidence
from mosquitoes to humans, 𝑘ℎ(𝑡), and from humans to
mosquitoes, 𝑘𝑚(𝑡):

𝑘ℎ (𝑡) = 𝑐𝑚ℎ𝛽 (𝑡) 𝐼𝑚 (𝑡)𝑁ℎ (𝑡) , (3)

𝑘𝑚 (𝑡) = 𝑐ℎ𝑚𝛽 (𝑡) 𝐼ℎ (𝑡)𝑁ℎ (𝑡) + 𝑐ℎ𝑚𝛽 (𝑡) 𝑅ℎ (𝑡)𝑁ℎ (𝑡) . (4)

Furthermore, using the above assumptions, we obtain the
transfer diagram (Figure 1) of the model.

2.2. The Mathematical Model. Using the above assumptions
and by making a balance of the movements in each class, we
obtain the following system:

𝑑𝐸𝑑𝑡 (𝑡) = 𝑏 (1 − 𝐸 (𝑡)𝐾𝐸 )𝐴 (𝑡) − (𝑠 + 𝑑) 𝐸 (𝑡) ,𝑑𝐿𝑑𝑡 (𝑡) = 𝑠 (1 − 𝐿 (𝑡)𝐾𝐿 )𝐸 (𝑡) − (𝑠𝐿 + 𝑑𝐿) 𝐿 (𝑡) ,𝑑𝑆ℎ𝑑𝑡 (𝑡) = Λ + 𝛾𝑅ℎ (𝑡) − (𝑑ℎ + 𝑘ℎ (𝑡)) 𝑆ℎ (𝑡) ,𝑑𝐸ℎ𝑑𝑡 (𝑡) = 𝑘ℎ (𝑡) 𝑆ℎ (𝑡) − (𝑑ℎ + 𝛼) 𝐸ℎ (𝑡) ,𝑑𝐼ℎ𝑑𝑡 (𝑡) = 𝛼𝐸ℎ (𝑡) − (𝑑ℎ + 𝑑𝑝 + 𝑟ℎ) 𝐼ℎ (𝑡) ,𝑑𝑅ℎ𝑑𝑡 (𝑡) = 𝑟ℎ𝐼ℎ (𝑡) − (𝑑ℎ + 𝛾) 𝑅ℎ (𝑡) ,𝑑𝑆𝑚𝑑𝑡 (𝑡) = 𝑠𝐿𝐿 (𝑡) − (𝑑𝑚 + 𝑘𝑚 (𝑡)) 𝑆𝑚 (𝑡) ,𝑑𝐸𝑚𝑑𝑡 (𝑡) = 𝑘𝑚 (𝑡) 𝑆𝑚 (𝑡) − (]𝑚 + 𝑑𝑚) 𝐸𝑚 (𝑡) ,𝑑𝐼𝑚𝑑𝑡 (𝑡) = ]𝑚𝐸𝑚 (𝑡) − 𝑑𝑚𝐼𝑚 (𝑡) .

(5)

The growth of the whole human population and mature
vector is, respectively, described by the following equations:

𝑑𝑁ℎ𝑑𝑡 (𝑡) = Λ − 𝑑ℎ𝑁ℎ (𝑡) − 𝑑𝑝𝐼ℎ (𝑡) ,𝑑𝐴𝑑𝑡 (𝑡) = 𝑠𝐿𝐿 (𝑡) − 𝑑𝑚𝐴 (𝑡) . (6)
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Figure 1: The dashed arrows indicate the direction of the infection and the solid arrows represent the transition from one class to another.

Using (2), we get 𝑆𝑚(𝑡) = 𝐴(𝑡) − 𝐸𝑚(𝑡) − 𝐼𝑚(𝑡) and then the
model can be rewritten as follows:𝑑𝐸𝑑𝑡 (𝑡) = 𝑏(1 − 𝐸 (𝑡)𝐾𝐸 )𝐴 (𝑡) − (𝑠 + 𝑑) 𝐸 (𝑡) ,𝑑𝐿𝑑𝑡 (𝑡) = 𝑠 (1 − 𝐿 (𝑡)𝐾𝐿 )𝐸 (𝑡) − (𝑠𝐿 + 𝑑𝐿) 𝐿 (𝑡) ,𝑑𝐴𝑑𝑡 (𝑡) = 𝑠𝐿𝐿 (𝑡) − 𝑑𝑚𝐴 (𝑡) ,𝑑𝑆ℎ𝑑𝑡 (𝑡) = Λ + 𝛾𝑅ℎ (𝑡) − (𝑑ℎ + 𝑘ℎ (𝑡)) 𝑆ℎ (𝑡) ,𝑑𝐸ℎ𝑑𝑡 (𝑡) = 𝑘ℎ (𝑡) 𝑆ℎ (𝑡) − (𝑑ℎ + 𝛼) 𝐸ℎ (𝑡) ,𝑑𝐼ℎ𝑑𝑡 (𝑡) = 𝛼𝐸ℎ (𝑡) − (𝑑ℎ + 𝑑𝑝 + 𝑟ℎ) 𝐼ℎ (𝑡) ,𝑑𝑅ℎ𝑑𝑡 (𝑡) = 𝑟ℎ𝐼ℎ (𝑡) − (𝑑ℎ + 𝛾) 𝑅ℎ (𝑡) ,𝑑𝐸𝑚𝑑𝑡 (𝑡) = 𝑘𝑚 (𝑡)A (𝑡) − 𝑘𝑚 (𝑡) 𝐼𝑚 (𝑡)− (]𝑚 + 𝑑𝑚 + 𝑘𝑚 (𝑡)) 𝐸𝑚 (𝑡) ,𝑑𝐼𝑚𝑑𝑡 (𝑡) = ]𝑚𝐸𝑚 (𝑡) − 𝑑𝑚𝐼𝑚 (𝑡) .

(7)

Mathematically model (7) can be written as follows:

𝑋̇ (𝑡) = 𝐹 (𝑡, 𝑋 (𝑡)) , (8)

where𝑋(𝑡) = (𝐸(𝑡), 𝐿(𝑡), 𝐴(𝑡), 𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡), 𝐸𝑚(𝑡),𝐼𝑚(𝑡))𝑇. The function 𝐹 : R+ × R9 → R9 is 𝐶∞(R9) and
defined by𝐹 (𝑡, 𝑋 (𝑡))

=
(((((((((((((((((
(

𝑏(1 − 𝐸 (𝑡)𝐾𝐸 )𝐴 (𝑡) − (𝑠 + 𝑑) 𝐸 (𝑡)𝑠 (1 − 𝐿 (𝑡)𝐾𝐿 )𝐸 (𝑡) − (𝑠𝐿 + 𝑑𝐿) 𝐿 (𝑡)𝑠𝐿𝐿 (𝑡) − 𝑑𝑚𝐴 (𝑡)Λ + 𝛾𝑅ℎ (𝑡) − (𝑑ℎ + 𝑘ℎ (𝑡)) 𝑆ℎ (𝑡)𝑘ℎ (𝑡) 𝑆ℎ (𝑡) − (𝑑ℎ + 𝛼) 𝐸ℎ (𝑡)𝛼𝐸ℎ (𝑡) − (𝑑ℎ + 𝑑𝑝 + 𝑟ℎ) 𝐼ℎ (𝑡)𝑟ℎ𝐼ℎ (𝑡) − (𝑑ℎ + 𝛾) 𝑅ℎ (𝑡)𝑘𝑚 (𝑡) 𝐴 (𝑡) − 𝑘𝑚 (𝑡) 𝐼𝑚 (𝑡) − (]𝑚 + 𝑑𝑚 + 𝑘𝑚 (𝑡)) 𝐸𝑚 (𝑡)
]𝑚𝐸𝑚 (𝑡) − 𝑑𝑚𝐼𝑚 (𝑡)

)))))))))))))))))
)

. (9)

Let us consider 𝐹 = (𝐹1, 𝐹2)𝑇 and𝑋(𝑡) = (𝑋1(𝑡),𝑋2(𝑡))𝑇 with𝑋1(𝑡) = (𝐸(𝑡), 𝐿(𝑡), 𝐴(𝑡))𝑇 and 𝑋2(𝑡) = (𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝐼ℎ(𝑡),𝑅ℎ(𝑡), 𝐸𝑚(𝑡), 𝐼𝑚(𝑡))𝑇. Then system (8) can be rewritten as
follows: 𝑋̇1 (𝑡) = 𝐹1 (𝑋1 (𝑡) , 𝑋2 (𝑡)) , (10)𝑋̇2 (𝑡) = 𝐹2 (𝑡, 𝑋1 (𝑡) , 𝑋2 (𝑡)) , (11)

with the functions 𝐹1 and 𝐹2 defined as follows:𝐹2 (𝑡, 𝑋1 (𝑡) , 𝑋2 (𝑡))
=(((((
(

Λ+ 𝛾𝑅ℎ (𝑡) − (𝑑ℎ + 𝑘ℎ (𝑡)) 𝑆ℎ (𝑡)𝑘ℎ (𝑡) 𝑆ℎ (𝑡) − (𝑑ℎ + 𝛼) 𝐸ℎ (𝑡)𝛼𝐸ℎ (𝑡) − (𝑑ℎ + 𝑑𝑝 + 𝑟ℎ) 𝐼ℎ (𝑡)𝑟ℎ𝐼ℎ (𝑡) − (𝑑ℎ + 𝛾)𝑅ℎ (𝑡)𝑘𝑚 (𝑡) 𝐴 (𝑡) − 𝑘𝑚 (𝑡) 𝐼𝑚 (𝑡) − (]𝑚 + 𝑑𝑚 + 𝑘𝑚 (𝑡)) 𝐸𝑚 (𝑡)
]𝑚𝐸𝑚 (𝑡) − 𝑑𝑚𝐼𝑚 (𝑡)

)))))
)
,
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𝐹1 (𝑋1 (𝑡) , 𝑋2 (𝑡)) = ( 𝑏(1 − 𝐸 (𝑡)𝐾𝐸 )𝐴 (𝑡) − (𝑠 + 𝑑) 𝐸 (𝑡)𝑠 (1 − 𝐿 (𝑡)𝐾𝐿 )𝐸 (𝑡) − (𝑠𝐿 + 𝑑𝐿) 𝐿 (𝑡)𝑠𝐿𝐿 (𝑡) − 𝑑𝑚𝐴 (𝑡) ) .
(12)

System (10) describes the maturation cycle of mosquitoes and
system (11) describes the dynamics of malaria transmission.
System (10) is biologically well defined inΔ fl {(𝐸, 𝐿, 𝐴) ∈ R3

+ 𝐸 ≤ 𝐾𝐸, 𝐿 ≤ 𝐾𝐿, 𝐴 ≤ 𝑠𝐿𝑑𝑚𝐾𝐿} (13)

and system (11) is biologically well defined inΩ = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝐸𝑚, 𝐼𝑚) ∈ R6
+ |𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑅ℎ ≤ Λ𝑑ℎ , 𝐸𝑚 + 𝐼𝑚 ≤ 𝑠𝐿𝐾𝐿𝑑𝑚 } ; (14)

then model (7) is biologically well defined in Γ fl Δ × Ω.
3. Mathematical Analysis

3.1. Positivity and Boundedness of Solutions

Lemma 1 (see [6]). The set Δ is a positive invariant region
under the flow induced by (10).

We assume that

(H5) 𝛽(𝑡) is a 𝜔-periodic positive function with 𝜔 = 12
months,

(H6) all the parameters of the model are positive except the
disease-induced death rate, 𝑑𝑝, which is assumed to
be nonnegative.

Theorem 2. For any initial condition 𝜙 ∈ R9
+, system (8) has a

unique solution. Further, the compact Γ is a positively invariant
set, which attracts all positive orbits in R9

+.

Proof. For all 𝜙 ∈ R9
+, the function 𝐹 is locally Lipschitzian in𝑋(𝑡). It then follows through Cauchy-Lipschitz theorem that

system (8) has a unique local solution.
Furthermore, according to (6), we have𝑑𝑁ℎ𝑑𝑡 (𝑡) = Λ − 𝑑ℎ𝑁ℎ (𝑡) − 𝑑𝑝𝐼ℎ (𝑡) ≤ Λ − 𝑑ℎ𝑁ℎ (𝑡) ,𝑑𝐴𝑑𝑡 (𝑡) = 𝑠𝐿𝐿 (𝑡) − 𝑑𝑚𝐴 (𝑡) ≤ 𝑠𝐿𝐾𝐿 − 𝑑𝑚𝐴 (𝑡) . (15)

It then follows that if 𝑁ℎ(𝑡) > Λ/𝑑ℎ and 𝐴(𝑡) > 𝑠𝐿𝐾𝐿/𝑑𝑚,
then 𝑑𝑁ℎ/𝑑𝑡(𝑡) < 0 and 𝑑𝐴/𝑑𝑡(𝑡) < 0.

Let us consider the following differential equations:𝑑𝑁ℎ𝑑𝑡 (𝑡) = Λ − 𝑑ℎ𝑁ℎ (𝑡) ,𝑑𝐴𝑑𝑡 (𝑡) = 𝑠𝐿𝐾𝐿 − 𝑑𝑚𝐴 (𝑡) (16)

with general solutions:𝑁ℎ (𝑡) = Λ𝑑ℎ + (𝑁ℎ (0) − Λ𝑑ℎ) 𝑒−𝑑ℎ𝑡,𝐴 (𝑡) = 𝑠𝐿𝐾𝐿𝑑𝑚 + (𝐴 (0) − 𝑠𝐿𝐾𝐿𝑑𝑚 ) 𝑒−𝑑𝑚𝑡. (17)

By applying the standard comparison theorem, we obtain,
for all 𝑡 ≥ 0, 𝑁ℎ(𝑡) ≤ Λ/𝑑ℎ and 𝐴(𝑡) ≤ 𝑠𝐿𝐾𝐿/𝑑𝑚 if 𝑁ℎ(0)≤ Λ/𝑑ℎ and 𝐴(0) ≤ 𝑠𝐿𝐾𝐿/𝑑𝑚. Thus, the set Ω is positively
invariant with respect to system (11). Therefore, from
Lemma 1, the set Δ is positively invariant with respect to
system (10).Then, we conclude that the compact set Γ = Δ×Ω
is positively invariant. Thus, all the solutions of system (8) are
nonnegative and bounded.

3.2. Disease-Free Equilibriums. Let us consider the following
threshold parameter: 𝑟 = (𝑏/(𝑠+𝑑))(𝑠/(𝑠𝐿+𝑑𝐿))(𝑠𝐿/𝑑𝑚).Then
we have the following result.

Proposition 3 (see [6]). System (10) always has the mosquito-
free equilibrium 𝑃0 = (0, 0, 0).

(i) If 𝑟 ≤ 1, then system (10) has no other equilibrium.
(ii) If 𝑟 > 1, there is a unique endemic equilibrium𝑃1 = (𝐸∗, 𝐿∗, 𝐴∗) = (1 − 1𝑟 )(𝐾𝐸𝛾𝐸 , 𝐾𝐿𝛾𝐿 , 𝑠𝐿𝑑𝑚 𝐾𝐿𝛾𝐿 ) , (18)

where 𝛾𝐸 = 1 + (𝑠 + 𝑑) 𝑑𝑚𝐾𝐸𝑏𝑠𝐿𝐾𝐿 ,𝛾𝐿 = 1 + (𝑠𝐿 + 𝑑𝐿)𝐾𝐿𝑠𝐾𝐸 . (19)

Lemma 4. Model (7) has

(i) trivial disease-free equilibrium 𝐸0 = (0, 0, 0, 𝑆∗ℎ , 0, 0, 0,0, 0) if 𝑟 ≤ 1,
(ii) nontrivial disease-free equilibrium 𝐸1 = (𝐸∗, 𝐿∗, 𝐴∗,𝑆∗ℎ , 0, 0, 0, 0, 0) if 𝑟 > 1, where 𝑆∗ℎ = Λ/𝑑ℎ, 𝐴∗ = 𝑆∗𝑚 =𝑠𝐿𝐿∗/𝑑𝑚, and 𝐸∗, 𝐿∗, and 𝐴∗ are given above.

Proof. By solving the system 𝐹2(𝑡, 𝑋1(𝑡), 𝑋2(𝑡)) = 0 at the
disease-free equilibrium, 𝐸ℎ(𝑡) = 𝐼ℎ(𝑡) = 𝑅ℎ(𝑡) = 𝐸𝑚(𝑡) =𝐼𝑚(𝑡) = 0, ∀𝑡 ≥ 0, we get the equilibrium point 𝐸+1 =(𝑆∗ℎ , 0, 0, 0, 0, 0) for system (11), with 𝑆∗ℎ = Λ/𝑑ℎ. Moreover,
thanks to Proposition 3, system (10) has a unique mosquito-
free equilibrium (0, 0, 0) if 𝑟 ≤ 1 and a unique endemic
equilibrium (𝐸∗, 𝐿∗, 𝐴∗) if 𝑟 > 1. Thus, we conclude that
system (7) has a trivial disease-free equilibrium 𝐸0 = (0, 0, 0,𝑆∗ℎ , 0, 0, 0, 0, 0) if 𝑟 ≤ 1 and a nontrivial disease-free equilib-
rium 𝐸1 = (𝐸∗, 𝐿∗, 𝐴∗, 𝑆∗ℎ , 0, 0, 0, 0, 0) if 𝑟 > 1.
Remark 5. We will only consider the equilibrium state 𝐸1
because it is more biologically realistic. So, in the rest of the
paper, we assume that 𝑟 > 1.
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3.3. Threshold Dynamics. Linearizing system (8) at the equi-
librium state 𝐸1, we obtain the following system (here we
write down only the equations for the “diseased” classes):𝑑𝐸ℎ𝑑𝑡 (𝑡) = 𝑐𝑚ℎ𝛽 (𝑡) 𝐼𝑚 (𝑡) − (𝑑ℎ + 𝛼) 𝐸ℎ (𝑡) ,𝑑𝐼ℎ𝑑𝑡 (𝑡) = 𝛼𝐸ℎ (𝑡) − (𝑑ℎ + 𝑑𝑝 + 𝑟ℎ) 𝐼ℎ (𝑡) ,𝑑𝑅ℎ𝑑𝑡 (𝑡) = 𝑟ℎ𝐼ℎ (𝑡) − (𝑑ℎ + 𝛾) 𝑅ℎ (𝑡) ,𝑑𝐸𝑚𝑑𝑡 (𝑡) = 𝑐ℎ𝑚𝛽 (𝑡) 𝐴∗𝑆∗ℎ 𝐼ℎ (𝑡) + 𝑐ℎ𝑚𝛽 (𝑡) 𝐴∗𝑆∗ℎ 𝑅ℎ (𝑡)− (]𝑚 + 𝑑𝑚) 𝐸𝑚 (𝑡) ,𝑑𝐼𝑚𝑑𝑡 (𝑡) = ]𝑚𝐸𝑚 (𝑡) − 𝑑𝑚𝐼𝑚 (𝑡) .

(20)

This system can be rewritten as𝑑𝑍 (𝑡)𝑑𝑡 = (𝐹 (𝑡) − 𝑉 (𝑡)) 𝑍 (𝑡) , (21)

where 𝑍(𝑡) = (𝐸ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡), 𝐸𝑚(𝑡), 𝐼𝑚(𝑡))𝑇 and 𝐹(𝑡) and𝑉(𝑡) are 5 × 5matrix defined as follows:𝐹 (𝑡)
=(((
(
0 0 0 0 𝑐𝑚ℎ𝛽 (𝑡)0 0 0 0 00 0 0 0 00 𝑐ℎ𝑚𝛽 (𝑡) 𝐴∗𝑆∗ℎ 𝑐ℎm𝛽 (𝑡) 𝐴∗𝑆∗ℎ 0 00 0 0 0 0

)))
)
,

𝑉 (𝑡)
=((
(
𝑑ℎ + 𝛼 0 0 0 0−𝛼 𝑑ℎ + 𝑑𝑝 + 𝑟ℎ 0 0 00 −𝑟ℎ 𝑑ℎ + 𝛾 0 00 0 0 ]𝑚 + 𝑑𝑚 00 0 0 −]𝑚 𝑑𝑚

))
)
.
(22)

Let us assume that 𝑌(𝑡, 𝑠), 𝑡 ≥ 𝑠, is the matrix solution of
the linear 𝜔-periodic system𝑑𝑦𝑑𝑡 = −𝑉 (𝑡) 𝑦. (23)

That is, for each 𝑠 ∈ R, the 5 × 5 matrix 𝑌(𝑡, 𝑠) satisfies the
equation𝑑𝑑𝑡𝑌 (𝑡, 𝑠) = −𝑉 (𝑡) 𝑌 (𝑡, 𝑠) , ∀𝑡 ≥ 𝑠, 𝑌 (𝑠, 𝑠) = 𝐼, (24)

where 𝐼 is the 5 × 5 identity matrix. Thus, the monodromy
matrix Φ−𝑉(𝑡) of (23) is equal to 𝑌(𝑡, 0), ∀𝑡 ≥ 0.

Let 𝐶𝜔 be the ordered Banach space of all 𝜔-periodic
functions fromR toR5 which is equippedwith themaximum
norm ‖⋅‖ and the positive cone𝐶+𝜔 fl {𝜙 ∈ C𝜔 : 𝜙(𝑡) ≥ 0, ∀𝑡 ∈
R}. Then, we can define a linear operatorL : 𝐶𝜔 → 𝐶𝜔 by

(L𝜙) (𝑡) = ∫∞
0
𝑌 (𝑡, 𝑡 − 𝑎) 𝐹 (𝑡 − 𝑎) 𝜙 (𝑡 − 𝑎) 𝑑𝑎,∀𝑡 ∈ R, 𝜙 ∈ 𝐶𝜔. (25)

It then follows from [12] thatL is the next infection operator,
and the basic reproduction ratio is R0 = 𝜌(L), the spectral
radius ofL.

In order to calculateR0, we consider the following linear𝜔-periodic system:𝑑𝑤 (𝑡)𝑑𝑡 = [ 1𝜆𝐹 (𝑡) − 𝑉 (𝑡)] 𝑤 (𝑡) ,∀𝑡 ∈ R+, 𝜆 ∈ (0,∞) . (26)
Let 𝑊(𝑡, 𝑠, 𝜆), 𝑡 ≥ 𝑠, 𝑠 ∈ R, be the evolution operator of
system (26) on R5. Clearly𝑊(𝑡, 0, 1) = Φ𝐹−𝑉(𝑡), ∀𝑡 ≥ 0. The
following result will be used in our numerical calculation of
the basic reproduction ratio.

Lemma 6 (see [12]). (i) If 𝜌(𝑊(𝜔, 0, 𝜆)) = 1 has a positive
solution 𝜆0, then 𝜆0 is an eigenvalue ofL, and hence R0 > 0.

(ii) If R0 > 0, then 𝜆 = R0 is the unique solution of𝜌(𝑊(𝜔, 0, 𝜆)) = 1.
(iii)R0 = 0 if and only if 𝜌(𝑊(𝜔, 0, 𝜆)) < 1, for all 𝜆 > 0.

3.4. Stability of Equilibrium State 𝐸1. In this section, we will
study the asymptotic behaviour of the nontrivial equilibrium𝐸1; thus we have the following result, which will be used in
the proofs of our main results.

Lemma 7 (see [12]). The following statements are valid:

(i) R0 = 1 if and only if 𝜌(Φ𝐹−𝑉(𝜔)) = 1.
(ii) R0 < 1 if and only if 𝜌(Φ𝐹−𝑉(𝜔)) < 1.
(iii) R0 > 1 if and only if 𝜌(Φ𝐹−𝑉(𝜔)) > 1.

Lemma 8 (see [6]). If 𝑟 > 1, then 𝑃1 is globally asymptotically
stable in int(Δ), with respect to system (10).

Theorem9. Thenontrivial equilibrium𝐸1 is locally asymptot-
ically stable ifR0 < 1 and unstable ifR0 > 1.
Proof. LetA(𝑡) be the Jacobian matrix of (8) evaluated at 𝐸1.
Then we have

A (𝑡) = (A11 A12

A21 A22 (𝑡)) , (27)



6 Journal of Applied Mathematics

where

A12 = (0 0 0 0 𝑏(1 − 𝐸∗𝐾𝐸) 𝑏(1 − 𝐸∗𝐾𝐸)0 0 0 0 0 00 0 0 0 −𝑑𝑚 −𝑑𝑚 ),

A21 =(((((
(

0 0 00 0 00 0 00 0 00 0 00 0 0
)))))
)
,

A11

=(−(𝑠 + 𝑑) − 𝑏𝐴∗𝐾𝐸 0 (𝑠 + 𝑑) 𝐸∗𝐴∗(𝑠𝐿 + 𝑑𝐿) 𝐿∗𝐸∗ − (𝑠𝐿 + 𝑑𝐿) − 𝑠𝐸∗𝐾𝐿 00 𝑠𝐿 −𝑑𝑚 ),
A22 (𝑡) = (−𝑑ℎ 𝐶 (𝑡)0̂ 𝐹 (𝑡) − 𝑉 (𝑡))

(28)

with 𝐶 (𝑡) = (0 0 𝛾 0 −𝑐𝑚ℎ𝛽 (𝑡)) ,0̂ = (0, 0, 0, 0, 0)𝑇 . (29)

𝐸1 is locally asymptotically stable if𝜌(ΦA(𝜔)) < 1.Thematrix
A11 is a constant matrix and its characteristic equation is
given by 𝜋(𝑧) = 𝑧3 + 𝑎1𝑧2 + 𝑎2𝑧 + 𝑎3, where𝑎1 = (1 − 1𝑟 )( 𝑠𝐾𝐸𝛾𝐸𝐾𝐿 + 𝑏𝑠𝐿𝐾𝐿𝑑𝑚𝛾𝐿𝐾𝐸) + 𝑠𝐿 + 𝑑𝐿 + 𝑠 + 𝑑+ 𝑑𝑚,𝑎2 = [ 𝑏𝑠𝐿𝐾𝐿𝑑𝑚𝛾𝐿𝐾𝐸 (1 − 1𝑟)] [ 𝑠𝐾𝐸𝛾𝐸𝐾𝐿 (1 − 1𝑟 ) + 𝑠𝐿 + 𝑑𝐿+ 𝑑𝑚] + 𝑑𝑚𝑠𝐾𝐸𝛾𝐸𝐾𝐿 (1 − 1𝑟 ) + 𝑑𝑚 (𝑠𝐿 + 𝑑𝐿) ,𝑎3 = 𝑑𝑚 (1 − 1𝑟 ) [ 𝑏𝑠𝑠𝐿𝑑𝑚𝛾𝐿𝛾𝐸 (1 − 1𝑟) + (𝑠 + 𝑑) 𝑠𝐾𝐸𝛾𝐸𝐾𝐿+ (𝑠𝐿 + 𝑑𝐿) 𝑏𝑠𝐿𝐾𝐿𝑑𝑚𝛾𝐿𝐾𝐸] .

(30)

If 𝑟 > 1, then 𝑎1, 𝑎2, 𝑎3 and 𝑎1𝑎2 − 𝑎3 are clearly positive.
So, thanks to Routh-Hurwitz criterion, all eigenvalues ofA11
have negative real part. It then follows that 𝜌(ΦA11(𝜔)) < 1.
Thus, the stability of 𝐸1 depends onΦA22(𝜔).

Thus, if 𝜌(Φ𝐹−𝑉(𝜔)) < 1, then 𝜌(ΦA22(𝜔)) < 1 and then𝐸1 is stable. If 𝜌(Φ𝐹−𝑉(𝜔)) > 1 then 𝐸1 is unstable. So, thanks
to Lemma 7, 𝐸1 is locally asymptotically stable ifR0 < 1 and
unstable ifR0 > 1.

Lemma 10 (see [13]). Let 𝜃 = (1/𝜔) ln 𝜌(Φ𝐴(⋅)(𝜔)); then there
exists a positive 𝜔-periodic function V(𝑡) such that 𝑒𝜃𝑡V(𝑡) is a
solution of 𝑥̇(𝑡) = 𝐴(𝑡)𝑥(𝑡).
Theorem 11. If R0 < 1 and 𝑑𝑝 = 0, then 𝐸1 is globally
asymptotically stable.

Proof. If 𝑑𝑝 = 0, we can rewrite (6) as follows:𝑑𝑁ℎ𝑑𝑡 (𝑡) = Λ − 𝑑ℎ𝑁ℎ (𝑡) ,𝑑𝐴𝑑𝑡 (𝑡) = 𝑠𝐿𝐿 (𝑡) − 𝑑𝑚𝐴 (𝑡) . (31)

Thus, there exists a period𝜔󸀠 such that ∀𝑡 ≥ 𝜔󸀠,𝑁ℎ(𝑡) ≥ 𝑁∗
ℎ −𝜖 and 𝐴(𝑡) ≤ 𝐴∗ + 𝜖, ∀𝜖 > 0.

At disease-free equilibrium, we have 𝑁∗
ℎ = 𝑆∗ℎ and 𝑆∗𝑚 =𝐴∗. So, 𝐴(𝑡)/𝑁ℎ(𝑡) ≤ (𝐴∗ + 𝜖)/(𝑆∗ℎ − 𝜖). It then follows from

system (11) that𝑑𝐸ℎ𝑑𝑡 (𝑡) ≤ 𝑐𝑚ℎ𝛽 (𝑡) 𝐼𝑚 (𝑡) − (𝑑ℎ + 𝛼) 𝐸ℎ (𝑡) , (32a)𝑑𝐼ℎ𝑑𝑡 (𝑡) = 𝛼𝐸ℎ (𝑡) − (𝑑ℎ + 𝑟ℎ) 𝐼ℎ (𝑡) , (32b)𝑑𝑅ℎ𝑑𝑡 (𝑡) = 𝑟ℎ𝐼ℎ (𝑡) − (𝑑ℎ + 𝛾)𝑅ℎ (𝑡) , (32c)𝑑𝐸𝑚𝑑𝑡 (𝑡) ≤ 𝑐ℎ𝑚𝛽 (𝑡) 𝐴∗ + 𝜖𝑆∗ℎ − 𝜖 𝐼ℎ (𝑡)+ 𝑐ℎ𝑚𝛽 (𝑡) 𝐴∗ + 𝜖𝑆∗ℎ − 𝜖 𝑅ℎ (𝑡)− (]𝑚 + 𝑑𝑚) 𝐸𝑚 (𝑡) ,
(32d)

𝑑𝐼𝑚𝑑𝑡 (𝑡) = ]𝑚𝐸𝑚 (𝑡) − 𝑑𝑚𝐼𝑚 (𝑡) . (32e)

Let us consider the following auxiliary system:𝑑𝐸ℎ𝑑𝑡 (𝑡) = 𝑐𝑚ℎ𝛽 (𝑡) 𝐼𝑚 (𝑡) − (𝑑ℎ + 𝛼) 𝐸ℎ (𝑡) ,𝑑𝐼ℎ𝑑𝑡 (𝑡) = 𝛼𝐸ℎ (𝑡) − (𝑑ℎ + 𝑟ℎ) 𝐼ℎ (𝑡) ,𝑑𝑅ℎ𝑑𝑡 (𝑡) = 𝑟ℎ𝐼ℎ (𝑡) − (𝑑ℎ + 𝛾)𝑅ℎ (𝑡) ,𝑑𝐸𝑚𝑑𝑡 (𝑡) = 𝑐ℎ𝑚𝛽 (𝑡) 𝐴∗ + 𝜖𝑆∗ℎ − 𝜖 𝐼ℎ (t)+ 𝑐ℎ𝑚𝛽 (𝑡) 𝐴∗ + 𝜖𝑆∗ℎ − 𝜖 𝑅ℎ (𝑡)− (]𝑚 + 𝑑𝑚) 𝐸𝑚 (𝑡) ,𝑑𝐼𝑚𝑑𝑡 (𝑡) = ]𝑚𝐸𝑚 (𝑡) − 𝑑𝑚𝐼𝑚 (𝑡) ,

(33)

which can be rewritten as follows:𝑑ℎ𝑑𝑡 (𝑡) = 𝑀𝜖 (𝑡) ℎ (𝑡) ;ℎ (𝑡) = (𝐸ℎ (𝑡) , 𝐼ℎ (𝑡) , 𝑅ℎ (𝑡) , 𝐸𝑚 (𝑡) , 𝐼𝑚 (𝑡))𝑇 (34)
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with

𝑀𝜖 (𝑡) =((((
(

−(𝑑ℎ + 𝛼) 0 0 0 𝑐𝑚ℎ𝛽 (𝑡)𝛼 − (𝑑ℎ + 𝑟ℎ) 0 0 00 𝑟ℎ − (𝑑ℎ + 𝛾) 0 00 𝑐ℎ𝑚𝛽 (𝑡) 𝐴∗ + 𝜖𝑆∗ℎ − 𝜖 𝑐ℎ𝑚𝛽 (𝑡) 𝐴∗ + 𝜖𝑆∗ℎ − 𝜖 − (]𝑚 + 𝑑𝑚) 00 0 0 ]𝑚 −𝑑𝑚
))))
)
. (35)

From Lemma 7, if R0 < 1, then 𝜌(Φ𝐹−𝑉(𝜔)) < 1. Clearly,
lim𝜖→0+Φ𝑀𝜖(𝜔) = Φ𝐹−𝑉(𝜔) and, by continuity of the spectral
radius, we have lim𝜖→0+𝜌(Φ𝑀𝜖(𝜔)) = 𝜌(Φ𝐹−𝑉(𝜔)) < 1. Thus,
there exists 𝜖1 > 0 such that 𝜌(Φ𝑀𝜖(𝜔)) < 1, ∀𝜖 ∈ [0, 𝜖1[.

From Lemma 10, there exists a positive 𝜔-periodic func-
tion V(𝑡) such that ℎ(𝑡) = 𝑒𝜃𝑡V(𝑡) is a solution of (34).
Since 𝜌(Φ𝑀𝜖(𝜔)) < 1, 𝜃 < 0. The 𝜔-periodic function
V(𝑡) is bounded and it then follows that lim𝑡→∞ℎ(𝑡) = 0.
Applying comparison theorem on system (32a)–(32e), we
get lim𝑡→∞(𝐸ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡), 𝐸𝑚(𝑡), 𝐼𝑚(𝑡)) = (0, 0, 0, 0, 0).
Using the theory of asymptotically periodic semiflow [[14],
Theorem 3.2.1], we have lim𝑡→∞𝑆ℎ(𝑡) = 𝑆∗ℎ , lim𝑡→∞𝐴(𝑡) =𝐴∗ = 𝑆∗𝑚. From Lemma 8, if 𝑟 > 1 then 𝑃1 is globally
asymptotically stable, so lim𝑡→∞𝐸(𝑡) = 𝐸∗ and lim𝑡→∞𝐿(𝑡) =𝐿∗. Hence, the equilibrium 𝐸1 is globally attractive.
3.5. Existence of Positive Periodic Solutions. System (8) is
constructed by coupling two subsystems. The term coupling
these two systems is given by the function 𝑠𝐿𝐿(𝑡). The cou-
pling takes place only in one direction because the dynamics
of system (11) depend on the dynamics of system (10). The
asymptotic behaviour of system (10) is given by Lemma 8.
Now we are going to study the existence of positive periodic
solutions of system (11):𝑑𝑆ℎ𝑑𝑡 (𝑡) = Λ + 𝛾𝑅ℎ (𝑡) − (𝑑ℎ + 𝑘ℎ (𝑡)) 𝑆ℎ (𝑡) ,𝑑𝐸ℎ𝑑𝑡 (𝑡) = 𝑘ℎ (𝑡) 𝑆ℎ (𝑡) − (𝑑ℎ + 𝛼) 𝐸ℎ (𝑡) ,𝑑𝐼ℎ𝑑𝑡 (𝑡) = 𝛼𝐸ℎ (𝑡) − (𝑑ℎ + 𝑑𝑝 + 𝑟ℎ) 𝐼ℎ (𝑡) ,𝑑𝑅ℎ𝑑𝑡 (𝑡) = 𝑟ℎ𝐼ℎ (𝑡) − (𝑑ℎ + 𝛾) 𝑅ℎ (𝑡) ,𝑑𝐸𝑚𝑑𝑡 (𝑡) = 𝑘𝑚 (𝑡) 𝐴 (𝑡) − 𝑘𝑚 (𝑡) 𝐼𝑚 (𝑡)− (]𝑚 + 𝑑𝑚 + 𝑘𝑚 (𝑡)) 𝐸𝑚 (𝑡) ,𝑑𝐼𝑚𝑑𝑡 (𝑡) = ]𝑚𝐸𝑚 (𝑡) − 𝑑𝑚𝐼𝑚 (𝑡) .

(36)

Model (11) is well defined inΩ and if 𝑟 > 1 it has a disease-free
equilibrium 𝐸+1 = (𝑆∗ℎ , 0, 0, 0, 0, 0) with 𝑆∗ℎ = Λ/𝑑ℎ.

Let us consider the following sets:𝑋 fl R
6
+,𝑋0 fl {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝐸𝑚, 𝐼𝑚) ∈ 𝑋 | 𝐸ℎ > 0, 𝐼ℎ> 0, 𝑅ℎ > 0, 𝐸𝑚 > 0, 𝐼𝑚 > 0} ,𝜕𝑋0 fl 𝑋 \ 𝑋0.

(37)

Let 𝑢(𝑡, 𝜓) be the unique solution of (11) with initial condi-
tions 𝜓, Φ(𝑡) the periodic semiflow generated by periodic
system (11), and 𝑃 : 𝑋 → 𝑋 the Poincaré map associated
with system (11); namely,𝑃 (𝜓) = Φ (𝜔)𝜓 = 𝑢 (𝜔, 𝜓) , ∀𝜓 ∈ 𝑋,𝑃𝑚 (𝜓) = Φ (𝑚𝜔)𝜓 = 𝑢 (𝑚𝜔,𝜓) , ∀𝑚 ≥ 0. (38)

Proposition 12. The sets 𝑋0 and 𝜕𝑋0 are positively invariant
under the flow induced by (11).

Proof. Note that if 𝑋0 is positively invariant, then 𝜕𝑋0 is
positively invariant. Thus we only need to prove that 𝑋0 is
positively invariant.

For any initial condition 𝜓 ∈ 𝑋0, solving the equations of
system (11) we derive that

𝑆ℎ (𝑡) = exp(−∫𝑡
0
(𝑘ℎ (𝑠) + 𝑑ℎ) 𝑑𝑠) [𝑆ℎ (0)+ ∫𝑡

0
(Λ + 𝐼ℎ (𝑠) + 𝛾𝑅ℎ (𝑠))⋅ exp(∫𝑠

0
(𝑘ℎ (𝑐) + 𝑑ℎ) 𝑑𝑐) 𝑑𝑠]≥ exp(−∫𝑡
0
(𝑘ℎ (𝑠) + 𝑑ℎ) 𝑑𝑠)⋅ [∫𝑡

0
(Λ + 𝐼ℎ (𝑠) + 𝛾𝑅ℎ (𝑠))⋅ exp(∫𝑠

0
(𝑘ℎ (𝑐) + 𝑑ℎ) 𝑑𝑐) 𝑑𝑠] > 0, ∀𝑡 > 0,
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𝐸ℎ (𝑡) = 𝑒−(𝑑ℎ+𝛼)𝑡 (𝐸ℎ (0) + ∫𝑡
0
𝑘ℎ (𝑠) 𝑆ℎ (𝑠) 𝑒(𝑑ℎ+𝛼)𝑠𝑑𝑠)≥ 𝑒−(𝑑ℎ+𝛼)𝑡 (∫𝑡

0
𝑘ℎ (𝑠) 𝑆ℎ (𝑠) 𝑒(𝑑ℎ+𝛼)𝑠𝑑𝑠) > 0, ∀𝑡 > 0,𝐼ℎ (𝑡) = 𝑒−(𝑑ℎ+𝑑𝑝+𝑟ℎ)𝑡 (𝐼ℎ (0) + ∫𝑡

0
𝛼𝐸ℎ (𝑠) 𝑒(𝑑ℎ+𝑑𝑝+𝑟ℎ)𝑠𝑑𝑠)≥ 𝑒−(𝑑ℎ+𝑑𝑝+𝑟ℎ)𝑡 (∫𝑡

0
𝛼𝐸ℎ (𝑠) 𝑒(𝑑ℎ+𝑑𝑝+𝑟ℎ)𝑠𝑑𝑠) > 0,∀𝑡 > 0,𝑅ℎ (𝑡) = 𝑒−(𝑑ℎ+𝛾)𝑡 (𝑅ℎ (0) + ∫𝑡

0
𝑟ℎ𝐼ℎ (𝑠) 𝑒(𝑑ℎ+𝛾)𝑠𝑑𝑠)≥ 𝑒−(𝑑ℎ+𝛾)𝑡 (∫𝑡

0
𝑟ℎ𝐼ℎ (𝑠) 𝑒(𝑑ℎ+𝛾)𝑠𝑑𝑠) > 0, ∀𝑡 > 0,𝐸𝑚 (𝑡) = 𝑒∫𝑡0 −(𝑘𝑚(𝑠)+𝑑𝑚+]𝑚)𝑑𝑠 [𝐸𝑚 (0) + ∫𝑡

0
𝑘𝑚 (𝑠)⋅ (𝐴 (𝑠) − 𝐼𝑚 (𝑠)) 𝑒∫𝑠0 (𝑘𝑚(𝑐)+𝑑𝑚+]𝑚)𝑑𝑐𝑑𝑠]≥ 𝑒∫𝑡0 −(𝑘𝑚(𝑠)+𝑑𝑚+]𝑚)𝑑𝑠 [∫𝑡

0
𝑘𝑚 (𝑠) (𝐴 (𝑠) − 𝐼𝑚 (𝑠))⋅ 𝑒∫𝑠0 (𝑘𝑚(𝑐)+𝑑𝑚+]𝑚)𝑑𝑐𝑑𝑠] > 0, ∀𝑡 > 0,𝐼𝑚 (𝑡) = 𝑒−𝑑𝑚𝑡 (𝐼𝑚 (0) + ∫𝑡

0
]𝑚𝐸𝑚 (𝑠) 𝑒𝑑𝑚𝑠)≥ 𝑒−𝑑𝑚𝑡 (∫𝑡

0
]𝑚𝐸𝑚 (𝑠) 𝑒𝑑𝑚𝑠) > 0, ∀𝑡 > 0.

(39)

Thus, 𝑋0 is positively invariant. So, 𝜕𝑋0 is also positively
invariant.

Note that, from Theorem 2, Ω is a compact set which
attracts all positive orbits in 𝑋, which implies that the
discrete-time system 𝑃 : 𝑋 → 𝑋 is point dissipative.
Moreover, ∀𝑛0 ≥ 1, 𝑃𝑛0 is compact; it then follows from
Theorem 2.9 in [15] that 𝑃 admits a global attractor in𝑋.
Lemma 13. IfR0 > 1, there exists 𝜂 > 0 such that when ‖𝜓 −𝐸+1 ‖ ≤ 𝜂, ∀𝜓 ∈ 𝑋0, we have lim sup𝑚→∞‖𝑃𝑚(𝜓) − 𝐸+1 ‖ ≥ 𝜂.
Proof. Suppose by contradiction that lim sup𝑚→∞‖𝑃𝑚(𝜓) −𝐸+1 ‖ < 𝜂 for some 𝜓 ∈ 𝑋0. Then, there exists an integer 𝑛 ≥ 1

such that, for all 𝑚 ≥ 𝑛, ‖𝑃𝑚(𝜓) − 𝑀‖ < 𝜂. By the continuity
of the solution 𝑢(𝑡, 𝜓), we have ‖𝑢(𝑡, 𝑃𝑚(𝜓)) − 𝑢(𝑡, 𝐸+1 )‖ ≤ 𝜎
for all 𝑡 ≥ 0 and 𝜎 > 0. For all 𝑡 ≥ 0, let 𝑡 = 𝑚𝜔 + 𝑡1, where𝑡1 ∈ [0, 𝜔] and 𝑚 = [𝑡/𝜔]. [𝑡/𝜔] is the greatest integer less
than or equal to 𝑡/𝜔. If ‖𝜓 − 𝐸+1 ‖ ≤ 𝜂, then by the continuity
of the solution 𝑢(𝑡, 𝜓) we have󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝜓) − 𝑢 (𝑡, 𝐸+1 )󵄩󵄩󵄩󵄩= 󵄩󵄩󵄩󵄩𝑢 (𝑡1 + 𝑚𝜔,𝜓) − 𝑢 (𝑡1 + 𝑚𝜔,𝑀)󵄩󵄩󵄩󵄩= 󵄩󵄩󵄩󵄩Φ (𝑡1 + 𝑚𝜔)𝜓 − Φ (𝑡1 + 𝑚𝜔)𝐸+1 󵄩󵄩󵄩󵄩= 󵄩󵄩󵄩󵄩Φ (𝑡1)Φ (𝑚𝜔)𝜓 − Φ (𝑡1)Φ (𝑚𝜔)𝐸+1 󵄩󵄩󵄩󵄩= 󵄩󵄩󵄩󵄩Φ (𝑡1) 𝑃𝑚 (𝜓) − Φ (𝑡1) 𝑃𝑚 (𝐸+1 )󵄩󵄩󵄩󵄩= 󵄩󵄩󵄩󵄩Φ (𝑡1) 𝑃𝑚 (𝜓) − Φ (𝑡1) 𝐸+1 󵄩󵄩󵄩󵄩 ≤ 𝜎.

(40)

It then follows that 𝑆∗ℎ−𝜎 ≤ 𝑆ℎ(𝑡) ≤ 𝑆∗ℎ+𝜎 and𝐴∗−𝜎 ≤ 𝐴(𝑡) ≤𝐴∗ +𝜎. So, there exists 𝜎∗ > 0 such that 𝑆ℎ(𝑡)/𝑁ℎ(𝑡) ≥ 1 − 𝜎∗
and 𝐴(𝑡)/𝑁ℎ(𝑡) ≥ 𝐴∗/𝑁∗

ℎ − 𝜎∗.
From (11) we have𝑑𝐸ℎ𝑑𝑡 (𝑡) ≥ 𝑐𝑚ℎ𝛽 (𝑡) (1 − 𝜎∗) 𝐼𝑚 (𝑡) − (𝑑ℎ + 𝛼) 𝐸ℎ (𝑡) ,𝑑𝐼ℎ𝑑𝑡 (𝑡) = 𝛼𝐸ℎ (𝑡) − (𝑑𝑝 + 𝑑ℎ + 𝑟ℎ) 𝐼ℎ (𝑡) ,𝑑𝑅ℎ𝑑𝑡 (𝑡) = 𝑟ℎ𝐼ℎ (𝑡) − (𝑑ℎ + 𝛾)𝑅ℎ (𝑡) ,𝑑𝐸𝑚𝑑𝑡 (𝑡) ≥ 𝛽 (𝑡) ( 𝐴∗𝑁∗

ℎ
− 𝜎∗) [𝑐ℎ𝑚𝐼ℎ (𝑡) + 𝑐ℎ𝑚𝑅ℎ (𝑡)]− (]𝑚 + 𝑑𝑚) 𝐸𝑚 (𝑡) ,𝑑𝐼𝑚𝑑𝑡 (𝑡) = ]𝑚𝐸𝑚 (𝑡) − 𝑑𝑚𝐼𝑚 (𝑡) .

(41)

Let us consider the following auxiliary linear system:𝑑ℎ̂𝑑𝑡 (𝑡) = 𝑀𝜎∗ (𝑡) ℎ̂ (𝑡) ;ℎ̂ (𝑡) = (𝐸̂ℎ (𝑡) , 𝐼̂ℎ (𝑡) , 𝑅̂ℎ (𝑡) , 𝐸̂𝑚 (𝑡) , 𝐼̂𝑚 (𝑡))𝑇 (42)

with

𝑀𝜎∗ (𝑡) =(((
(
−(𝑑ℎ + 𝛼) 0 0 0 (1 − 𝜎∗) 𝑐𝑚ℎ𝛽 (𝑡)𝛼 − (𝑑ℎ + 𝑟ℎ) 0 0 00 𝑟ℎ − (𝑑ℎ + 𝛾) 0 00 𝑐ℎ𝑚𝛽 (𝑡) (𝐴∗𝑆∗ℎ − 𝜎∗) 𝑐ℎ𝑚𝛽 (𝑡) (𝐴∗𝑆∗ℎ − 𝜎∗) − (]𝑚 + 𝑑𝑚) 00 0 0 ]𝑚 −𝑑𝑚

)))
)
. (43)
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By applying the same method as above, if R0 > 1 then𝜌(Φ𝑀𝜎∗ (𝜔)) > 1. In this case 𝜃 is positive, and then ℎ̂(𝑡) → ∞
as 𝑡 → ∞. Moreover, since 𝑋0 is positively invariant, then
there exists an integer 𝑞 ≥ 𝑛 and a real number 𝜅 > 0 such
that (𝐸ℎ (𝑞𝜔) , 𝐼ℎ (𝑞𝜔) , 𝑅ℎ (𝑞𝜔) , 𝐸𝑚 (𝑞𝜔) , 𝐼𝑚 (𝑞𝜔))≥ 𝜅ℎ̂ (0) . (44)

Applying the theorem of comparison principle, we get(𝐸ℎ (𝑞𝜔 + 𝑡) , 𝐼ℎ (𝑞𝜔 + 𝑡) , 𝑅ℎ (𝑞𝜔 + 𝑡) , 𝐸𝑚 (𝑞𝜔 + 𝑡) ,𝐼𝑚 (𝑞𝜔 + 𝑡)) ≥ 𝜅ℎ̂ (𝑡) , ∀𝑡 ≥ 0. (45)

It then follows that lim𝑡→∞|𝐸ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡), 𝐸𝑚(𝑡), 𝐼𝑚(𝑡)| =∞, which contradicts the fact that solutions are bounded.

Theorem 14. If R0 > 1, then system (7) has at least one
positive periodic solution.

Proof. We first prove that 𝑃 is uniformly persistent with
respect to (𝑋0, 𝜕𝑋0).

We define the following sets:𝑀𝜕 = {𝜓 ∈ 𝜕𝑋0 | 𝑃𝑚 (𝜓) ∈ 𝜕𝑋0, for any 𝑚 ≥ 0} ,
D = {(𝑆ℎ, 0, 0, 0, 0, 0) ∈ 𝑋 | 𝑆ℎ ≥ 0} . (46)

Let us prove that𝑀𝜕 = D.
It is easy to remark that D ⊂ 𝑀𝜕. We only need to prove

that𝑀𝜕 ⊂ D.
Let 𝜓 ∈ 𝜕𝑋0 \D. If

(i) 𝐼ℎ(0) > 0, 𝐼𝑚(0) > 0, and 𝐸ℎ(0) = 𝐸𝑚(0) = 𝑅ℎ(0) = 0,
thenwehave 𝑆ℎ(𝑡) > 0, 𝐼ℎ(𝑡) > 0, 𝐼𝑚(𝑡) > 0,𝐸𝑚(𝑡) > 0,𝐸ℎ(𝑡) > 0, 𝑅ℎ(𝑡) > 0, ∀𝑡 > 0,

(ii) 𝐼ℎ(0) = 𝐼𝑚(0) = 0 and 𝐸ℎ(0) > 0, 𝐸𝑚(0) > 0, 𝑅ℎ(0) >0, then we have 𝑆ℎ(𝑡) > 0, 𝐼ℎ(𝑡) > 0, 𝐼𝑚(𝑡) > 0,𝐸𝑚(𝑡) >0, 𝐸ℎ(𝑡) > 0, 𝑅ℎ(𝑡) > 0, ∀𝑡 > 0.
For any cases, it follows that (𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡), 𝐸𝑚(𝑡),𝐼𝑚(𝑡)) ∉ 𝜕𝑋0 for 𝑡 > 0 sufficiently small, which contradicts
the fact that 𝜕𝑋0 is positively invariant. Hence, 𝑀𝜕 ⊂ D.
Thus, it then follows that𝑀𝜕 = D.

The equality 𝑀𝜕 = D implies that 𝐸+1 is a fixed point of𝑃 and acyclic in𝑀𝜕; every solution in𝑀𝜕 approaches to 𝐸+1 .
Moreover, Lemma 13 implies that 𝐸+1 is an isolated invariant
set in 𝑋 and 𝑊𝑠(𝐸+1 ) ∩ 𝑋0 = 0. By the acyclicity theorem
on uniform persistence for maps, Theorem 1.3.1 and Remark1.3.1 in [14], it follows that 𝑃 is uniformly persistent with
respect to 𝑋0. Thus, Theorem 3.1.1 in [14] implies that the
periodic semiflow Φ(𝑡) : 𝑋 → 𝑋 is also uniformly persistent
with respect to 𝑋0. Thanks to Theorem 1.3.6 in [14], model
(11) has at least one𝜔-periodic solution 𝑢̃(𝑡, 𝜓∗)with𝜓∗ ∈ 𝑋0
and 𝑡 ≥ 0. Now, we show that 𝑢̃(𝑡, 𝜓∗) is positive.

Suppose that 𝜓∗ = 0; then, for all 𝑡 > 0, we obtain𝑢̃𝑖(𝑡, 𝜓∗) > 0, for 𝑖 = 1, 2, 3, 4, 5, 6. By using the periodicity of

the solution, we have 𝑆∗ℎ (0) = 𝑆∗ℎ(𝑛𝜔) = 0, 𝐸∗ℎ (0) = 𝐸∗ℎ (𝑛𝜔) =0, 𝐼∗ℎ (0) = 𝐼∗ℎ (𝑛𝜔) = 0, 𝑅∗ℎ (0) = 𝑅∗ℎ (𝑛𝜔) = 0, 𝐸∗𝑚(0) =𝐸∗𝑚(𝑛𝜔) = 0, 𝐼∗𝑚(0) = 𝐼∗𝑚(𝑛𝜔) = 0, ∀𝑛 ≥ 1, which contradicts
the fact that 𝑢̃𝑖(𝑡, 𝜓∗) > 0 for 𝑖 = 1, 2, 3, 4, 5, 6. So, the periodic
solution is positive.

4. Numerical Simulation

In this section, we will present a series of numerical simula-
tions of model (11) in order to support our theoretical results,
to predict the trend of the disease, and to explore some control
measures.

4.1. Initial Conditions and Estimation of 𝛽(𝑡). To validate our
results, we choose the following initial conditions: 𝐸(0) =2400, 𝐿(0) = 1200, 𝑆ℎ(0) = 1500, 𝐸ℎ(0) = 50, 𝐼ℎ(0) = 200,𝑅ℎ(0) = 50, 𝑆𝑚(0) = 3000, 𝐸𝑚(0) = 100, 𝐼𝑚(0) = 500, and𝐴(0) = 3600. Our numerical simulation will be performed
using the MATLAB technical computing software with the
fourth-order Runge–Kutta method [16].

Using the method developed in [11], we express the biting
rate as follows:𝛽 (𝑡) = 𝛼0 − 1.83692 cos (0.523599𝑡)− 0.175817 cos (1.0472𝑡)− 0.166233 cos (1.5708𝑡)− 0.16485 cos (2.0944𝑡)− 0.17681 cos (2.61799𝑡)− 1.37079 sin (0.523599𝑡)+ 0.296267 sin (1.0472𝑡)+ 0.2134 sin (1.5708𝑡)− 0.295228 sin (2.0944𝑡)− 0.201712 sin (2.61799𝑡) ,

(47)

with 𝛼0 ≥ 3.
4.2.The Model Parameters andTheir Dimensions. Numerical
values of parameters are given in Table 1.

4.3. Numerical Results. Using the above initial conditions, we
now simulate model (11) in order to illustrate our mathemat-
ical results.

By taking 𝛼0 = 7, 𝑑𝑝 = 0.0028, 𝑐𝑚ℎ = 0.022, 𝑐ℎ𝑚 = 0.48,𝑐ℎ𝑚 = 0.048, 𝑏 = 180, 𝑠 = 15, 𝑑 = 6, 𝑑𝐿 = 7.5, 𝑠𝐿 = 15,𝑑𝑚 = 3.4038 and considering the above initial conditions, we
get 𝑟 = 25.1819,R0 = 1.3310 > 1 and Figures 2, 3, and 4.

Figure 2 describes the evolution of infected (exposed
and infectious) humans. Figure 3 describes the evolution
of infected (exposed and infectious) mosquitoes and Fig-
ure 4 describe the evolution of susceptible humans and
mosquitoes. Figures 2 and 3 show that malaria remains
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Table 1: Values for constant parameters for the malaria model.

Parameter Description Value Reference DimensionΛ Constant recruitment rate for humans 400 Estimated Humans/month𝑑ℎ Human death rate 0.019 Estimated /month𝛼 Transmission rate of humans from 𝐸ℎ to 𝐼ℎ 3.04 [17] /month𝑑𝑝 Disease-induced death rate for humans 0.0028 [11] /month𝑟ℎ Recovery rate of humans 0.0159 [11] /month𝛾 Per capita rate of loss of immunity for humans 0.0167 [11] /month𝑠𝐿 Transfer rate from 𝐿 to adult 15 [6] /month𝑑𝑚 Death rate for adult vectors 3.4038 [11] /month
]𝑚 Transmission rate of mosquitoes from 𝐸𝑚 to 𝐼𝑚 2.523 [11] /month𝑐𝑚ℎ Probability of transmission of infection from 𝐼𝑚 to 𝑆ℎ 0.022 [17] Dimensionless𝑐ℎ𝑚 Probability of transmission of infection from 𝐼ℎ to 𝑆𝑚 0.48 [17] Dimensionless𝑐ℎ𝑚 Probability of transmission of infection from 𝑅ℎ to 𝑆𝑚 0.048 [17] Dimensionless𝐾𝐸 Available breeder sites occupied by eggs 30000 Estimated Space𝐾𝐿 Available breeder sites occupied by larvae 18000 Estimated Space𝑠 Transfer rate from 𝐸 to 𝐿 15 [6] /month𝑏 Eggs laying rate 180 [6] /month𝑑 Death rate of eggs 6 [6] /month𝑑𝐿 Larvae death rate 6 [6] /month
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Figure 2: Distribution of infected humans.

persistent in the two populations. Besides, we observe that
system (11) has one positive periodic solution. So, these
numerical results illustrate the result of our Theorem 14.

In order to understand the model behaviour around the
disease-free equilibrium, we consider the same above initial
conditions and the following values: 𝛼0 = 4, 𝑑𝑝 = 0, 𝑐𝑚ℎ =0.022, 𝑐ℎ𝑚 = 0.24, 𝑐ℎ𝑚 = 0.024, 𝑏 = 180, 𝑠 = 15, 𝑑 = 6,

𝑑𝐿 = 7.5, 𝑠𝐿 = 15, 𝑑𝑚 = 6. Then we get 𝑟 = 14.2857 andR0 =0.2602 < 1. Figures 5 and 6 illustrate that the disease dies out
in both populations. Thus, the numerical results are the same
as what we got inTheorem 11.

4.4. Parameters of Control of Malaria. Now, we assume that
people becamemore conscious about the malaria disease and
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Figure 3: Distribution of infected mosquitoes.
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Figure 4: Distribution of susceptible humans and mosquitoes.

they use some efficient methods to reduce the proliferation of
mosquitoes. That reduction can perhaps consist in fighting
against the development of eggs, larvae, and pupa, firstly,
by using chemical application methods (larvicide) or by
introducing larvivore fish, and secondly, by using ecological
methods (cleaning up the environment) to reduce the breed-
ing sites of eggs and larvae. Let 𝜇1, 𝜇2 ∈ [0, 1[, respectively,
be the efficiency of both intervention measures. So, we will
use 𝑟̃ = (1 − 𝜇1)𝑟, 𝐾̃𝐸 = (1 − 𝜇2)𝐾𝐸, and 𝐾̃𝐿 = (1 − 𝜇2)𝐾𝐿

in order to evaluate their impact on the dynamics of malaria
transmission.

Thus, by considering the above initial conditions and by
taking 𝛼0 = 7, 𝑑𝑝 = 0.0028, 𝑐𝑚ℎ = 0.022, 𝑐ℎ𝑚 = 0.48, 𝑐ℎ𝑚 =0.048, 𝑑𝑚 = 3.4038, we obtain the following results.

(i) Numerical Results for 𝜇1 ≃ 89%. For this value, we get𝑟̃ = 2.8204 and R0 = 0.6414. Moreover, according to
Figure 7, we notice that the distribution of infected humans
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Figure 6: Distribution of infected humans and mosquitoes.

and mosquitoes has highly reduced and the malaria is
progressively dying out in the populations.

(ii) Numerical Results for 𝜇2 = 80%. Using 𝜇2 = 0.8, we get𝐾̃𝐸 = 6000, 𝐾̃𝐿 = 3600, and R0 = 0.5953. Further, Figure 8
clearly shows that the disease is quickly disappearing from the
populations.

Remark 15. We must notice that the two parameters are
important in the malaria transmission because a little
perturbation of those parameters influences the dynamics of

malaria transmission. So they can be used to fight against the
persistence of the disease. The control 𝜇1 is efficient but its
action is very slow in finite time, but the control 𝜇2 is the
best because it is more optimal and its action is very quick.
Thus cleaning up the environment can be a very good mean
of controlling malaria in the populations.

5. Conclusion

In this paper, we have presented a seasonal determinist model
of malaria transmission. From the theoretical point of view,
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Figure 7: Distribution of infected humans and mosquitoes for 𝑏 = 80, 𝑠 = 10, 𝑑 = 15, 𝑠𝐿 = 6, and 𝑑𝐿 = 14.
we have shown that the basic reproduction ratio, R0, is
the distinguishing threshold parameter of the extinction or
the persistence of the disease: if R0 is less than 1 malaria
disappears in the human and mosquito populations and if it
is greater than 1malaria persists.

It also emerges from our study that the transmission of
malaria is highly influenced by the dynamics of immature
mosquitoes and depends on the regulatory threshold param-
eter of the mosquito population, 𝑟. Thus, the severity of
malaria increases with this parameter. So, the life cycle of the
anopheles is a very important aspect that must be taken into
account in malaria modeling.

Moreover, we have shown that malaria transmission can
be controlled by fighting against the proliferation of the
mosquitoes, namely, by reducing the value of 𝑟 or by reducing

the value of available breeder sites, 𝐾𝐸 and 𝐾𝐿. We have
proved that the reduction of the available breeder sites is a
very efficient and more ecological method in fighting against
malaria transmission. It then follows that environmental
sanitation can be a very goodmeans to control malaria in the
endemic regions.

However, it must be noticed that our model is limited due
to the following reasons: (i) we have not considered the effect
of climate change on the life cycle ofmosquitoes. (ii)The larva
and pupa class were not distinguished.

In the future, one can develop a more realistic model by
incorporating the above important factors and by considering
the general force of infection. In addition, we can also
take into account the degree of vulnerability of human
populations in the model.
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Figure 8: Distribution of infected humans and mosquitoes for 𝑏 = 180, 𝑠 = 15, 𝑑 = 6, 𝑠𝐿 = 15, and 𝑑𝐿 = 7.5.
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