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Trusted computing aims to build a trusted computing environment for information systems with the help of secure hardware TPM,
which has been proved to be an effective way against network security threats. However, the TPM chips are not yet widely deployed
in most computing devices so far, thus limiting the applied scope of trusted computing technology. To solve the problem of lacking
trusted hardware in existing computing platform, an alternative security hardware USBKey is introduced in this paper to simulate
the basic functions of TPM and a new reverse USBKey-based integrity verification model is proposed to implement the reverse
integrity verification of the operating system boot process, which can achieve the effect of trusted boot of the operating system
in end systems without TPMs. A Linux operating system booting method based on reverse integrity verification is designed and
implemented in this paper, with which the integrity of data and executable files in the operating system are verified and protected
during the trusted boot process phase by phase. It implements the trusted boot of operation system without TPM and supports
remote attestation of the platform. Enhanced by ourmethod, the flexibility of the trusted computing technology is greatly improved
and it is possible for trusted computing to be applied in large-scale computing environment.

1. Introduction

With the boom of Internet, the lack of a trustworthy infras-
tructure has been a barrel for the healthy development of
modern computing systems. More and more threats are
introduced due to the design flaws in software and hardware,
the improper authorization and authentication for legal users,
the abusing use of resources, and so forth. The key to solve
these problems is to build a trustworthy computing environ-
ment, where the safety of end system is well designed and
can be verified and trusted. Trusted computing technology
proposed by the Trusted Computing Group (TCG) is one
of the main practical efforts to achieve this goal. Trusted
computing architecture is based on the trusted hardware,
Trust Platform Module (TPM), and realizes transitive trust
through the constant trust metric in the progress of system
boot process to build a trusted computing environment.

Trusted platform module TPM and the related software
are introduced in trusted computing platform technology to
be as trusted root of the system, through the trust transfer
process to ensure the credibility of computing platforms and
applications and to improve the security of the terminal
platform. However, in order to support a variety of security
features in TCG specifications, a special trusted hardware
TPM is required to be deployed in the mainboard, which
has become a main barrier limiting the popularization of the
trusted computing platform technology. TPM is the base of
the trust chain and the trusted root throughout the trusted
boot process, which records and transfers trusted states in
end system. However, the TPM chips are not yet widely
deployed in most computing devices so far, thus limiting
the applied scope of trusted computing technology. It is
almost impossible to implement an overall trusted network
computing environment due to the hardware barrel.
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To fix the problem of lacking trusted hardware in exist-
ing computing platform, an alternative security hardware,
USBKey, is introduced in this paper to simulate the basic
functions of TPM and a new reverse USBKey-based integrity
verification model is proposed to implement the reverse
integrity verification of the operating system boot process,
which can achieve the effect of trusted boot of the operating
system in end systems without TPMs.

We have designed and implemented a Linux trusted boot
method based on reverse integrity verification, with which
the integrity of data and executable files in the operating
system are verified and protected during the trusted boot
process phase by phase. It implements the trusted boot
of operation system without TPM and supports remote
attestation of the platform. Enhanced by our method, the
flexibility of the trusted computing technology is greatly
improved and makes it possible to be applied in large-scale
computing environment.

2. The Trusted Boot in Operating Systems

2.1. Related Works. The trusted hardware, TPM (Trusted
Platform Module), plays a key role in trusted computing,
working as the base of trusted computing architecture and
the core to enhance the credibility of the general-purpose
computing platforms and networks. At present, the core
standard is TPM 2.0 [1]. TPM functions as a trusted root
of trusted computing platform, providing key cryptographic
functions and protected storage space which are necessary to
build trusted computing environment by coordinating with
other trusted computing software and hardware.

Given the limitations in TPM’s architecture and cryp-
tographic algorithms, new trusted computing architectures
Trusted Cryptography Module (TCM) [2] and Trusted Plat-
form Control Module (TPCM) [3] have been proposed by
scholars in China as official standards. Double certificate
structure is designed in TCM, and Chinese government
approved cryptographic algorithms are supported besides
commercial ones. TPCM is capable of performing active
control and trusted measurement on hardware level, which
controls the trusted computing base (TCB) in end systems.
Compared with TPM, a more rigid and trustworthy architec-
ture is implemented in TPCM.

Recently, trusted mobile computing platforms and
trusted cloud services are research focuses in both industry
and academia. Studies relating to trusted mobile computing
platform focused on TrustZone in smart devices, trusted
identity management, privacy protection, and other aspects.
Ekberg et al. propose ObC (On-board Credentials) system
which allows third party to develop and deploy credentials in
the device based on TrustZone and provides a TEE (Trusted
Execution Environment) function for application developers
[4]; Sujeen and Periasami propose a data security and
privacy protection technology based on TPMs [5]. Nyman
et al. propose a new, rich authorization model to solve the
traditional eIDmanagement problem by enhancing platform
integrity verification and eID authentication based on TPM
2.0 [6]. Zhao et al. implement and evaluate trusted boot of
the Trusted Execution Environment (TEE) based on ARM

TrustZone with the on-chip SRAM Physical Unclonable
Functions (PUFs) [7]. Santos et al. extend the concept of
trusted computing to the background of Infrastructure as
a Service (IaaS) and propose a trusted cloud computing
platform (TCCP) for ensuring the confidentiality and
integrity of computations [8]. But, users of cloud computing
do not have currently appropriate tools for their verification
of confidentiality, privacy policy, computing accuracy, and
data integrity. Banirostam et al. propose Trusted Cloud
Computing Infrastructure (TCCI) providing a closed
execution environment for infrastructure service developers
by a User Trusted Entity (UTE) [9]. Habib et al. propose a
multifaceted trust management system architecture for cloud
computing marketplaces and related approaches [10].

Since not all platforms are equipped with TPM mod-
ule, the traditional TPM leads to the loss of mobility and
flexibility due to the binding of user’s identity with specific
trusted platform. Accordingly, some scholars introduce some
USBKey-based secure boot solutions based on the principles
of separating platform and user certificate. To prevent the
master boot record from easily being manipulated and infil-
trated by bootkits, Müller et al. present Stark, whichmutually
authenticates the computer and the user in order to resist
keylogging during boot and implements trust bootstrapping
from a secure token (a USB flash drive) [11]. Based on
UEFI (Unified Extensible Firmware Interface), Kushwaha
proposes the creation of ESP (EFI System Partition) on the
USBKey [12]. Since the ESP contains the boot loader and
other critical codes for booting, the system always needs the
USBKey to boot the system to a running state. Meanwhile,
Microsoft’s secure boot architecture Win 8 increases UEFI-
based secure boot components and further enhances security
on the traditional concept of trusted booting.

In summary, the more flexible and practical trusted boot
technologies in operating system are being developed to be
bound with new user application schemas and scenarios and
to suit the development of mobile computing and cloud
computing.

2.2. Trusted Boot in Linux. Trusted boot is one of the core
functions of trusted computing platform.With the support of
trusted hardware, a trusted running environment for services
and applications is built with the verification of the integrity
of the whole hardware and software during system boot
process.

The following three key pointsmust be guaranteed during
the trusted boot process.

(1) The chain of trust must be established sequentially.
Before the transference of control rights, the executable
entity must be measured by trusted computing base. It can
only be loaded and gain control rights after its integrity is
verified, which fulfills the procedure of establishing chain of
trust. (2) All the metrics and calls involved in the process
of the establishment of the trust chain will eventually be
completed by TPM. (3) During the establishment of chain
of trust, all important secret data involved including keys,
premeasurement data, and verification data must be stored
and sealed inside TPM. TPM is responsible for ensuring
the integrity and confidentiality of the secret data. Unlike
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Figure 1: Linux trusted boot model.

removable storage devices ormemory, there is no external call
interface provided to access the secrete data in TPM, which
ensures its confidentiality and credibility.

Taken the Linux trusted boot process based on TPMas an
example, the trusted bootmodel in operating system is shown
in Figure 1.

Trusted boot mainly includes two phases: the boot of
hardware platform and the startup of operating system. The
boot of hardware platform starts from the platform power
on to the BIOS initialization and ends after the BIOS passes
control rights to the boot loader. The reliability of hardware
environment is measured and verified in this phase. The
startup phase of the operating system begins with the loading
of operating system loader from the main boot sector, and
then the operating system kernel is loaded and ends till the
running of the Init process. This stage is mainly responsible
for checking the creditability of the system startup process
and the operating system kernel. The trusted boot process of
the startup phase of the operating system based on TPM is as
follows.

Step 1. Trusted BIOS loads boot loader stored in Boot sector
and then sends it to TPM to be measured and verified. Once
TPM has verified its integrity, the boot program is loaded
to memory 0000:7C00h, and then the BIOS passes control
rights to the CPU to run the Boot program to further load
operating system.

Step 2. TPM validates the operating system loader program,
such as Grub in Linux. If the verification is successful, the

Grub Stage 1 code in the master boot sector is loaded into
memory and gains the trusted boot control to further load
operating system kernel.

Step 3. The Grub Stage 1 continues trusted boot process
by first validating Grub Stage 1.5 code with TPM, if it is
successful, loads, and runs the code of the Stage 1.5 phase. At
the end of this stage, the file system is mounted.

Step 4. The Grub Stage 2 code is verified by TPM and
loaded by trusted Grub Stage 1.5. After successfully gaining
control, it will verify the integrity of the configuration file
“/boot/Grub/Grub.conf” in which the locations of the disk
partitions, the kernel image, and virtual RAM disk file initrd
are recorded.

Step 5. The Grub Stage 2 code opens the configuration file,
reads the operating system kernel image, and tries to verify
the integrity of the operating system kernel image by TPM. If
it is successful, the operating system kernel image is loaded
and gains control.

Step 6. Once the operating system kernel image is loaded,
TPM will measure and verify the Init process. If the Init
process is trusted, the kernel key data structures will be
created and the kernel Init process will be loaded and take
control.

Step 7. Firstly, the Init process determines the list of the kernel
modules needed to be loaded and the daemons needed to
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be created based on the system configuration. Then, it will
measure and verify each kernel module and daemon with
TPMmodule before they are loaded. Only the trusted kernel
modules and daemons are run sequentially to guarantee that
the initialized computing environment is trusted. At last,
the Init process starts receiving users’ inputs, and a trusted
computer is ready to be used.

At this point, the trusted operating system boot process
is over. As we can see, the traditional trusted boot process
based on TPM is in forward direction, which means all
measurements and verifications are strictly consistent with
the operating system boot process. The chain of trust is
established in a strict sequence.

3. A Linux Trusted Booting Method Based on
Reverse Integrity Verification

3.1. A Reverse Integrity Verification Model with USBKey.
As shown in Figure 2, in this paper, the operating system
trusted boot method based on reverse integrity verification is
implemented by the coordination of operating system kernel,
the BIOS (firmware), and USBKey (USB smart card). The
operating systemkernel provides a basic software system run-
ning environment, including the drivers for system hardware
and the construction of the system execution environment.
In the process of the system boot, there are four parts in
operating system kernel which are system boot Stage 1, Stage

1.5, Stage 2, and kernel modules. The BIOS firmware covers
the initial stage of system boot, completes the initialization of
hardware, and passes control to the boot loader. USBKey used
in this method has built-in CPU, memory, Chip Operating
System (COS), and internal safe data storage units, where
secret data are stored, such as the user digital certificates
and secret keys. There is also a sealed computing unit inside
USBKey that supports cryptographic operations such as
SHA1 algorithm, signature, authentication, data encryption
and decryption, and data digest. All operations are calculated
in the COS of USBKey which is totally safe to the outside
world. As a trusted hardware, USBKey provides us a method
to validate the integrity of data reliably.

Working as a trusted root, TPM provides support for the
storage of trusted measurement and trusted state (PCR) in
the establishment of chain of trust during trusted boot. It is
also the starting point and foundation of system trusted boot
and trust measurement. Especially in TPCM framework, the
trusted hardware is regarded as trusted base and is the first
functional hardware after powering on the system, so as to
provide guarantee to keep the whole system in trusted states.

Similar to the TPM, USBKey, as widely used secu-
rity hardware, also has built-in security guarantee, built-in
trusted measurement algorithms, and built-in secure storage
space. But in order to implement trusted measurement as
TPM module does, USBKey still needs to get rid of the
following two limitations: (1) Hardware driver needs to
be loaded before USBKey could be used, which makes it
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unable to activate trusted measurement from powering on
the system as required in TPCM. (2) There are no PCRs in
the USBKey built-in storage. New software data structures
have to be designed to simulate PCRs in TPM, so as to record
system’s trusted states and support trusted measurement
during trusted boot.

Tohandle the first problem,we assume that a trusted prior
measurement could be preceded by the kernel trusted mea-
surement module while the system was in the initial trusted
state. The trusted prior measurement generates foundation
trust metrics for trusted measurement. To solve the second
problem, a set of data structures are defined to simulate PCR
registers in TPMwhich can be used to store themeasurement
values in the process of prior measurements and trusted
boot. All measurement data are stored in safe storage area in
USBKey.

The reverse integrity verificationmodel based onUSBKey
is shown in Figure 2, in which the dotted line shows the
process of the priormeasurement and the solid line shows the
process of the reverse integrity measurement in trusted boot
process.There are five key elements in a trustedmeasurement
model based on TPM: PCR values for prior measurement,
TPM, targets to be measured, PCR values, and verification
results. First of all, a trust metric base needs to be constructed
as a credential reference library for later trusted boot in the
prior measurement phase. During prior measurement, the
entities in the system are measured by TPM following the
sequence of system boot and the trust measurement values in
PCRs are recorded into trustmetric base.Then, in the process
of system boot, TPM will measure the entities to be loaded,
which are targets to be measured sequentially and compare
the PCR values with the PCR values for prior measurement
for consistency to reach the verification results.

In the reverse integrity verification model based on
USBKey, the five key elements are trust metrics for prior
measurement, USBKey, targets to be measured, trust metrics,
and verification results. In ourmodel, trustmetrics refer to the
trust measurement values generated by USBKey. Compared
with the traditional trusted measurement model based on
TPM, the key elements are similar, while the TCB and the
trust measurement procedure differ a lot. The combination
of “USBKey + trust metric base” functions as the root of
trust instead of TPM only. The process of trusted boot is
also divided into two phases: the reverse integrity verification
phase and the trusted boot phase. After system starts up and
successfully drives and loads USBKey, the Reserve Integrity
Verification Module will initialize the reverse integrity veri-
fication phase. It will access the loaded system entities and
measure and verify their integrity values with USBKey by
comparing with the trust metrics for prior measurement. After
phase one, a reliable system environment is verified and the
trust foundation of the current system state is established.
Then, the trusted boot phase will handle the rest of system
boot the same as the process of trusted boot. Together with
USBKey, the Reserve Integrity Verification Module functions
as a TCB and makes sure the following loaded entities are
trusted. Once an entity needs to be loaded, the module will
call USBKey to measure the entity and verify its integrity
by comparing with the Trust Metrics for Prior Measurement.

Since only trusted entities are to be loaded and run, the whole
system will be in a trusted state persistently.

Operating system trusted boot method based on reverse
integrity verification contains the following steps.

(1) Prior Measurement. The initial system state can be
assumed to be trusted. To start a prior measurement process,
a regular system boot will be executed until starting to receive
the input of user. Then, the System Prior Measurement
Program will be loaded by the Init process and take control.
The System Prior Measurement Program starts revising the
whole boot process by measuring each stage during system
boot sequentially. For every stage, the integrity of the relative
entities is measured by USBKey; the measurement values are
stored intoUSBKey safe storage unit to form trustmetric base.

(2) Reverse Integrity Verification. For regular system boots
after priormeasurement, the reverse integrity verification can
be performed by the Reserve Integrity VerificationModule and
USBKey. Once the operating system kernel is loaded and the
USBKey is enabled, the Reserve Integrity Verification Module
will be loaded into kernel and control the rest of trusted
boot. The design of the Reserve Integrity Verification Module
is similar to trusted software stack, and it is able to complete
the integrity measurement of the target by cooperating with
USBKey. First, it will read the prior measurement values for
each boot stage from trust metric base, which are reference
library for later trust verification. Then, each stage during
system boot will be measured by USBKey. By referencing the
trust metric base, the current integrity state of the system is
verified by comparing the current measurement value with
the relative prior measurement value. If all the loaded boot
stages have passed reverse integrity verification, the current
system is marked as in a trusted state. The Reserve Integrity
VerificationModulewill continually be in charge to guarantee
that all the modules, services, and applications loaded later
are measured and verified by USBKey. Only trusted entities
are to be loaded and run until the trusted boot succeeds and
a trusted computing environment is established.

Following the system boot order, there are nine stages of
data that are measured and verified in our method:

(1) The BIOS.
(2) The Grub Stage 1 data in the master boot sector.
(3) Grub Stage 1.5 data.
(4) Grub Stage 2 data.
(5) Grub configuration file.
(6) The kernel image file.
(7) The Init process data.
(8) The kernel modules to be loaded by the Init process

based on the system configuration.
(9) The daemons to be loaded by the Init process based

on the system configuration.

The nine stages can be divided into two parts: BIOS
boot and operating system boot. The BIOS image needs to
be measured and protected which includes codes for POST
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(Power-On Self-Test), system hardware initialization, and
loading operating system boot loader. The operating system
boot phase contains Grub Stage 1, Grub Stage 1.5, Grub Stage
2, the kernelmodules and daemons loaded by the Init process.

In the method, the System Prior Measurement Program
and the Reverse Integrity Verification Module are located in
the operating system kernel, whose legitimacy and integrity
are protected by USBKey signature.They can be loaded if and
only if USBKey PIN verification and signature authentication
are success. In this paper, SHA1 algorithm in USBKey is
applied to perform trust measuring.

3.2. The Design of Prior Measurement for Reverse Integrity
Verification. The different stages of system boot are premea-
sured by USBKey. The trust metric base is constructed by
collecting system prior measurement data, which are used to
support trust measurement with USBKey in the process of
the trusted boot.The design of the prior measurement for the
reverse integrity verification is shown in Figure 3, the stages
in the process of the operating system boot are measured by
USBKey and the prior measurement values are stored in safe
storage unit.

In prior measurement phase, a regular system boot will
be executed until starting to accept the user input. Then,
the System Prior Measurement Program will be loaded and
begin measuring each stage of system boot sequentially. The
trust measurement values are calculated by USBKey and are
stored into USBKey safe storage unit. The trust metric base

is constructed after prior measurement phase. As shown in
Figure 3, the specific steps are as follows:

(1) Operating system boots up until receiving user input,
that is, from powering on the system to the time the
Init process is successfully running. Then, it inserts
USBKey and verifies user’s PIN. If successful, the
System Prior Measurement Program is verified and
loaded; otherwise the prior measurement fails.

(2) The System Prior Measurement Program reads the
BIOS information and calls USBKey to execute trust
measurement with SHA1 algorithm. The returned
BIOS trust metric is stored in the safe storage unit in
USBKey.

(3) The System Prior Measurement Program reads the
Grub Stage 1 data from master boot sector and calls
USBKey to execute trust measurement with SHA1
algorithm. The returned trust metric is stored in the
safe storage unit in USBKey.

(4) The System Prior Measurement Program reads the
Grub Stage 1.5 code and calls USBKey to execute trust
measurement with SHA1 algorithm. The returned
trust metric is stored in the safe storage unit in
USBKey.

(5) The System Prior Measurement Program reads the
Grub Stage 2 code and calls USBKey to execute trust
measurement with SHA1 algorithm. The returned
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trust metric is stored in the safe storage unit in
USBKey.

(6) The System Prior Measurement Program reads the
Grub configuration file “/boot/Grub/Grub.conf,” and
calls USBKey to execute trust measurement with
SHA1 algorithm. The returned trust metric is stored
in the safe storage unit in USBKey.

(7) The System Prior Measurement Program reads the
operating system kernel image file and calls USBKey
to execute trust measurement with SHA1 algorithm.
The returned trust metric is stored in the safe storage
unit in USBKey.

(8) The System Prior Measurement Program reads the
Init process data and calls USBKey to execute trust
measurement with SHA1 algorithm. The returned
trust metric is stored in the safe storage unit in
USBKey.

(9) The System Prior Measurement Program reads the
kernel modules to be loaded by the Init process
sequentially and calls USBKey to execute trust mea-
surement with SHA1 algorithm. The returned trust
metrics are stored in the safe storage unit in USBKey.

(10) The System Prior Measurement Program reads the
daemons to be loaded by the Init process sequentially
and calls USBKey to execute trust measurement with

SHA1 algorithm.The returned trustmetrics are stored
in the safe storage unit in USBKey.

(11) To protect TCB in the method, USBKey precedes the
summary and signature verification on the Reverse
Integrity Verification Module Rev Verify Mod
with user digital certificate inside. The results as
Rev Verify Mod’s trust metrics are deposited in the
safe storage unit in USBKey.

(12) The prior measurement process comes to an end.

3.3. The Trusted Boot of Operating System with Reverse
Integrity Verification. After the completion of prior measure-
ment, USBKey can reverse and verify the operating system
booting process according to the stored prior metric values.
To support USBKey-based verification, an operating system
kernel module, the Reverse Integrity Verification Module
(Rev Verify Mod), is implemented to measure and verify the
entities loaded and to be loaded modules and the modules
by calling the USBKey. To demonstrate the detailed USBKey-
based reverse integrity verification process, the USBKey-
based Linux operating system trusted boot process is shown
in Figure 4.

After the prior measurement, the trusted boot is enabled.
The system is powered on and operating system kernel is
loaded. Once the USBKey is on, the Rev Verify Mod will be
verified and loaded.Then, theRev Verify Mod reads the trust
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metric base from the safe storage unit in USBKey. At last,
the Rev Verify Mod sequentially reads the boot information
of each phase and carries out the trust measurement and
verification by comparing the current trust metrics with the
premeasured values. If they are not equal, the system state is
set as distrusted and the corresponding trusted boot failure
handler is activated. If they are equal, the current system state
is set as trusted and trusted boot continues to the next phase.
When all system boot phases are completed successfully, the
operating system is verified to be trusted and the trusted boot
succeeds.

As shown in Figure 4, the steps are as follows:

(1) Insert USBKey and system is powered on. The BIOS
boots first, and then the operating system is loaded
and boots until the Init process is successfully loaded
and user interface is active.

(2) USBKey is enabled and the Init process requires user
inputs PIN code to proceed to USBKey authentica-
tion.

(3) If USBKey authentication succeeds, it is ready to
be used to proceed to trusted boot. First, the
legitimacy and integrity of the Rev Verify Mod are
verified by USBKey by comparing the calculated
results with the prior measurement values. If they
are identical, the authentication is successful. Then
the Rev Verify Mod is loaded by operating system
kernel, and the control is handled over to the
Rev Verify Mod module.

(4) The Rev Verify Mod module reads the prior mea-
surement values of each boot stage from trust metric
base inside USBKey, which contains BIOS metric,
Grub Stage 1metric, Grub Stage 1.5metric, Grub Stage
2 metric, the metric of the Grub configuration file,
the operating systemkernel imagemetric, Init process
metric, kernel module metrics, and daemon metrics.

(5) The Rev Verify Mod module reads the BIOS infor-
mation and measures its integrity with USBKey. By
comparing the calculated results with the records of
the BIOS metric, the trustworthy state is judged. If
they are equal, then trusted measurement succeeds
and the current system is marked as in a trusted state;
otherwise, the current system is marked as distrusted.

(6) The Rev Verify Mod module reads the Grub Stage
1 data and measures its integrity with USBKey. By
comparing the calculated results with the records
of the Grub Stage 1 metric, the trustworthy state is
judged. If they are equal, then trusted measurement
succeeds and the current system is marked as in a
trusted state; otherwise, the current system is marked
as distrusted.

(7) The Rev Verify Mod module reads the Grub Stage
1.5 data and measures its integrity with USBKey. By
comparing the calculated results with the records of
the Grub Stage 1.5 metric, the trustworthy state is
judged. If they are equal, then trusted measurement
succeeds and the current system is marked as in a

trusted state; otherwise, the current system is marked
as distrusted.

(8) The Rev Verify Mod module reads the Grub Stage
2 data and measures its integrity with USBKey. By
comparing the calculated results with the records
of the Grub Stage 2 metric, the trustworthy state is
judged. If they are equal, then trusted measurement
succeeds and the current system is marked as in a
trusted state; otherwise, the current system is marked
as distrusted.

(9) The Rev Verify Mod module reads the Grub config-
uration file and measures its integrity with USBKey.
By comparing the calculated result with the records
of the Grub configuration file metric, the trustworthy
state is judged. If they are equal, then trusted mea-
surement succeeds and the current system is marked
as in a trusted state; otherwise, the current system is
marked as distrusted.

(10) The Rev Verify Mod module reads the operating
system kernel image file and measures its integrity
withUSBKey. By comparing the calculated result with
the records of the operating system kernel image
file metric, the trustworthy state is judged. If they
are equal, then trusted measurement succeeds and
the current system is marked as in a trusted state;
otherwise, the current system is marked as distrusted.

(11) The Rev Verify Mod module reads the Init process
file and measures its integrity with USBKey. By
comparing the calculated result with the records of
the Init process file metric, the trustworthy state is
judged. If they are equal, then trusted measurement
succeeds and the current system is marked as in a
trusted state; otherwise, the current system is marked
as distrusted.

(12) The Rev Verify Mod module reads the data of the
kernel modules to be loaded and measures its
integrity with USBKey. By comparing the calculated
results with the records of the kernelmodulesmetrics,
the trustworthy state is judged. If they are equal,
then trusted measurement succeeds and the current
system is marked as in a trusted state; otherwise, the
current system is marked as distrusted.

(13) The Rev Verify Mod module reads the data of the
daemons to be loaded and measures its integrity with
USBKey. By comparing the calculated results with the
records of the daemons metrics, the trustworthy state
is judged. If they are equal, then trustedmeasurement
succeeds and the current system is marked as in a
trusted state; otherwise, the current system is marked
as distrusted.

(14) Operating system boot is complete. During the pro-
cess of the above reverse integrity verifications, the
chain of trust is established by loading order. If
any step encounters a verification failure, the system
trusted boot fails and the system state is set to
be distrusted and the corresponding trusted boot
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failure handler will be called which will normally
suspend the system boot process or switch to the
distrusted boot process. If all integrity measurements
are successful in all steps, then the operating system
is set to trusted status, and the trusted boot succeeds.

(15) The operating system trusted boot based on reverse
integrity verification succeeds and system runs in a
trusted computing environment.

3.4. Comparative Analysis. USBKey is featured with low cost,
safe, portable, convenient, and other characteristics. Com-
pared with TPM, it can provide similar security functions
with higher flexibility at the same time. They both have
secure data storage space for sensitive data, such as trust
metrics, digital certificates, and keys. Reading and writing
operations on the safe storage space can only be achieved
through the COS inside the hardware, which prevents the
user from directly reading secret data. The user keys inside
the safe hardware cannot be exported, which eliminates the
possibility of the replication of user digital certificate or
identity information. A variety of cryptographic algorithms
are performed inside the safe hardware with the CPU inside.
Operations such as encryption, decryption, and signature
operations are performed within USBKey to ensure that the
key will not appear in the computer memory, so as to prevent
the fact that the user key may be intercepted by attackers.
Therefore, by applying the USBKey and the reverse integrity
verification method on operation system trusted boot, the
system integrity can be guaranteed, and better flexibility and
convenience are achieved.

In existing USBKey-based security enhancements meth-
ods, the USBKey is primarily used for user authentication,
such as USBKey-based two-factor authentication, and data
encryption and decryption. Our work in this paper extends
the application field of USBKey. By constructing prior mea-
surement libraries and reverse integrity verificationmodules,
the USBKey in our method can simulate TPM and support
key functions in trusted computing as trusted boot, trusted
storage, and remote attestation.

Themain advantages of the proposedmethod include the
following:

(1) In the operating system trusted bootmethod based on
the reverse integrity verification, the system is guaran-
teed by verifying the integrity of data and executable
files in different booting stages. The verifications are
not sensitive to loading sequence and are performed
stage by stage to ensure that the system is in a
trusted status. Compared with TPM-based trusted
boot, USBKey based trusted boot is more compatible
with application environment and is more flexibility
and easier to be used in real computing systems.

(2) With the operating system trusted bootmethod based
on the reverse integrity verification, the operating
system trusted boot can be achieved on endpoints
without TPMs, which greatly enhances the applicable
scope of trusted computing technology. At the same
time, the procedure for trusted boot is simplified,

and trust measurements and verifications can be per-
formed at any phase of system boot process through
the reverse attestation method.

Compared with TPM-based trusted boot, the main dis-
advantage for our method is that the system is unprotected
before the Rev Verify Mod module is loaded, which makes
it possible to bypass the reversed verification procedure and
boot a distrusted system. One solution is to enable USBKey
and implement USBKey-based reversed verification in BIOS
boot phase to achieve the lower level protection. Another
option is to encrypt the file system with USBKey, which only
can be decrypted after the system is verified to be trusted by
the Rev Verify Mod module.

4. A Scenario for Remote Attestation Based on
the Reverse Integrity Verification Method

4.1. Related Works about Remote Attestation. Remote attesta-
tion is one of the core functions in trusted computing. Users
are able to authenticate the identity of the target platform
andmeasure and verify the integrity of the trusted computing
platform with remote attestation by using TPMs or TCMs.

Remote platform authentication is one of the key mecha-
nisms in trusted computing, whose purpose is to prove the
identity of a remote entity by exchanging and verifying a
series of certificates with TPM. In 2004, Brickell and other
scholars proposed TPM-based direct anonymous attestation
(DAA) program [13], which utilized zero-knowledge proof
and group signature technology to prove the identity of
the platform, but it was too complex to be implemented.
Following DAA program, many new methods have been
proposed to improve the efficiency and usability of DAA [14–
18].

TCG defines a binary remote attestation protocol to
attest the integrity of the remote platform with trusted
hardware TPMs/TCMs. But it is argued for the overexposure
of the configuration information about the hardware and
software in local trusted computing platform. To overcome
the flaw in binary remote attestation, Chen and other scholars
firstly proposed a property based attestation protocol, PBA
protocol [19]. Later, PBA protocol was further studied, and
more remote attestation methods based on properties were
proposed [20–24]. So far, property based remote attestation
solution has currently been viewed as being themost valuable
and prosperous for remote attestation, which overcomes the
problems in binary remote attestation such as complexity,
privacy, misuse of proof, and other defects.

In China, the Trusted Connection Architecture (TCA)
[25] is proposed as a standard remote attestation protocol
which is an improvement of TCG’s Platform Trusted Service
(PTS). The basic authentication model in TCA is shown in
Figure 5.

Before establishing a trusted network connection, Access
Requester (AR) and Access Controller (AC) must separately
load PTS by calling the specific platform binding func-
tions. Then the bidirectional user authentication protocol
is performed, in which Policy Management (PM) acts as a
TrustedThird Party (TTP). PlatformA and PlatformB collect
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Figure 5: The basic authentication model in TCA.

integrity information with PTS protocol and then send the
integrity information to PM. Finally the integrity of Platform
A and Platform B is attested by PM.

4.2. A Scenario for Remote Attestation Based on the Reverse
Integrity VerificationMethod in Hybrid Trusted Network. The
remote attestation of the platforms relies on TPM chips;
therefore, it is hard for PTS to be widely used in practical
network environment since most of the servers and the
terminal nodes are not equipped with TPM/TCM chips. The
USBKey-based reverse integrity verification method in this
paper can simulate TPM tomeasure trusted boot process and
verify the trust state of the node. The system trust metrics
and simulated PCR values are stored inside safe hardware
with same data structures, which can be used to support
remote attestation with other trusted nodes with TPM.
Therefore, it is possible to deploy USBKey-based reverse
integrity verification mechanism on nodes without TPMs
and build a hybrid trusted network environment supporting
remote attestation on all nodes.

In a hybrid trusted network environment, bidirectional
remote attestation protocol between TPM-based trusted
nodes and USBKey-based trusted nodes is designed as
follows.

As shown in Figure 6, a new PTS protocol is designed
with only a few simple modifications upon the original one
to mask the differences between TPM/TCM and USBKey. A
transparent layer is implemented to support both TPM/TCM
and USBKey in remote attestation. Both PCR values gener-
ated by TPM/TCM and simulated PCR values generated by
USBKey are collected as trust evidence.Thereby bidirectional
remote attestation between TPM-based trusted nodes and
USBKey-based trusted nodes can be achieved, which greatly
reduces the cost of building an enterprise trusted network.

5. Conclusion

Aiming at the limitations in deploying and using TPMs
in practical applications, we propose USBKey-based reverse
integrity verification model which uses the widely used
USBKey to establish chain of trust instead of TPM. The
detailed design and implementation for this method are pre-
sented in Linux platform. The method supports the trusted
boot of the Linux operating system. The PCR values are
simulated to support the bidirectional remote attestation and
trusted network connections between TPM-based trusted
nodes and USBKey-based trusted nodes.

The proposed method greatly reduces the threshold
for applying trusted computing technology. It has a wide
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Figure 6: Remote attestation in hybrid trusted network.

prospective of applications and contributes a lot to the popu-
larization of trusted computing technology in real enterprise
environment.
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