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Realistic predictive maintenance approaches are essential for condition monitoring and predictive maintenance of industrial
machines. In this work, we propose Hidden Semi-Markov Models (HSMMs) with (i) no constraints on the state duration density
function and (ii) being applied to continuous or discrete observation. To deal with such a type of HSMM, we also propose
modifications to the learning, inference, and prediction algorithms. Finally, automaticmodel selection has beenmade possible using
the Akaike Information Criterion. This paper describes the theoretical formalization of the model as well as several experiments
performed on simulated and real data with the aim of methodology validation. In all performed experiments, the model is able
to correctly estimate the current state and to effectively predict the time to a predefined event with a low overall average absolute
error. As a consequence, its applicability to real world settings can be beneficial, especially where in real time the Remaining Useful
Lifetime (RUL) of the machine is calculated.

1. Introduction

Predictive models that are able to estimate the current
condition and the Remaining Useful Lifetime of an industrial
equipment are of high interest, especially for manufacturing
companies, which can optimize their maintenance strategies.
If we consider that the costs derived from maintenance are
one of the largest parts of the operational costs [1] and that
often the maintenance and operations departments comprise
about 30%of themanpower [2, 3], it is not difficult to estimate
the economic advantages that such innovative techniques
can bring to industry. Moreover, predictive maintenance,
where in real time the Remaining Useful Lifetime (RUL) of
the machine is calculated, has been proven to significantly
outperforms other maintenance strategies, such as corrective
maintenance [4]. In this work, RUL is defined as the time,
from the current moment, that the systems will fail [5].
Failure, in this context, is defined as a deviation of the
delivered output of a machine from the specified service
requirements [6] that necessitate maintenance.

Models like Support Vector Machines [7], Dynamic
Bayesian Networks [8], clustering techniques [9], and data
mining approaches [10] have been successfully applied to

condition monitoring, RUL estimation, and predictive main-
tenance problems [11, 12]. State space models, like Hidden
Markov Models (HMMs) [13], are particularly suitable to be
used in industrial applications, due to their ability to model
the latent state which represents the health condition of the
machine.

Classical HMMs have been applied to condition assess-
ment [14, 15]; however, their usage in predictive maintenance
has not been effective due to their intrinsic modeling of the
state duration as a geometric distribution.

To overcome this drawback, a modified version of HMM,
which takes into account an estimate of the duration in each
state, has been proposed in the works of Tobon-Mejia et al.
[16–19]. Thanks to the explicit state sojourn time modeling,
it has been shown that it is possible to effectively estimate
the RUL for industrial equipment. However, the drawback
of their proposed HMM model is that the state duration is
always assumed as Gaussian distributed and the duration
parameters are estimated empirically from the Viterbi path
of the HMM.

A complete specification of a duration model together
with a set of learning and inference algorithms has been
given firstly by Ferguson [20]. In his work, Ferguson allowed
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the underlying stochastic process of the state to be a semi-
Markov chain, instead of a simple Markov chain of a HMM.
Such model is referred to as Hidden Semi-Markov Model
(HSMM) [21]. HSMMs and explicit duration modeles have
been proven beneficial for many applications [22–25]. A
complete overview of different duration model classes has
beenmade byYu [26].Most state durationmodels, used in the
literature, are nonparametric discrete distributions [27–29].
As a consequence, the number of parameters that describe the
model and that have to be estimated is high, and consequently
the learning procedure can be computationally expensive for
real complex applications. Moreover, it is necessary to specify
a priori the maximum duration allowed in each state.

To alleviate the high dimensionality of the parameter
space, parametric duration models have been proposed. For
example, Salfner [6] proposed a generic parametric continu-
ous distribution to model the state sojourn time. However, in
their model, the observation has been assumed to be discrete
and applied to recognize failure-prone observation sequence.
Using continuous observation, Azimi et al. [30–32] specified
an HSMM with parametric duration distribution belonging
to the Gamma family and modeled the observation process
by a Gaussian.

Inspired by the latter two approaches, in this workwe pro-
pose a generic specification of a parametric HSMM, in which
no constraints are made on the model of the state duration
and on the observation processes. In our approach, the state
duration ismodeled as a generic parametric density function.
On the other hand, the observations can be modeled either
as a discrete stochastic process or as continuous mixture
of Gaussians. The latter has been shown to approximate,
arbitrarily closely, any finite, continuous density function
[33]. The proposed model can be generally used in a wide
range of applications and types of data. Moreover, in this
paper we introduce a new and more effective estimator of
the time spent by the system in a determinate state prior
to the current time. To the best of our knowledge, a part
from the above referred works, the literature on HSMMs
applied to prognosis and predictive maintenance for indus-
trial machines is limited [34]. Hence, the present work aims
to show the effectiveness of the proposed duration model in
solving condition monitoring and RUL estimation problems.

Dealing with state space models, and in particular of
HSMMs, one should define the number of states and cor-
rect family of duration density, and in case of continuous
observations, the adequate number of Gaussian mixtures.
Such parameters play a prominent role, since the right model
configuration is essential to enable an accurate modeling
of the dynamic pattern and the covariance structure of the
observed time series. The estimation of a satisfactory model
configuration is referred to asmodel selection in literature.

While several state-of-the-art approaches use expert
knowledge to get insight on the model structure [15, 35,
36], an automated methodology for model selection is often
required. In the literature, model selection has been deeply
studied for a wide range of models. Among the existing
methodologies, information based techniques have been
extensively analyzed in literature with satisfactory results.

Although Bayesian Information Criterion (BIC) is particu-
larly appropriate to be used in finite mixture models [37, 38],
Akaike Information Criterion (AIC) has been demonstrated
to outperform BIC when applied to more complex models
and when the sample size is limited [39, 40], which is the case
of the target application of this paper.

In this work AIC is used to estimate the correct model
configuration, with the final goal of an automated HSMMs
model selection, which exploits only the information avail-
able in the input data.While model selection techniques have
been extensively used in the framework of Hidden Markov
Models [41–43], to the best of our knowledge, the present
work is the first that proposes their appliance to duration
models and in particular to HSMMs.

In summary, the present work contributes to condition
monitoring, predictive maintenance, and RUL estimation
problems by

(i) proposing a general Hidden Semi-Markov Model
applicable for continuous or discrete observations and
with no constraints on the density function used to
model the state duration;

(ii) proposing a more effective estimator of the state
duration variable 𝑑

𝑡
(𝑖), that is, the time spent by the

system in the 𝑖th state, prior to current time 𝑡;
(iii) adapting the learning, inference and prediction algo-

rithms considering the defined HSMM parameters
and the proposed 𝑑

𝑡
(𝑖) estimator;

(iv) using the Akaike Information Criterion for automatic
model selection.

The rest of the paper is organized as follows: in Section 2
we introduce the theory of the proposed HSMM together
with its learning, inference, and prediction algorithms.
Section 3 gives a short theoretical overview of the Akaike
Information Criterion. Section 4 presents the methodology
used to estimate the Remaining Useful Lifetime using the
proposed HSMM. In Section 5 experimental results are
discussed. The conclusion and future research directions are
given in Section 6.

2. Hidden Semi-Markov Models

Hidden Semi-Markov Models (HSMMs) introduce the con-
cept of variable duration, which results in a more accurate
modeling power if the system being modeled shows a depen-
dence on time.

In this section we give the specification of the proposed
HSMM, for which we model the state duration with a para-
metric state-dependent distribution. Compared to nonpara-
metric modeling, this approach has two main advantages:

(i) the model is specified by a limited number of param-
eters; as a consequence, the learning procedure is
computationally less expensive;

(ii) the model does not require the a priori knowledge
of the maximum sojourn time allowed in each state,
being inherently learnt through the duration distribu-
tion parameters.
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2.1. Model Specification. A Hidden Semi-Markov Model is
a doubly embedded stochastic model with an underlying
stochastic process that is not observable (hidden) but can
only be observed through another set of stochastic processes
that produce the sequence of observations. HSMMallows the
underlying process to be a semi-Markov chain with a variable
duration or sojourn time for each state. The key concept
of HSMMs is that the semi-Markov property holds for this
model: while in HMMs the Markov property implies that the
value of the hidden state at time 𝑡 depends exclusively on its
value of time 𝑡 − 1, in HSMMs the probability of transition
from state 𝑆

𝑗
to state 𝑆

𝑖
at time 𝑡depends on the duration spent

in state 𝑆
𝑗
prior to time 𝑡.

In the following we denote the number of states in the
model as𝑁, the individual states as 𝑆 = {𝑆

1
, . . . , 𝑆

𝑁
}, and the

state at time 𝑡 as 𝑠
𝑡
. The semi-Markov property can be written

as

P (𝑠
𝑡+1

= 𝑆
𝑖
| 𝑠

𝑡
= 𝑆

𝑗
, . . . , 𝑠

1
= 𝑆

𝑘
)

= P (𝑠
𝑡+1

= 𝑖 | 𝑠
𝑡
= 𝑗, 𝑑

𝑡
(𝑗)) 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑁,

(1)

where the duration variable 𝑑
𝑡
(𝑗) is defined as the time spent

in state 𝑆
𝑗
prior to time 𝑡.

Although the state duration is inherently discrete, in
many studies [44, 45] it has been modeled with a continuous
parametric density function. Similar to the work of Azimi
et al. [30–32], in this paper, we use the discrete counterpart
of the chosen parametric probability density function (pdf).
With this approximation, if we denote the pdf of the sojourn
time in state 𝑆

𝑖
as 𝑓(𝑥, 𝜃

𝑖
), where 𝜃

𝑖
represents the set of

parameters of the pdf relative to the 𝑖th state, the probability
that the system stays in state 𝑆

𝑖
for exactly 𝑑 time steps

can be calculated as ∫𝑑

𝑑−1
𝑓(𝑥, 𝜃

𝑖
)𝑑𝑥. Considering the HSMM

formulation, we can generally denote the state dependent
duration distributions by the set of their parameters relative
to each state as Θ = {𝜃

1
, . . . , 𝜃

𝑁
}.

Many related works on HSMMs [31, 32, 44, 45] consider
𝑓(𝑥, 𝜃

𝑖
) within the exponential family. In particular, Gamma

distributions are oftenused in speech processing applications.
In this work, we do not impose a type of distribution function
to model the duration. The only requirement is that the
duration should be modeled as a positive function, being
negative durations physically meaningless.

HSMMs require also the definition of a “dynamic” tran-
sitionmatrix, as a consequence of the semi-Markov property.
Differently from the HMMs in which a constant transition
probability leads to a geometric distributed state sojourn
time, HSMMs explicitly define a transition matrix which,
depending on the duration variable, has increasing probabil-
ities of changing state as the time goes on. For convenience,
we specify the state duration variable in a form of a vector d

𝑡

with dimensions𝑁 × 1 as

d
𝑡
= {

𝑑
𝑡
(𝑗) if 𝑠

𝑡
= 𝑆

𝑗

1 if 𝑠
𝑡

̸= 𝑆
𝑗
.

(2)

The quantity 𝑑
𝑡
(𝑗) can be easily calculated by induction from

𝑑
𝑡−1

(𝑗) as

𝑑
𝑡
(𝑗) = 𝑠

𝑡
(𝑗) ⋅ 𝑠

𝑡−1
(𝑗) ⋅ 𝑑

𝑡−1
(𝑗) + 1, (3)

where 𝑠
𝑡
(𝑗) is 1 if 𝑠

𝑡
= 𝑆

𝑗
, 0 otherwise.

If we assume that at time 𝑡 the system is in state 𝑆
𝑖
, we can

formally define the duration-dependent transition matrix as
Ad
𝑡

= [𝑎
𝑖𝑗
(d

𝑡
)] with

𝑎
𝑖𝑗
(d

𝑡
) = P (𝑠

𝑡+1
= 𝑆

𝑗
| 𝑠

𝑡
= 𝑆

𝑖
, 𝑑

𝑡
(𝑖)) 1 ≤ 𝑖, 𝑗 ≤ 𝑁. (4)

The specification of themodel can be further simplified by
observing that, at each time 𝑡, the matrix Ad

𝑡

can be decom-
posed in two terms: the recurrent and the nonrecurrent state
transition probabilities.

The recurrent transition probabilities P(d
𝑡
) = [𝑝

𝑖𝑗
(d

𝑡
)],

which depend only on the duration vector d
𝑡
and the

parameters Θ, take into account the dynamics of the self-
transition probabilities. It is defined as the probability of
remaining in the current state at the next time step, given the
duration spent in the current state prior to time 𝑡:

𝑝
𝑖𝑖
(d

𝑡
) = P (𝑠

𝑡+1
= 𝑆

𝑖
| 𝑠

𝑡
= 𝑆

𝑖
, 𝑑

𝑡
(𝑖))

= P (𝑠
𝑡+1

= 𝑆
𝑖
|

𝑠
𝑡
= 𝑆

𝑖
, 𝑠

𝑡−1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−𝑑
𝑡
(𝑖)+1

= 𝑆
𝑖
, 𝑠

𝑡−𝑑
𝑡
(𝑖)

̸= 𝑆
𝑖
)

= (P (𝑠
𝑡+1

= 𝑆
𝑖
, 𝑠

𝑡
= 𝑆

𝑖
, . . . , 𝑠

𝑡−𝑑
𝑡
(𝑖)+2

= 𝑆
𝑖
|

𝑠
𝑡−𝑑
𝑡
(𝑖)+1

= 𝑆
𝑖
, 𝑠

𝑡−𝑑
𝑡
(𝑖)

̸= 𝑆
𝑖
))

⋅ (P (𝑠
𝑡
= 𝑆

𝑖
, 𝑠

𝑡−1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−𝑑
𝑡
(𝑖)+2

= 𝑆
𝑖
|

𝑠
𝑡−𝑑
𝑡
(𝑖)+1

= 𝑆
𝑖
, 𝑠

𝑡−𝑑
𝑡
(𝑖)

̸= 𝑆
𝑖
))

−1

.

(5)

The denominator in (5) can be expressed as ∑∞

𝑘=1
P(𝑠

𝑡+𝑘
̸=

𝑆
𝑖
, 𝑠

𝑡+𝑘−1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−𝑑
𝑡
(𝑖)+2

= 𝑆
𝑖
| 𝑠

𝑡−𝑑
𝑡
(𝑖)+1

= 𝑆
𝑖
, 𝑠

𝑡−𝑑
𝑡
(𝑖)

̸= 𝑆
𝑖
),

which is the probability that the system, at time 𝑡, has been
staying in state 𝑆

𝑖
for at least 𝑑

𝑡
(𝑖) − 1 time units. The above

expression is equivalent to 1 − 𝐹(𝑑
𝑡
(𝑖) − 1, 𝜃

𝑖
), where 𝐹(⋅, 𝜃

𝑖
)

is the duration cumulative distribution function relative to
the the state 𝑆

𝑖
, that is, 𝐹(𝑑, 𝜃) = ∫

𝑑

−∞
𝑓(𝑥, 𝜃)𝑑𝑥. As a

consequence, from (5) we can define the recurrent transition
probabilities as a diagonal matrix with dimensions𝑁×𝑁, as

P (d
𝑡
) = [𝑝

𝑖𝑗
(d

𝑡
)] =

{{

{{

{

1 − 𝐹 (𝑑
𝑡
(𝑖) , 𝜃

𝑖
)

1 − 𝐹 (𝑑
𝑡
(𝑖) − 1, 𝜃

𝑖
)

if 𝑖 = 𝑗

0 if 𝑖 ̸= 𝑗.

(6)

The usage of the cumulative functions in (6), which tend
to 1 as the duration tends to infinity, suggests that the
probability of self-transition tends to decrease as the sojourn
time increases, leading the model to always leave the current
state if time approaches infinity.

The nonrecurrent state transition probabilities, A0
=

[𝑎
0

𝑖𝑗
], rule the transitions between two different states. It is
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represented by a 𝑁 × 𝑁 matrix with the diagonal elements
equal to zero, defined as

A0
= [𝑎

0

𝑖𝑗
] = {

0 if 𝑖 = 𝑗

P (𝑠
𝑡+1

= 𝑆
𝑗
| 𝑠

𝑡
= 𝑆

𝑖
) if 𝑖 ̸= 𝑗.

(7)

A0 must be specified as a stochastic matrix; that is, its ele-
ments have to satisfy the constraint∑𝑁

𝑗=1
𝑎
0

𝑖𝑗
= 1 for all 𝑖.

As a consequence of the above decomposition, the
dynamic of the underlying semi-Markov chain can be defined
by specifying only the state-dependent duration parameters
Θ and the nonrecurrentmatrixA0, since themodel transition
matrix can be calculated, at each time 𝑡, using (6) and (7):

Ad
𝑡

= P (d
𝑡
) + (I − P (d

𝑡
))A0

, (8)

where I is the identity matrix. If we denote the elements of
the dynamic transition matrix Ad

𝑡

as 𝑎
𝑖𝑗
(d

𝑡
), the stochastic

constraint ∑𝑁

𝑗=1
𝑎
𝑖𝑗
(d

𝑡
) = 1 for all 𝑖 and 𝑡 is guaranteed from

the fact that P(d
𝑡
) is a diagonal matrix and A0 is a stochastic

matrix.
For several applications it is necessary to model the

absorbing state which, in the case of industrial equipment,
corresponds to the “broken” or “failure” state. If we denote the
absorbing state as 𝑆

𝑘
with 𝑘 ∈ [1,𝑁], we must fix the 𝑘th row

of the nonrecurrentmatrixA0 to be 𝑎0
𝑘𝑘
= 1 and 𝑎0

𝑘𝑖
= 0 for all

1 ≤ 𝑖 ≤ 𝑁 with 𝑖 ̸= 𝑘. By substituting such A0 matrix in (8),
it is easy to show that the element 𝑎

𝑘𝑘
(d

𝑡
) = 1 and remains

constant for all 𝑡, while the duration probability parameters
𝜃
𝑘
are not influent for the absorbing state 𝑆

𝑘
. An example of

absorbing state specification will be given in Section 5.
With respect to the input observation signals, in this work

we consider both continuous and discrete data, by adapting
the suitable observationmodel depending on the observation
nature. In particular, for the continuous case, we model
the observations with a multivariate mixture of Gaussians
distributions. This choice presents two main advantages: (i)
a multivariate model allows to deal with multiple observa-
tions at the same time; this is often the case of industrial
equipments modeling since, at each time, multiple sensors’
measurements are available, and (ii) mixture of Gaussians has
been proved to closely approximate any finite and continuous
density function [33]. Formally, if we denote by x

𝑡
the

observation vector at time 𝑡 and the generic observation
vector beingmodeled as x, the observation density for the 𝑗th
state is represented by a finite mixture of𝑀 gaussians

𝑏
𝑗
(x) =

𝑀

∑

𝑚=1

𝑐
𝑗𝑚
N (x,𝜇

𝑗𝑚
,U

𝑗𝑚
) , 1 ≤ 𝑗 ≤ 𝑁, (9)

where 𝑐
𝑗𝑚

is the mixture coefficient for the 𝑚th mixture in
state 𝑆

𝑗
, which satisfies the stochastic constraint∑𝑀

𝑚=1
𝑐
𝑗𝑚

= 1

for 1 ≤ 𝑗 ≤ 𝑁 and 𝑐
𝑗𝑚

≥ 0 for 1 ≤ 𝑗 ≤ 𝑁 and 1 ≤ 𝑚 ≤ 𝑀,
while N is the Gaussian density, with mean vector 𝜇

𝑗𝑚
and

covariance matrix U
𝑗𝑚

for the 𝑚th mixture component in
state 𝑗.

In case of discrete data, we model the observations
within each state with a nonparametric discrete probability

distribution. In particular, if 𝐿 is the number of distinct
observation symbols per state and if we denote the symbols
as 𝑋 = {𝑋

1
, . . . , 𝑋

𝐿
} and the observation at time 𝑡 as 𝑥

𝑡
, the

observation symbol probability distribution can be defined as
a matrix 𝐵 = [𝑏

𝑗
(𝑙)] of dimensions𝑁 × 𝐿 where

𝑏
𝑗
(𝑙) = P [𝑥

𝑡
= 𝑋

𝑙
| 𝑠

𝑡
= 𝑆

𝑗
] 1 ≤ 𝑗 ≤ 𝑁; 1 ≤ 𝑙 ≤ 𝐿. (10)

Since the system in each state at each time step can emit one
of the possible 𝐿 symbols, the matrix 𝐵 is stochastic; that is, it
is constrained to ∑𝐿

𝑙=1
𝑏
𝑗
(𝑙) = 1 for all 1 ≤ 𝑗 ≤ 𝑁.

Finally, as in the case of HMMs, we specify the initial state
distribution 𝜋 = {𝜋

𝑖
} which defines the probability of the

starting state as

𝜋
𝑖
= P [𝑠

1
= 𝑆

𝑖
] , 1 ≤ 𝑖 ≤ 𝑁. (11)

From the above considerations, two different HSMM
models can be considered. In the case of continuous obser-
vation, 𝜆 = (A0

, Θ, 𝐶, 𝜇, 𝑈, 𝜋), and in the case of discrete
observation the HSMM is characterized by 𝜆 = (A0

, Θ, 𝐵, 𝜋).
An example of continuous HSMM with 3 states is shown in
Figure 1.

2.2. Learning and Inference Algorithms. Let us denote the
generic sequence of observations, being indiscriminately
continuous vectors or discrete symbols, as x = x

1
x
2
⋅ ⋅ ⋅ x

𝑇
; in

order to use the defined HSMM model in practice, similarly
to the HMM, we need to solve three basic problems.

(1) Given the observation x and a model 𝜆, calculate the
probability that the sequence x has been generated by
the model 𝜆, that is, P(x | 𝜆).

(2) Given the observation x and a model 𝜆, calculate
the state sequence 𝑆 = 𝑠

1
𝑠
2
⋅ ⋅ ⋅ 𝑠

𝑇
which have most

probably generated the sequence x.
(3) Given the observation x find the parameters of the

model 𝜆 which maximize P(x | 𝜆).

As in case of HMM, solving the above problems requires
using the forward-backward [13], decoding (Viterbi [46] and
Forney [47]) and ExpectationMaximization [48] algorithms,
whichwill be adapted to theHSMMintroduced in Section 2.1.
In the following, we also propose a more effective estimator
of the state duration variable 𝑑

𝑡
(𝑖) defined in (2).

2.2.1. The Forward-Backward Algorithm. Given a generic
sequence of observations x = x

1
x
2
⋅ ⋅ ⋅ x

𝑇
, the goal is to

calculate the model likelihood, that is,P(x | 𝜆). This quantity
is useful for the training procedure, where the parameters
that locally maximize the model likelihood are chosen, as
well as for classification problems. The latter is the case in
which the observation sequence x has to be mapped to one
of a finite set of 𝐶 classes, represented by a set of HSMM
parameters 𝐿 = {𝜆

1
, . . . , 𝜆

𝐶
}. The class of x is chosen such

that 𝜆(x) = argmax
𝜆∈𝐿

P(𝑋 | 𝜆).
To calculate the model likelihood, we first define the

forward variable at each time 𝑡 as

𝛼
𝑡
(𝑖) = P (x

1
x
2
⋅ ⋅ ⋅ x

𝑡
, 𝑠

𝑡
= 𝑆

𝑖
| 𝜆) 1 ≤ 𝑖 ≤ 𝑁. (12)
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d3(u)d2(u)d1(u)

Figure 1: Graphical representation of an HSMM.

Contrarily toHMMs, forHSMMs the state durationmust
be taken into account in the the forward variable calculation.
Consequently, Yu [26] proposed the following inductive
formula:

𝛼
𝑡
(𝑗, 𝑑) =

𝐷

∑

𝑑

=1

𝑁

∑

𝑖=1

(𝛼
𝑡−𝑑
 (𝑖, 𝑑


) 𝑎

0

𝑖𝑗
𝑝
𝑗𝑗
(𝑑


)

𝑡

∏

𝑘=𝑡−𝑑+1

𝑏
𝑗
(x

𝑘
))

1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇

(13)

that is, the sum of the probabilities of being in the current
state 𝑆

𝑗
(at time 𝑡) for the past 𝑑 time units, (with 1 ≤ 𝑑


≤ 𝐷

and𝐷 themaximumallowed duration for each state), coming
from all the possible previous states 𝑆

𝑖
, 1 ≤ 𝑖 ≤ 𝑁, and 𝑖 ̸= 𝑗.

The disadvantage of the above formulation is that, as
discussed in Introduction, the specification of the maximum
duration 𝐷 represents a limitation to the modeling general-
ization. Moreover, from (13), it is clear that the computation
and memory complexities drastically increase with𝐷, which
can be very large inmany applications, in particular for online
failure prediction.

To alleviate this problem, Azimi et al. [30–32] introduced
a new forward algorithm for HSMMs that, by keeping track
of the estimated average state duration at each iteration,
has a computational complexity comparable to the forward
algorithm for HMMs [13]. However, the average state dura-
tion represents an approximation. Consequently, the forward
algorithm of Azimi, compared with (13), pays the price
of a lower precision in favor of a (indispensable) better
computational efficiency.

To calculate the forward variable 𝛼
𝑡
(𝑗) using Azimi’s

approach, the duration-dependent transition matrix, defined

in (8), is taken in consideration in the induction formula of
(13), which becomes [30]

𝛼
𝑡
(𝑗) = [

𝑁

∑

𝑖=1

𝛼
𝑡−1

(𝑖) 𝑎
𝑖𝑗
(d̂

𝑡−1
)] 𝑏

𝑗
(x

𝑡
) . (14)

To calculate the above formula, the average state duration of
(2)must be estimated, for each time 𝑡, bymeans of the variable
d̂
𝑡
= [𝑑

𝑡
(𝑖)], defined as

𝑑
𝑡
(𝑖) = E (𝑑

𝑡
(𝑖) | x

1
x
2
⋅ ⋅ ⋅ x

𝑡
, 𝑠

𝑡
= 𝑆

𝑖
, 𝜆) 1 ≤ 𝑖 ≤ 𝑁, (15)

where E denotes the expected value. To calculate the above
quantity, Azimi et al. [30–32] use the following formula:

d̂
𝑡
= 𝛾

𝑡−1
⊙ d̂

𝑡−1
+ 1, (16)

where ⊙ represents the element by element product between
two matrices/vectors and the vector 𝛾t = [𝛾

𝑡
(𝑖)] (the

probability of being in state 𝑆
𝑖
at time 𝑡 given the observation

sequence and the model parameters) with dimensions𝑁 × 1

is calculated in terms of 𝛼
𝑡
(𝑖) as

𝛾
𝑡
(𝑖) = P (𝑠

𝑡
= 𝑆

𝑖
| x

1
x
2
⋅ ⋅ ⋅ x

𝑡
, 𝜆) =

𝛼
𝑡
(𝑖)

∑
𝑁

𝑗=1
𝛼
𝑡
(𝑗)

1 ≤ 𝑖 ≤ 𝑁.

(17)

Equation (16) is based on the following induction formula
[30–32] that rules the dynamics of the duration vector when
the system’s state is known:

𝑑
𝑡
(𝑖) = 𝑠

𝑡−1
(𝑖) ⋅ 𝑑

𝑡−1
(𝑖) + 1, (18)

where, for each 𝑡, 𝑠
𝑡
(𝑖) is 1 if 𝑠

𝑡
= 𝑆

𝑖
, 0 otherwise.
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A simple example shows that (18) is incorrect: assum-
ing an HSMM with three states and considering the state
sequence (𝑆

1
, 𝑆

1
, 𝑆

2
, . . .) the correct sequence of the duration

vector is d
1
= [1, 1, 1]

𝑇, d
2
= [2, 1, 1]

𝑇, and d
3
= [1, 1, 1]

𝑇,
where the superscript 𝑇 denotes vector transpose. If we apply
(18), we obtain d

1
= [1, 1, 1]

𝑇, d
2
= [2, 1, 1]

𝑇, and d
3
=

[1, 2, 1]
𝑇, which is in contradiction with the definition of the

state duration vector given in (2).
To calculate the average state duration variable 𝑑

𝑡
(𝑖) we

propose a new induction formula that estimates, for each time
𝑡, the time spent in the 𝑖th state prior to 𝑡 as

𝑑
𝑡
(𝑖) = P (𝑠

𝑡−1
= 𝑆

𝑖
| 𝑠

𝑡
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
) ⋅ (𝑑

𝑡−1
(𝑖) + 1) (19)

=
𝑎
𝑖𝑖
(d̂

𝑡−1
) ⋅ 𝛼

𝑡−1
(𝑖) ⋅ 𝑏

𝑖
(x

𝑡
)

𝛼
𝑡
(𝑖)

⋅ (𝑑
𝑡−1

(𝑖) + 1) ,

1 ≤ 𝑖 ≤ 𝑁.

(20)

The derivation of (20) is given in Appendix. The intuition
behind (19) is that the current average duration is the previous
average duration plus one, weighted with the “amount” of the
current state that was already in state 𝑆

𝑖
in the previous step.

Using the proposed (20), the forward algorithm can be
specified as follows:

(1) initialization, with 1 ≤ 𝑖 ≤ 𝑁:

𝛼
1
(𝑖) = 𝜋

𝑖
𝑏
𝑖
(x

1
) ,

𝑑
1
(𝑖) = 1,

Ad̂
1

= P (d̂
1
) + (I − P (d̂

1
))A0

,

(21)

where P(d̂
𝑖
) is estimated using (6);

(2) induction, with 1 ≤ 𝑗 ≤ 𝑁 and 1 ≤ 𝑡 ≤ 𝑇 − 1:

𝛼
𝑡+1

(𝑗) = [

𝑁

∑

𝑖=1

𝛼
𝑡
(𝑖) 𝑎

𝑖𝑗
(d̂

𝑡
)] 𝑏

𝑗
(x

𝑡+1
) , (22)

𝑑
𝑡+1

(𝑖) =
𝑎
𝑖𝑖
(d̂

𝑡
) ⋅ 𝛼

𝑡
(𝑖) ⋅ 𝑏

𝑖
(x

𝑡+1
)

𝛼
𝑡+1

(𝑖)
⋅ (𝑑

𝑡
(𝑖) + 1) , (23)

Ad̂
𝑡+1

= P (d̂
𝑡+1

) + (I − P (d̂
𝑡+1

))A0
, (24)

where 𝑎
𝑖𝑗
(d̂

𝑡
) are the coefficients of the matrix Ad̂

𝑡

;
(3) termination:

P (x | 𝜆) =
𝑁

∑

𝑖=1

𝛼
𝑇
(𝑖) . (25)

Similar considerations as the forward procedure can be
made for the backward algorithm, which is implemented by
defining the variable 𝛽

𝑡
(𝑖) as

𝛽
𝑡
(𝑖) = P (x

𝑡+1
x
𝑡+2

⋅ ⋅ ⋅ x
𝑇
| 𝑠

𝑡
= 𝑆

𝑖
, 𝜆) 1 ≤ 𝑖 ≤ 𝑁. (26)

Having estimated the dynamic transition matrix Ad̂
𝑡

for
each 1 ≤ 𝑡 ≤ 𝑇 using (24), the backward variable can be
calculated inductively as follows.

(1) Initialization:

𝛽
𝑇
(𝑖) = 1, 1 ≤ 𝑖 ≤ 𝑁. (27)

(2) Induction:

𝛽
𝑡
(𝑖) =

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(d̂

𝑡
) 𝑏

𝑗
(x

𝑡+1
) 𝛽

𝑡+1
(𝑗) ,

𝑡 = 𝑇 − 1, 𝑇 − 2, . . . , 1, 1 ≤ 𝑖 ≤ 𝑁.

(28)

Although the variable 𝛽
𝑡
(𝑖) is not necessary for the

calculation of the model likelihood, it will be useful in the
parameter reestimation procedure, as it will be explained in
Section 2.2.3.

2.2.2. The Viterbi Algorithm. The Viterbi algorithm [46, 47]
(also known as decoding) allows determining the best state
sequence corresponding to a given observation sequence.

Formally, given a sequence of observation x = x
1
x
2
⋅ ⋅ ⋅ x

𝑇
,

the best state sequence 𝑆∗ = 𝑠
∗

1
𝑠
∗

2
⋅ ⋅ ⋅ 𝑠

∗

𝑇
corresponding to x is

calculated by defining the variable 𝛿
𝑡
(𝑖) as

𝛿
𝑡
(𝑖) = max

𝑠
1
,𝑠
2
,...,𝑠
𝑡−1

P (𝑠
1
𝑠
2
, . . . , 𝑠

𝑡
= 𝑆

𝑖
, x

1
x
2
⋅ ⋅ ⋅ x

𝑡
| 𝜆) . (29)

The procedure to recursively calculate the variable 𝛿
𝑡
(𝑖)

and to retrieve the target state sequence (i.e., the arguments
which maximize the 𝛿

𝑡
(𝑖)’s) for the proposed HSMM is a

straightforward extension of theViterbi algorithm forHMMs
[13].The only change is the usage, in the recursive calculation
of 𝛿

𝑡
(𝑖), of the dynamic transition matrix Ad̂

𝑡

= [𝑎
𝑖𝑗
(d̂

𝑡
)],

calculated through (24). The Viterbi algorithm for the intro-
duced parametric HSMMs can be summarized as follows:

(1) initialization, with 1 ≤ 𝑖 ≤ 𝑁:

𝛿
1
(𝑖) = 𝜋

𝑖
𝑏
𝑖
(x

1
) ,

𝜓
1
(𝑖) = 0,

(30)

(2) recursion, with 1 ≤ 𝑗 ≤ 𝑁 and 2 ≤ 𝑡 ≤ 𝑇:

𝛿
𝑡
(𝑗) = max

1≤𝑖≤𝑁

[𝛿
𝑡−1

(𝑖) 𝑎
𝑖𝑗
(d̂

𝑡
)] 𝑏

𝑗
(x

𝑡
) , (31)

𝜓
𝑡
(𝑗) = argmax

1≤𝑖≤𝑁

[𝛿
𝑡−1

(𝑖) 𝑎
𝑖𝑗
(d̂

𝑡
)] , (32)

(3) termination:

𝑃
∗
= max

1≤𝑖≤𝑁

[𝛿
𝑇
(𝑖)] , (33)

𝑠
∗

𝑇
= argmax

1≤𝑖≤𝑁

[𝛿
𝑇
(𝑖)] , (34)

where we keep track of the argument maximizing (31) using
the vector 𝜓

𝑡
, which, tracked back, gives the desired best

state sequence:

𝑠
∗

𝑡
= 𝜓

𝑡+1
(𝑠

∗

𝑡+1
) , 𝑡 = 𝑇 − 1, 𝑇 − 2, . . . , 1. (35)



Mathematical Problems in Engineering 7

2.2.3. The Training Algorithm. The training algorithm con-
sists of estimating themodel parameters from the observation
data. As discussed in Section 2.1, a parametric HSMM
is defined by 𝜆 = (A0

, Θ, 𝐶, 𝜇, 𝑈, 𝜋) if the observations
are continuous, or 𝜆 = (A0

, Θ, 𝐵, 𝜋) if the observations
are discrete. Given a generic observation sequence x =

x
1
x
2
⋅ ⋅ ⋅ x

𝑇
, referred to as training set in the following, the

training procedure consists of finding the model parameter
set𝜆∗ which locallymaximizes themodel likelihoodP(x | 𝜆).

We use the modified Baum-Welch algorithm of Azimi
et al. [30–32]. However, in our implementation we do not
make assumption on the density function used to model the
state duration, and we consider both continuous and discrete
observations.

Being a variant of the more general Expectation-Max-
imization (EM) algorithm, Baum-Welch is an iterative proce-
dure which consists of two steps: (i) the expectation step, in
which the forward and backward variables are calculated and
the model likelihood is estimated and (ii) the maximization
step, in which the model parameters are updated and used
in the next iteration. This process usually starts from a
random guess of the model parameters 𝜆0 and it is iterated
until the likelihood function does not improve between two
consecutive iterations.

Similarly to HMMs, the reestimation formulas are
derived by firstly introducing the variable 𝜉

𝑡
(𝑖, 𝑗), which

represents the probability of being in state 𝑆
𝑖
at time 𝑡, and

in state 𝑆
𝑗
at time 𝑡 + 1, given the model and the observation

sequence, as

𝜉
𝑡
(𝑖, 𝑗) = P (𝑠

𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑗
| x, 𝜆) . (36)

However, in the HSMM case, the variable 𝜉
𝑡
(𝑖, 𝑗) considers

the duration estimation performed in the forward algorithm
(see Equation (24)). Formulated in terms of the forward and
backward variables, it is given by

𝜉
𝑡
(𝑖, 𝑗) = P (𝑠

𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑗
| x, 𝜆)

=
P (𝑠

𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑗
, x | 𝜆)

P (x | 𝜆)

=
𝛼
𝑡
(𝑖) 𝑎

𝑖𝑗
(d̂

𝑡
) 𝑏

𝑗
(x

𝑡+1
) 𝛽

𝑡+1
(𝑗)

P (x | 𝜆)

=
𝛼
𝑡
(𝑖) 𝑎

𝑖𝑗
(d̂

𝑡
) 𝑏

𝑗
(x

𝑡+1
) 𝛽

𝑡+1
(𝑗)

∑
𝑁

𝑖=1
∑

𝑁

𝑗=1
𝛼
𝑡
(𝑖) 𝑎

𝑖𝑗
(d̂

𝑡
) 𝑏

𝑗
(x

𝑡+1
) 𝛽

𝑡+1
(𝑗)

.

(37)

From 𝜉
𝑡
(𝑖, 𝑗) we can derive the quantity 𝛾

𝑡
(𝑖) (already

defined in (17)) representing the probability of being in state
𝑆
𝑖
at time 𝑡 given the observation sequence and the model

parameters:

𝛾
𝑡
(𝑖) =

𝑁

∑

𝑗=1

𝜉
𝑡
(𝑖, 𝑗) . (38)

Finally, the the reestimation formulas for the parameters
𝜋 and A0 are given by

𝜋
𝑖
= 𝛾

1
(𝑖) , (39)

𝑎
0

𝑖𝑗
=

(∑
𝑇−1

𝑡=1
𝜉
𝑡
(𝑖, 𝑗)) ⊙ 𝐺

∑
𝑁

𝑗=1
(∑

𝑇−1

𝑡=1
𝜉
𝑡
(𝑖, 𝑗)) ⊙ 𝐺

, (40)

where𝐺 = [𝑔
𝑖𝑗
] is a squarematrix of dimensions𝑁×𝑁where

𝑔
𝑖𝑗
= 0 for 𝑖 = 𝑗 and 𝑔

𝑖𝑗
= 1 for 𝑖 ̸= 𝑗, ⊙ represents the element

by element product between two matrices, ∑𝑇−1

𝑡=1
𝛾
𝑡
(𝑖) is the

expected number of transitions from state 𝑆
𝑖
, and∑𝑇−1

𝑡=1
𝜉
𝑡
(𝑖, 𝑗)

is the expected number of transitions from state 𝑆
𝑖
to state 𝑆

𝑗
.

Equation (39) represents the expected number of times
that the model starts in state 𝑆

𝑖
, while (40) represents the

expected number of transitions from state 𝑆
𝑖
to state 𝑆

𝑗
with

𝑖 ̸= 𝑗 over the total expected number of transitions from state
𝑆
𝑖
to any other state different from 𝑆

𝑖
.

For the matrix A0, being normalized, the stochastic
constraints are satisfied at each iteration, that is, ∑𝑁

𝑗=1
𝑎
0

𝑖𝑗
= 1

for each 1 ≤ 𝑖 ≤ 𝑁, while the estimation of the prior
probability 𝜋

𝑖
inherently sums up to 1 at each iteration, since

it represents the expected frequency in state 𝑆
𝑖
at time 𝑡 = 1

for each 1 ≤ 𝑖 ≤ 𝑁.
With respect to the reestimation of the state duration

parameters Θ, firstly, we estimate the mean 𝜇
𝑖,𝑑

and the
variance 𝜎2

𝑖,𝑑
of the 𝑖th state duration for each 1 ≤ 𝑖 ≤ 𝑁,

from the forward and backward variables and the estimation
of the state duration variable

𝜇
𝑖,𝑑

=
∑

𝑇−1

𝑡=1
𝛼
𝑡
(𝑖) (∑

𝑁

𝑗=1,𝑗 ̸=𝑖
𝑎
𝑖𝑗
(𝑑

𝑡
(𝑖)) 𝑏

𝑗
(x

𝑡+1
) 𝛽

𝑡+1
(𝑗)) 𝑑

𝑡
(𝑖)

∑
𝑇−1

𝑡=1
𝛼
𝑡
(𝑖) (∑

𝑁

𝑗=1,𝑗 ̸=𝑖
𝑎
𝑖𝑗
(𝑑

𝑡
(𝑖)) 𝑏

𝑗
(x

𝑡+1
) 𝛽

𝑡+1
(𝑗))

,

(41)

𝜎
2

𝑖,𝑑
= (

𝑇−1

∑

𝑡=1

𝛼
𝑡
(𝑖)(

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗
(𝑑

𝑡
(𝑖)) 𝑏

𝑗
(x

𝑡+1
) 𝛽

𝑡+1
(𝑗))

⋅ (𝑑
𝑡
(𝑖) − 𝜇

𝑖,𝑑
)
2

)

⋅ (

𝑇−1

∑

𝑡=1

𝛼
𝑡
(𝑖)(

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗
(𝑑

𝑡
(𝑖)) 𝑏

𝑗
(x

𝑡+1
) 𝛽

𝑡+1
(𝑗)))

−1

,

(42)

where (41) can be interpreted as the probability of transition
from state 𝑆

𝑖
to 𝑆

𝑗
with 𝑖 ̸= 𝑗 at time 𝑡weighted by the duration

of state 𝑆
𝑖
at 𝑡, giving the desired expected value, while in (42)

the same quantity is weighted by the squared distance of the
duration at time 𝑡 from its mean, giving the estimation of the
variance.

Then, the parameters of the desired duration distribution
can be estimated from 𝜇

𝑖,𝑑
and 𝜎2

𝑖,𝑑
. For example, if a Gamma

distribution with shape parameter ] and scale parameter 𝜂 is
chosen to model the state duration, the parameters ]

𝑖
and 𝜂

𝑖

for each 1 ≤ 𝑖 ≤ 𝑁 can be calculated as ]
𝑖
= 𝜇

2

𝑖,𝑑
/𝜎

2

𝑖,𝑑
and

𝜂
𝑖
= 𝜎

2

𝑖,𝑑
/𝜇

𝑖,𝑑
.
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Concerning the observation parameters, once the modi-
fied forward and backward variables, accounting for the state
duration, are defined as in (22) and (28), the reestimation
formulas are the same as for Hidden Markov Models [13].

In particular, for continuous observations, the parameters
of the Gaussians’ mixture defined in (9) are reestimated by
firstly defining the probability of being in state 𝑆

𝑗
at time 𝑡

with the probability of the observation vector x
𝑡
evaluated by

the 𝑘th mixture component, as

𝛾
𝑡
(𝑗, 𝑘) = [

[

𝛼
𝑡
(𝑗) 𝛽

𝑡
(𝑗)

∑
𝑁

𝑗=1
𝛼
𝑡
(𝑗) 𝛽

𝑡
(𝑗)

]

]

⋅ [

[

𝑐
𝑗𝑘
N (x

𝑡
,𝜇

𝑗𝑘
,U

𝑗𝑘
)

∑
𝑀

𝑚=1
𝑐
𝑗𝑚
N (x

𝑡
,𝜇

𝑗𝑚
,U

𝑗𝑚
)

]

]

.

(43)

By using the former quantity, the parameters 𝑐
𝑗𝑘
, 𝜇

𝑗𝑘
, andU

𝑗𝑘

are reestimated through the following formulas:

𝑐
𝑗𝑘
=

∑
𝑇

𝑡=1
𝛾
𝑡
(𝑗, 𝑘)

∑
𝑇

𝑡=1
∑

𝑀

𝑚=1
𝛾
𝑡
(𝑗, 𝑚)

,

𝜇
𝑗𝑘
=
∑

𝑇

𝑡=1
𝛾
𝑡
(𝑗, 𝑘) ⋅ x

𝑡

∑
𝑇

𝑡=1
𝛾
𝑡
(𝑗, 𝑘)

,

U
𝑗𝑘
=
∑

𝑇

𝑡=1
𝛾
𝑡
(𝑗, 𝑘) ⋅ (x

𝑡
− 𝜇

𝑗𝑘
) (x

𝑡
− 𝜇

𝑗𝑘
)
𝑇

∑
𝑇

𝑡=1
𝛾
𝑡
(𝑗, 𝑘)

,

(44)

where superscript 𝑇 denotes vector transpose.
For discrete observations, the reestimation formula for

the observation matrix 𝑏
𝑗
(𝑙) is

𝑏
𝑗
(𝑙) =

∑
𝑇

𝑡=1,with𝑥
𝑡
=𝑋
𝑙

𝛾
𝑡
(𝑗)

∑
𝑇

𝑡=1
𝛾
𝑡
(𝑗)

, (45)

where the quantity 𝛾
𝑡
(𝑗), which takes into account the dura-

tion dependent forward variable 𝛼
𝑡
(𝑗), is calculated through

(17).
The reader is referred to Rabiner’s work [13] for the inter-

pretation on the observation parameters reestimation formu-
las.

3. AIC-Based Model Selection

In the framework of the proposed parametric HSMMs, the
model selection procedure aims to select the optimal number
of hidden states𝑁, the right duration distribution family, and,
in the case of mixture observation modeling, the number of
Gaussian mixtures 𝑀 to be used. In this work, we make use
of the Akaike Information Criterion (AIC). Indeed, it has
been seen that in case of complex models and in presence of
a limited number of training observations, AIC represents a
satisfactorymethodology formodel selection, outperforming
other approaches like Bayesian Information Criterion.

In general, information criteria are represented as a two-
term structure. They account for a compromise between

a measure of model fitness, which is based on the likelihood
of the model, and a penalty term which takes into account
the model complexity. Usually, the model complexity is
measured in terms of the number of parameters that have to
be estimated and in terms of the number of observations.

The Akaike Information Criterion is an estimate of the
asymptotic value of the expected distance between the
unknown true likelihood function of the data and the fitted
likelihood function of the model. In particular, the AIC can
be expressed as

AIC =
− log 𝐿 (�̂�) + 𝑝

𝑇
, (46)

where 𝐿(�̂�) is the likelihood of the model with the estimated
parameters �̂�, as defined in (25), 𝑝 is the number of model
parameters, and𝑇 is the length of the observed sequence.The
best model is the one minimizing equation (46).

Concerning 𝑝, the number of parameters to be estimated
for a parametric HSMM with𝑁 states is 𝑝 = 𝑝

ℎ
+ 𝑝

𝑜
, where

𝑝
ℎ
are the parameters of the hidden states layer, while 𝑝

𝑜
are

those of the observation layer.
In particular 𝑝

ℎ
= (𝑁 − 1) + (𝑁 − 1) ⋅ 𝑁 + 𝑧 ⋅ 𝑁 where

(i) 𝑁 − 1 accounts for the prior probabilities 𝜋;
(ii) (𝑁 − 1) ⋅ 𝑁 accounts for the nonrecurrent transition

matrix A0;
(iii) 𝑧⋅𝑁 accounts for the duration probability, being 𝑧 the

number of parameters 𝜃 of the duration distribution.

Concerning 𝑝
𝑜
, a distinction must be made between

discrete and continuous observations:

(i) in the case of discrete observations with 𝐿 possible
observable values, 𝑝

𝑜
= (𝐿 − 1) ⋅ 𝑁, which accounts

for the elements of the observation matrix 𝐵;
(ii) if the observations are continuous and a multivariate

mixture of 𝑀 Gaussians with 𝑂 variates is used as
observationmodel, 𝑝

𝑜
= [𝑂 ⋅𝑁⋅𝑀]+[𝑂 ⋅𝑂 ⋅𝑁⋅𝑀]+

[(𝑀− 1) ⋅ 𝑁] where each term accounts, respectively,
for the mean vector 𝜇, the covariance matrix 𝑈, and
the mixture coefficients 𝐶.

4. Remaining Useful Lifetime Estimation

One of the most important advantages of the time modeling
of HSMMs is the possibility to effectively face the prediction
problem. The knowledge of the state duration distributions
allows the estimation of the remaining time in a certain state
and, in general, the prediction of the expected time𝐷 before
entering in a determinate state.

As already mentioned, an interesting application of the
prediction problem is the Remaining Useful Lifetime (RUL)
estimation of industrial equipments. Indeed, if each state
of an HSMM is mapped to a different condition of an
industrial machine and if the state 𝑆

𝑘
that represents the

failure condition is identified, at each moment, the RUL can
be defined as the expected time 𝐷 to reach the failure state
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𝑆
𝑘
. If we assume that the time to failure is a random variable

𝐷 following a determinate probability density, we define the
RUL at the current time 𝑡 as

RUL
𝑡
= 𝐷 = E (𝐷) : 𝑠

𝑡+�̃�
= 𝑆

𝑘
, 𝑠

𝑡+�̃�−1
= 𝑆

𝑖

1 ≤ 𝑖, 𝑘 ≤ 𝑁, 𝑖 ̸= 𝑘,

(47)

where E denotes the expected value.
Having fixed the failure state, the estimation of the RUL

is performed, in two steps, every time a new observation is
acquired (online):

(1) estimation of the current state;
(2) projection of the future state transitions until the

failure state is reached and estimation of the expected
sojourn time.

The estimation of the current state is performed via the
Viterbi path, that is, the variable 𝛿

𝑡
= [𝛿

𝑡
(𝑖)]

1≤𝑖≤𝑁
defined in

(29). To correctly model the uncertainty of the current state
estimation, we use the normalized variable 𝛿

𝑡
(𝑖) obtained as

𝛿
𝑡
(𝑖) = max

𝑠
1
,𝑠
2
,...,𝑠
𝑡−1

P (𝑠
𝑡
= 𝑆

𝑖
| 𝑠

1
𝑠
2
⋅ ⋅ ⋅ 𝑠

𝑡−1
, x

1
x
2
⋅ ⋅ ⋅ x

𝑡
, 𝜆)

=
𝛿
𝑡
(𝑖)

∑
𝑁

𝑗=1
𝛿
𝑡
(𝑗)

, 1 ≤ 𝑖 ≤ 𝑁

(48)

that is, an estimate of the probability of being in state 𝑆
𝑖
at

time 𝑡.
Together with the normalized variable 𝛿

𝑡
(𝑖), the maxi-

mum a posteriori estimate of the current state 𝑠
∗

𝑡
is taken

into account according to (34). If 𝑠∗
𝑡
coincides with the failure

state, the desired event is detected by the model and the time
to this event is obviously zero. Otherwise, an estimation of
the average remaining time in the current state 𝑑avg(𝑠

∗

𝑡
) is

calculated as

𝑑avg (𝑠
∗

𝑡
) =

𝑁

∑

𝑖=1

(𝜇
𝑑
𝑖

− 𝑑
𝑡
(𝑖)) ⊙ 𝛿

𝑡
(𝑖) , (49)

where with 𝜇
𝑑
𝑖

we denote the expected value of the duration
variable in state 𝑆

𝑖
according to the duration distribution

specified by the parameters 𝜃
𝑖
. Equation (49) thus estimates

the remaining time in the current state by subtracting the
estimated states duration, 𝑑

𝑡
(𝑖), at time 𝑡 from the expected

sojourn time of state 𝑆
𝑖
, and weighting the result using the

uncertainty about the current state, 𝛿
𝑡
(𝑖), and, finally, by

summing up all the contributions from each state.
In addition to the average remaining time, a lower and an

upper bound value can be calculated based on the standard
deviation, 𝜎

𝑑
𝑖

, of the duration distribution for state 𝑆
𝑖
:

𝑑low (𝑠
∗

𝑡
) =

𝑁

∑

𝑖=1

(𝜇
𝑑
𝑖

− 𝜎
𝑑
𝑖

− 𝑑
𝑡
(𝑖)) ⊙ 𝛿

𝑡
(𝑖) , (50)

𝑑up (𝑠
∗

𝑡
) =

𝑁

∑

𝑖=1

(𝜇
𝑑
𝑖

+ 𝜎
𝑑
𝑖

− 𝑑
𝑡
(𝑖)) ⊙ 𝛿

𝑡
(𝑖) . (51)

Once the remaining time in the current state is estimated,
the probability of the next state is calculated by multiplying
the transpose of the nonrecurrent transition matrix by the
current state probability estimation as follows:

𝛿next = [𝛿
𝑡+𝑑

(𝑖)]
1≤𝑖≤𝑁

= (A0
)
𝑇

⋅ 𝛿
𝑡
, (52)

while themaximumaposteriori estimate of the next state 𝑠∗next
is calculated as

𝑠
∗

next = 𝑠
∗

𝑡+𝑑
= argmax

1≤𝑖≤𝑁

𝛿
𝑡+𝑑

(𝑖) . (53)

Again, if 𝑠∗
𝑡+𝑑

coincides with the failure state, the failure
will happen after the remaining time at the current state is
over and the average estimation of the failure time is 𝐷avg =

𝑑avg(𝑠
∗

𝑡
) calculated at the previous step, with the bound values

𝐷low = 𝑑low(𝑠
∗

𝑡
) and𝐷up = 𝑑up(𝑠

∗

𝑡
). Otherwise the estimation

of the sojourn time of the next state is calculated as follows:

𝑑avg (𝑠
∗

𝑡+𝑑
) =

𝑁

∑

𝑖=1

𝜇
𝑑
𝑖

⊙ 𝛿
𝑡+𝑑

(𝑖) , (54)

𝑑low (𝑠
∗

𝑡+𝑑
) =

𝑁

∑

𝑖=1

(𝜇
𝑑
𝑖

− 𝜎
𝑑
𝑖

) ⊙ 𝛿
𝑡+𝑑

(𝑖) , (55)

𝑑up (𝑠
∗

𝑡+𝑑
) =

𝑁

∑

𝑖=1

(𝜇
𝑑
𝑖

+ 𝜎
𝑑
𝑖

) ⊙ 𝛿
𝑡+𝑑

(𝑖) . (56)

This procedure is repeated until the failure state is
encountered in the prediction of the next state. The calcula-
tion of the RUL is then simply obtained by summing all the
estimated remaining time in each intermediate state before
encountering the failure state:

𝐷avg = ∑𝑑avg, (57)

𝐷low = ∑𝑑low, (58)

𝐷up = ∑𝑑up. (59)

Finally, Algorithm 1 details the above described RUL esti-
mation procedure.

5. Experimental Results

To demonstrate the effectiveness of the proposed HSMM
models, we make use of a series of experiments, performed
both on simulated and real data.

The simulated data were generated by considering a left-
right HSMM and adapting the parameters of the artificial
example reported in the work of Lee et al. [15]. The real case
data are monitoring data related to the entire operational
life of bearings, made available for the IEEE PHM 2012 data
challenge (http://www.femto-st.fr/en/Research-departments/
AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-chal-
lenge.php).
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(1) function RulEstimation(x
𝑡
, 𝑆

𝑘
) ⊳ x

𝑡
: The last observation acquired

(2) ⊳ 𝑆
𝑘
: The failure state

(3) Initialization:
(4) 𝐷avg ← 0

(5) 𝐷low ← 0

(6) 𝐷up ← 0

(7) Current state estimation:
(8) Calculate 𝛿

𝑡
⊳ Using (48)

(9) Calculate 𝑠∗
𝑡

⊳ Using (34)
(10) Calculate d̂

𝑡
⊳ Using (20)

(11) 𝑆 ← 𝑠
∗

𝑡

(12) Loop:
(13) while 𝑆 ̸= 𝑆

𝑘
do

(14) Calculate 𝑑avg ⊳ Using (49) or (54)
(15) Calculate 𝑑low ⊳ Using (50) or (55)
(16) Calculate 𝑑up ⊳ Using (51) or (56)
(17) 𝐷avg ← 𝐷avg + 𝑑avg

(18) 𝐷low ← 𝐷low + 𝑑low
(19) 𝐷up ← 𝐷up + 𝑑up
(20) Calculate 𝛿next ⊳ Using (52)
(21) Calculate 𝑠∗next ⊳ Using (53)
(22) 𝑆 ← 𝑠

∗

next
end

(23) return 𝐷avg,𝐷low,𝐷up

Algorithm 1: Remaining Useful Lifetime estimation (Pseudo-Code).

5.1. Simulated Experiment. Data have been generated with
the idea of simulating the behavior of an industrial machine
that, during its functioning, experiences several degradation
modalities until a failure state is reached at the end of its
lifetime.The generated data are used to test the performances
of our methodology for (i) automatic model selection, (ii)
online condition monitoring, and (iii) Remaining Useful
Lifetime estimation, considering both continuous and dis-
crete observations.

5.1.1. Data Generation. The industrial machine subject of
these experiments has been modeled as a left-right paramet-
ric HSMM, with 𝑁 = 5 states, having state 𝑆

5
as absorbing

(failure) state.The choice of a left-right setting has beenmade
for simplicity reasons, since the primary goal of this work is to
demonstrate that the proposed model specification coupled
with the Akaike Information Criterion is effective to solve
automatic model selection, online condition monitoring,
and prediction problems. At this purpose, we divided the
experiments in two cases according to the nature of the
observation, being continuous or discrete.

For each of the continuous and the discrete cases, three
data sets have been generated by considering the following
duration models: Gaussian, Gamma, and Weibull densities.
For each of the three data sets, 30 series of data are used
as training set and 10 series as testing set. Each time series
contains 𝑇 = 650 observations. The parameters used to
generate the data are taken from the work of Lee et al. [15]

and are adapted to obtain an equivalent left-right parametric
HSMM as follows:

𝜋 =

[
[
[
[
[

[

1

0

0

0

0

]
]
]
]
]

]

, A0
=

[
[
[
[
[

[

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

]
]
]
]
]

]

,

ΘN = {𝜃
1
= [100; 20] , 𝜃

2
= [90; 15] , 𝜃

3
= [100; 20] ,

𝜃
4
= [80; 25] , 𝜃

5
= [200; 1]} ,

ΘG = {𝜃
1
= [500; 0.2] , 𝜃

2
= [540; 0.1667] ,

𝜃
3
= [500; 0.2] , 𝜃

4
= [256; 0.3125] ,

𝜃
5
= [800; 0.005]} ,

ΘW = {𝜃
1
= [102; 28] , 𝜃

2
= [92; 29] , 𝜃

3
= [102; 28] ,

𝜃
4
= [82; 20] , 𝜃

5
= [200; 256]} ,

(60)

whereΘN,ΘG, andΘW are the different distribution param-
eters used for the Gaussian, Gamma, and Weibull dura-
tion models, respectively. More precisely, they represent the
values of the mean 𝜇

𝑑
and the the variance 𝜎

2

𝑑
of the

Gaussian distribution, the shape ]
𝑑
and the scale 𝜂

𝑑
of the

Gamma distribution, and the scale 𝑎
𝑑
and the shape 𝑏

𝑑
of
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(a) Example of simulated data for the continuous case
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(b) Example of simulated data for the discrete case

Figure 2: The data generated with the parameter described in Section 5.1.1, both for the continuous and the discrete case.

theWeibull distribution. It must be noticed that, as explained
in Section 2.1, for state 𝑆

5
, being the absorbing state, the

duration parameters 𝜃
5
have no influence on the data, since,

once the state 𝑆
5
is reached, the system will remain there

forever.
Concerning the continuous observation modeling, a

bivariate Gaussian distribution has been used with the fol-
lowing parameters [15]:

𝜇
1
= [

20

20
] , 𝜇

2
= [

20

35
] , 𝜇

3
= [

35

35
] ,

𝜇
5
= [

28

28
] ,

𝑈
1
= [

20 0

0 20
] , 𝑈

2
= [

15 0

0 15
] , 𝑈

3
= [

15 −2

−2 15
] ,

𝑈
4
= [

5 0

0 5
] , 𝑈

5
= [

10 3

3 10
]

(61)

while for the discrete case, 𝐿 = 7 distinct observation sym-
bols have been taken into consideration with the following
observation probability distribution

𝐵 =

[
[
[
[
[

[

0.8 0.2 0 0 0 0 0

0.1 0.8 0.1 0 0 0 0

0 0.1 0.8 0.1 0 0 0

0 0 0.1 0.7 0.1 0.1 0

0 0 0 0.2 0.6 0.1 0.1

]
]
]
]
]

]

. (62)

An example of simulated data both for the continuous and the
discrete cases is shown in Figure 2, where aGaussian duration
model has been used.

5.1.2. Training and Model Selection. The goal of this experi-
mental phase is to test the effectiveness of the AIC in solving
the automatic model selection. For this purpose, the training
sets of the 6 data sets (continuous/discrte observation with
Gaussian, Gamma, and Weibull duration models) have been
taken individually and, for each one of them, a series of

learning procedure has been run, each one with a variable
HSMM structure. In particular we took into account all the
combinations of the duration distribution families (Gaussian,
Gamma, and Weibull), an increasing number of states, 𝑁,
from 2 to 8 and, for the continuous observation cases, an
increasing number of Gaussian mixtures,𝑀, in the observa-
tion distribution from 1 to 4.

As accurate parameter initialization is crucial for obtain-
ing a good model fitting [14], a series of 40 learning proce-
dures corresponding to 40 random initializations of the initial
parameters 𝜆0 have been executed for each of the considered
HSMM structures. For each model structure, the AIC value,
as defined in (46), has been evaluated.The final trained set of
parameters 𝜆∗ corresponding to the minimumAIC value has
been retained, resulting in 7 HSMMs with a number of states
from 2 to 8.

The obtained results are shown in Figure 3, for both,
the continuous and discrete observation data. As it can be
noticed, for all the 6 test cases of Figure 3 the AIC values
do not improve much for a number of states higher than 5,
meaning that adding more states does not add considerable
information to the HSMM modeling power. Hence 5 states
can be considered as an optimal number of states. Moreover,
as shown in the zoomed sections of Figure 3, for the HSMMs
with 5 states, the minimum AIC values are obtained for the
duration distributions corresponding to the ones used to
generate the data. As a consequence AIC can be considered as
an effective approach to performmodel selection for HSMM,
as well as selecting the appropriate parametric distribution
family for the state duration modeling.

5.1.3. Condition Monitoring. The optimal parameters 𝜆
∗

obtained in the previous phase have been used to perform
the online conditionmonitoring experiment on the 10 testing
cases for all the 6 considered HSMM configurations. In this
experiment, we simulate online monitoring by considering
all the testing observations up to the current time, that
is, {x

1
x
2
⋅ ⋅ ⋅ x

𝑡
}. Each time a new data point is acquired,

the Viterbi algorithm is used to estimate the current state
𝑠
∗

𝑡
= argmax

1≤𝑖≤𝑁
[𝛿

𝑡
(𝑖)] as specified in (34).
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(a) AIC values for continuous data and Gaussian duration
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(b) AIC values for continuous data and Gamma duration distri-
bution
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(c) AIC values for continuous data and Weibull duration distri-
bution
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(d) AIC values for discrete data and Gaussian duration distribu-
tion
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(f) AIC values for discrete data andWeibull duration distribution

Figure 3: Akaike Information Criterion (AIC) applied to continuous and discrete observations data. AIC is effective for automatic model
selection, since its minimum value provides the same number of states and duration model used to generate the data.

An example of execution of the condition monitoring
experiment is shown in Figure 4, for both, continuous and
discrete observations, respectively. In Figure 4(a) the state
duration has beenmodeledwith aGammadistribution, while
in Figure 4(b) with a Gaussian distribution. In Figures 4(a)
and 4(b), the first display represents the true state of the

HSMM and the second display represents the estimated state
from the Viterbi algorithm, while the third display represents
the observed time series.

Knowing the true state sequence we calculated the
accuracy, defined as the percentage of correctly estimated
states over the total length of the state sequence, for each of
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(b) State estimation with Viterbi path for discrete data and
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Figure 4: Condition monitoring using the Viterbi path. HSMMs can be effective to solve condition monitoring problems in time-dependent
applications due to their high accuracy in hidden state recognition.

the testing cases.The results are summarized in Table 1(a) for
the continuous observations and in Table 1(b) for the discrete
observations. The high percentage of correct classified states
shows that HSMMs can be effectively used to solve condition
monitoring problems for applications in which the system
shows a strong time and state duration dependency.

5.1.4. Remaining Useful Lifetime Estimation. In this experi-
mental phasewe considered the state 𝑆

5
as the failure state and

the trained parameters 𝜆∗ of Section 5.1.2 for each HSMM
configuration. As the online RUL estimation procedure is
intended to be used in real time, we simulated condition
monitoring experiment where we progressively consider the
observations {x

1
x
2
⋅ ⋅ ⋅ x

𝑡
} up to time 𝑡. When a new obser-

vation is acquired, after the current state probability 𝛿
𝑡
(𝑖)

is estimated (Equation (48)), the calculation of the average,
upper, and lower RUL ((57), (58), and (59)) is performed.

Examples of RUL estimation are illustrated in Figure 5.
In particular Figure 5(a) represents the case of continuous
observations and durationmodeled by aWeibull distribution,
while Figure 5(b) shows the case of discrete observations
and duration modeled by a Gamma distribution. From the
figures one can notice that the average, as well as the lower
and the upper bound estimations, converges to the real RUL
as the failure time approaches. Moreover, as expected, the
uncertainty about the estimation decreases with the time,
since predictions performed at an early stage are more
imprecise. As a consequence, the upper and the lower bound
become more narrow as the failure state approaches, and the
estimation becomes more precise until it converges to the
actual RUL value, with the prediction error tending to zero
at the end of the evaluation.

To quantitatively estimate the performance of our meth-
odology for the RUL estimation, we considered at each time
𝑡 the absolute prediction error (APE) between the real RUL
and the predicted value defined as

APE (𝑡) = RULreal (𝑡) − RUL (𝑡) , (63)

where RULreal(𝑡) is the (known) value of the RUL at time
𝑡, while RUL(𝑡) is RUL predicted by the model. To evaluate
the overall performance of our methodology, we considered
the average absolute prediction error of the RUL estimation,
defined as

APE =
∑

𝑇

𝑡=1
APE (𝑡)
𝑇

, (64)

where 𝑇 is the length of the testing signal. APE being a
prediction error average, values of (64) close to zero corre-
spond to good predictive performances.

The results for each of the 10 testing cases and the different
HSMM configurations are reported in Tables 2(a) and 2(b),
for the continuous and the discrete observation cases, respec-
tively. As it can be noticed, the online Remaining Useful
Lifetime estimation and in general the online prediction of
the time to a certain event can be effectively faced with
HSMMs, which achieve a reliable estimation power with a
small prediction error.

Finally, we tested our RUL estimationmethodology using
the state duration estimation of (16) introduced byAzimi et al.
[30–32]. The results are shown in Tables 3(a) and 3(b),
in which, respectively, the prediction errors obtained for
continuous and discrete observations are reported.

Comparing Table 2 and Table 3, one can notice that the
proposed RUL method outperforms the one of Azimi. This
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(a) Remaining Useful Lifetime estimation for continuous data and
Weibull duration distribution
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(b) Remaining Useful Lifetime estimation for discrete data and
Gamma duration distribution

Figure 5: HSMMs effectively solve RUL estimation problems.The prediction converges to the actual RUL value and its uncertainty decreases
as the real failure time approaches.

Table 1: State recognition accuracy.

(a) Continuous observations

Test case Duration distribution
Gaussian Gamma Weibull

1 99.4% 98.5% 99.2%
2 99.7% 98.6% 99.5%
3 99.4% 99.2% 99.7%
4 98.9% 98.9% 99.7%
5 98.2% 98.9% 100%
6 99.1% 98.8% 99.7%
7 98.5% 99.4% 99.7%
8 99.2% 99.1% 99.5%
9 99.2% 98.6% 99.7%
10 99.2% 99.1% 99.5%
Average 99.1% 98.9% 99.6%

(b) Discrete observations

Test case Duration distribution
Gaussian Gamma Weibull

1 97.4% 96.7% 97.4%
2 97.2% 97.6% 96.5%
3 99.4% 95.8% 96.6%
4 98.2% 95.3% 97.7%
5 99.1% 97.4% 97.5%
6 97.8% 97.7% 97.8%
7 95.8% 97.2% 96.6%
8 97.7% 96.4% 97.2%
9 98.9% 97.2% 98.5%
10 99.2% 95.6% 96.9%
Average 98.1% 96.7% 97.3%

is mainly due to the proposed average state duration of (20),
compared to the one of Azimi given by (16).

5.2. Real Data. In this sectionwe apply the proposedHSMM-
based approach for RUL estimation to a real case study
using bearing monitoring data recorded during experiments
carried out on the Pronostia experimental platform andmade
available for the IEEE Prognostics and Health Management
(PHM) 2012 challenge [49].The data correspond to normally
degraded bearings, leading to cases which closely correspond
to the industrial reality.

The choice of testing the proposed methodology on
bearings derives from two facts: (i) bearings are the most
critical components related to failures of rotating machines
[50] and (ii) their monotonically increasing degradation
pattern justifies the usage of left-right HSMMmodels.

5.2.1. Data Description. Pronostia is an experimental plat-
form designed and realized at the Automatic Control
and Micro-Mechatronic Systems (AS2M) Department of
Franche-Comté Electronics, Mechanics, Thermal Process-
ing, Optics-Science and Technology (FEMTO-ST) Institute
(http://www.femto-st.fr/) (Besançon, France), with the aim
of collecting real data related to accelerated degradation of
bearings. Such data are used to validate methods for bearing
condition assessment, diagnostic and prognostic [19, 51–59].

The Pronostia platform allows to perform run-to-failure
tests under constant or variable operating conditions. The
operating conditions are determined by two factors that
can be controlled online: (i) the rotation speed and (ii)
the radial force load. During each experiment, tempera-
ture and vibration monitoring measurements are gathered
online, through two type of sensors placed in the bearing
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Table 2: Average absolute prediction error (APE) of the RUL esti-
mation using the proposed state duration estimator of (20).

(a) APE of the RUL estimation for the continuous observation test cases

Test
case

Duration distribution
Gaussian Gamma Weibull

APE APE APE APE APE APE APE APE APE
avg up low avg up low avg up low

1 5.1 17.0 6.7 14.0 29.0 0.91 4.5 17.0 8.1
2 7.6 19.0 5.0 6.1 21.0 8.5 6.6 19.0 6.1
3 7.7 5.4 19.0 2.9 12.0 17.0 16.0 29.0 3.0
4 9.0 21.0 2.9 7.5 22.0 6.8 6.0 19.0 6.7
5 7.3 19.0 4.7 2.2 14.0 14.0 3.9 17.0 8.7
6 6.5 18.0 5.6 5.1 18.0 10.0 14.0 27.0 2.7
7 4.7 16.0 7.5 4.8 17.0 11.0 1.2 13.0 12.0
8 10.0 22.0 2.9 5.2 18.0 10.0 9.2 22.0 3.9
9 3.1 9.2 14.0 2.0 16.0 13.0 8.2 21.0 4.9
10 6.4 18.0 5.6 7.5 22.0 6.9 3.3 12.0 13.0
Average 6.8 17.0 7.4 5.7 19.0 9.9 7.3 20.0 7.0

(b) APE of the RUL estimation for the discrete observation test cases

Test
case

Duration distribution
Gaussian Gamma Weibull

APE APE APE APE APE APE APE APE APE
avg up low avg up low avg up low

1 2.1 11.0 14.0 3.1 8.8 14.0 2.4 12.0 13.0
2 2.1 11.0 13.0 11.0 22.0 3.3 19.0 32.0 7.1
3 5.1 17.0 7.6 6.6 18.0 5.1 2.3 14.0 11.0
4 5.9 6.5 18.0 5.2 17.0 6.7 4.2 16.0 9.0
5 3.2 14.0 10.0 8.3 19.0 3.4 12.0 24.0 2.9
6 12.0 24.0 2.7 6.2 18.0 5.2 4.1 8.4 16.0
7 2.9 15.0 9.7 9.3 21.0 2.3 19.0 31.0 6.6
8 15.0 27.0 7.0 7.4 18.0 4.3 4.3 17.0 9.4
9 5.9 18.0 7.7 11.0 23.0 5.5 3.9 16.0 8.8
10 3.5 11.0 14.0 5.5 6.0 16.0 5.2 17.0 7.1
Average 5.7 15.0 10.0 7.4 17.0 6.6 7.7 19.0 9.0

housing: a temperature probe and two accelerometers (one
on the vertical and one on the horizontal axis).

The platform is composed of three main parts: a rotating
part, a load profile generation part, and a measurement part,
as illustrated in Figure 6.

The rotating part is composed of an asynchronous motor
which develops a power equal to 250W, two shafts, and a
gearbox, which allows the motor to reach its rated speed of
2830 rpm. The motor’s rotation speed and the direction are
set through a human machine interface.

The load profiles part issues a radial force on the external
ring of the test bearing through a pneumatic jack connected
to a lever arm, which indirectly transmits the load through
a clamping ring. The goal of the applied radial force is to
accelerate the bearing’s degradation process.

Table 3: Average absolute prediction error (APE) of the RUL esti-
mation using the state duration estimator of (16) introduced by
Azimi et al. [30–32].

(a) APE of the RUL estimation for the continuous observation test cases

Test
case

Duration distribution
Gaussian Gamma Weibull

APE APE APE APE APE APE APE APE APE
avg up low avg up low avg up low

1 57.8 51.0 66.8 26.2 9.7 52.7 25.9 28.4 64.6
2 50.2 44.4 57.7 21.3 17.0 46.9 29.0 19.2 70.8
3 50.3 44.7 57.3 27.1 8.7 56.5 34.5 13.9 73.4
4 51.8 46.0 60.4 21.3 14.3 45.9 34.9 17.1 78.7
5 59.4 53.7 66.2 29.0 9.5 55.4 33.4 15.6 74.9
6 58.0 51.7 67.1 25.8 8.3 54.1 23.1 25.8 66.5
7 59.4 53.6 66.9 18.2 12.5 47.7 36.0 17.1 74.4
8 63.4 55.6 72.3 19.4 15.7 44.1 34.8 17.8 77.0
9 49.1 43.5 57.0 14.5 17.1 43.2 25.1 26.7 67.0
10 54.4 48.4 62.8 23.2 7.9 52.7 24.1 24.5 67.4
Average 55.4 49.3 63.5 22.6 12.1 49.9 30.1 20.6 71.5

(b) APE of the RUL estimation for the discrete observation test cases

Test
case

Duration distribution
Gaussian Gamma Weibull

APE APE APE APE APE APE APE APE APE
avg up low avg up low avg up low

1 51.4 41.0 62.4 42.4 31.8 53.0 32.6 26.4 73.6
2 49.6 39.9 60.4 59.5 48.3 70.8 31.3 27.6 69.3
3 50.2 38.6 62.3 46.5 35.7 57.4 32.4 25.7 70.2
4 42.2 31.5 53.8 50.1 40.5 60.6 23.7 36.1 60.3
5 44.3 33.9 55.8 47.8 37.4 59.1 36.0 25.6 76.5
6 52.2 43.2 62.7 55.2 44.3 66.9 27.2 31.6 64.3
7 55.0 43.9 66.8 56.0 45.7 67.0 34.7 23.2 74.4
8 50.3 39.0 62.0 60.4 50.5 71.0 35.1 26.4 72.4
9 55.5 47.4 64.0 48.0 37.2 59.5 31.8 22.2 73.6
10 49.0 38.2 60.7 52.1 41.2 63.1 29.4 28.9 68.7
Average 50.0 39.7 61.1 51.8 41.3 62.9 31.4 27.4 70.4

Themeasurement part consists of a data acquisition card
connected to the monitoring sensors, which provides the
user with the measured temperature and vibration data. The
vibration measurements are provided in snapshots of 0.1 s
collected each 10 seconds at a sampling frequency of 25.6 kHz
(2560 samples per each snapshot), while the temperature has
been continuously recorded at a sampling frequency of 10Hz
(600 samples collected each minute).

Further details on the Pronostia test rig can be found on
the data presentation paper [49] and on the web page of the
data challenge (http://www.femto-st.fr/en/Research-depart-
ments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-
challenge.php).
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Table 4: Lifetime duration (in seconds) and operating conditions of the bearings tested in the IEEE PHM 2012 Prognostic Challenge dataset
[49].

Condition 1 Condition 2 Condition 3
1800 rpm and 4000N 1650 rpm and 4200N 1500 rpm and 5000N

Bearing Lifetime [s] Bearing Lifetime [s] Bearing Lifetime [s]
Bearing1 1 28030 Bearing2 1 9110 Bearing3 1 5150
Bearing1 2 8710 Bearing2 2 7970 Bearing3 2 16370
Bearing1 3 23750 Bearing2 3 19550 Bearing3 3 4340
Bearing1 4 14280 Bearing2 4 7510
Bearing1 5 24630 Bearing2 5 23110
Bearing1 6 24480 Bearing2 6 7010
Bearing1 7 22590 Bearing2 7 2300

Load
module

Tested
bearing

Data
acquisition
module

Rotating
module

Figure 6: Global overview of the Pronostia experimental platform
[19].

Regarding the data provided for the PHM 2012 challenge,
3 different operating conditions were considered:

(i) first operating conditions: speed of 1800 rpm and load
of 4000 Newton;

(ii) second operating conditions: speed of 1650 rpm and
load of 4200 Newton;

(iii) third operating conditions: speed of 1500 rpm and
load of 5000 Newton.

Under the above operating conditions, a total of 17 accel-
erated life tests were realized on bearings of type NSK 6804
DD, which can operate at a maximum speed of 13000 rpm
and a load limit of 4000N. The tests were stopped when
the amplitude of the vibration signal was higher than 20 g;
thus this moment was defined as the bearing failure time. An
example of bearing before and after the experiment is shown
in Figure 7 together with the corresponding vibration signal
collected during the whole test.

Table 4 reports how the 17 tested bearings were separated
into the three operating conditions. Moreover, the duration
of each experiment, being the RUL to be predicted for each
bearing, is also given. We performed two sets of experiments
by considering, respectively, the bearings relative to the
first and the second operating condition (i.e., Bearing1 1,
Bearing1 2, . . ., Bearing1 7 and Bearing2 1, Bearing2 2, . . .,
Bearing2 7).

As already mentioned, the available data correspond
to normally degraded bearings, meaning that the defects

were not initially induced and that each degraded bearing
contains almost all the types of defects (balls, rings, and cage),
resembling faithfully a common real industrial situation.
Moreover, no assumption about the type of failure to be
occurred is provided with the data and, since the variability
in experiment durations is high (from 1 h to 7 h), performing
good estimates of the RUL is a difficult task [49].

In our experiments we considered, as input to our model,
the horizontal channel of the accelerometer.We preprocessed
the raw signals by extracting two time-domain features, that
is, root mean square (RMS) and kurtosis, within windows
of the same length as the given snapshots (𝐿 = 2560). Let
𝑟
𝑤
(𝑡) be the raw signal of the 𝑤th window; for each 𝑤 we

estimate RMS as 𝑥RMS
𝑤

= √(1/𝐿)∑
𝐿

𝑡=1
𝑟2
𝑤
(𝑡) and kurtosis as

𝑥
KURT
𝑤

= ((1/𝐿)∑
𝐿

𝑡=1
(𝑟

𝑤
(𝑡) − 𝑟

𝑤
)
4
)/((1/𝐿)∑

𝐿

𝑡=1
(𝑟

𝑤
(𝑡) − 𝑟

𝑤
)
2
)
2,

where 𝑟
𝑤
is the mean of 𝑟

𝑤
. An example of feature extraction

for Bearing1 1 is shown in Figure 8.
To assess the performance of the proposed HSMM, after

the model selection procedure, we implemented a leave-
one-out cross validation scheme: by considering separately
conditions 1 and 2, we performed the online RUL estimation
for each of the 7 bearings, using an HSMM trained with the
remaining 6 bearing histories. Similarly to the simulated case,
we considered the average absolute prediction error, defined
in (64), to quantitatively evaluate our method.

5.2.2. Bearings RUL Estimation. We performed our exper-
iments in two steps: firstly we applied model selection in
order to determine an optimalmodel structure, and secondly,
we estimated the RUL of the bearings. The full procedure is
detailed in the following.

(A) HSMM Structure. To determine an appropriate HSMM
structure for effectively modeling the considered data, we
considered several HSMM structures, characterized by (i)
the duration distribution family (being Gaussian, Gamma, or
Weibull), (ii) an increasing number of states,𝑁, from 2 to 6,
and (iii) an increasing number of Gaussian mixtures, 𝑀, in
the observation density from 1 to 4. For eachmodel structure,
obtained by systematically considering all the combinations
of (i) to (iii), we run 120 parameter learnings, corresponding
to 120 random initializations, 𝜆0, on the data sets (Bearing1 1,
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Figure 7: A tested bearing before and after the experiment with its recorded vibration signal [49].
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Figure 8: Raw vibration data (a) versus RMS and kurtosis features (b) for Bearing1 1.

Bearing1 2, . . ., Bearing1 7 and Bearing2 1, Bearing2 2, . . .,
Bearing2 7).

Similar to Section 5.1.2, at the end of each learning
we evaluated the AIC value (Equation (46)) as reported in
Figures 9(a) and 9(b) for conditions 1 and 2, respectively. In
both cases, the global minimumAIC value corresponds to an
HSMM with 𝑁 = 4 states, a Weibull duration model, and a
𝑀 = 1 Gaussians mixture for the observation density.

(B) RUL Estimation. Using the above obtained optimal
HSMM structure, we trained it via a leave-one-out cross
validation scheme by using for condition 1, at each iteration,

Bearing1 i, 1 ≤ 𝑖 ≤ 7, as the testing bearing, while the
remaining six bearings were used for training. Once the
trained parameters 𝜆∗

𝑖
were estimated for the 𝑖th testing bear-

ing, we progressively collected the observations of the tested
Bearing1 i to calculate, at each time 𝑡, the average, lower, and
upper RUL, as specified in (57), (58), and (59), respectively,
considering the state 𝑆

4
as the failure state. The same proce-

dure has been performed for the bearings in condition 2.
Examples of RUL estimation for Bearing1 7 and Bear-

ing2 6 are shown in Figures 10(a) and 10(b), respectively,
where the black solid line represents the real RUL which goes
to zero as the time goes on. As it can be seen, the average as
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Figure 9: In both cases the minimum AIC value corresponds to an HSMMwith𝑁 = 4 states, a Weibull duration model, and𝑀 = 1mixture
in the observation density.
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Figure 10: By obtaining a low average absolute prediction error, the proposed parametric HSMM is effective for estimating the Remaining
Useful Lifetime of bearings.

well as the lower and the upper bound estimations converge
to the real RUL as the real failure time approaches and the
uncertainty about the estimation decreases with time.

Concerning the quantitative estimation of the predictive
performances, we report in Table 5 the average absolute
prediction error of the RUL estimation (see Equation (64)),
expressed in seconds. As it can be noticed, the average
absolute prediction error of the average RUL is, respectively, 1
hour and 15minutes for condition 1, and 1 hour and 5minutes
for condition 2, which are good values, considering the high
variability in the training set durations and the fact that the
performance metric takes into account also the less accurate
predictions performed at an early stage of the bearings life.
Moreover, for both conditions, the average prediction errors

of 5 tests out of 7 are below the average, while the best average
error of themeanRUL is only 23minutes for condition 1while
it further decreases to 14 minutes for condition 2.

6. Conclusion and Future Work

In this paper, we introduced an approach based on Hidden
Semi-Markov Models (HSMM) and Akaike Information
Criteria (AIC) to perform (i) automatic model selection, (ii)
online condition monitoring, and (iii) online time to event
estimation.

The proposed HSMM models the state duration distri-
bution with a parametric density, allowing a less computa-
tionally expensive learning procedure due to the few required
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Table 5: Average absolute prediction error (APE) of the RUL esti-
mation, expressed in seconds.

(a) Condition 1

Test Bearings APEavg APElow APEup

Bearing1 1 10571.6 12723.0 9414.6
Bearing1 2 4331.2 3815.6 3821.3
Bearing1 3 2997.0 9730.9 6091.2
Bearing1 4 6336.3 2876.6 14871.9
Bearing1 5 1968.9 7448.4 10411.5
Bearing1 6 4253.0 9896.4 9793.7
Bearing1 7 1388.0 7494.3 10088.1
Average 4549.4 7712.2 9213.2

(b) Condition 2

Test Bearings APEavg APElow APEup

Bearing2 1 2475.9 5006.5 7287.5
Bearing2 2 1647.3 4497.2 8288.6
Bearing2 3 8877.1 9508.3 7962.1
Bearing2 4 1769.8 4248.6 4982.5
Bearing2 5 8663.1 10490.0 10730.0
Bearing2 6 877.1 3504.7 6687.0
Bearing2 7 3012.5 3866.4 6651.9
Average 3903.3 5874.5 7512.8

parameters to estimate. Together with the provided general
model specification, the modified learning, inference, and
prediction algorithms allow the usage of any parametric
distribution tomodel the state duration, as well as continuous
or discrete observations. As a consequence, a wide class of
different applications can be modeled with the proposed
methodology.

This paper highlights, through experiments performed
on simulated data, that the proposed approach is effective
in (i) automatically selecting the correct configuration of the
HSMM in terms of number of states and correct duration
distribution family, (ii) performing online state estimation,
and (iii) correctly predict the time to a determinate event,
identified as the entrance of the model in a target state. As
a consequence, the proposed parametric HSMM combined
with AIC can be used in practice for condition monitoring
and Remaining Useful Lifetime applications.

As the targeted application of the proposed methodology
is failure prognosis in industrial machines, combining the
proposed HSMM model with online learning procedure,
capable of adapting the model parameter to new conditions,
would be considered in a future extension.

Appendix

In this appendix we give the derivation of the state duration
variable, introduced in (20) as

𝑑
𝑡+1

(𝑖) =
𝑎
𝑖𝑖
(d̂

𝑡
) ⋅ 𝛼

𝑡
(𝑖) ⋅ 𝑏

𝑖
(𝑋

𝑡+1
)

𝛼
𝑡+1

(𝑖)
⋅ (𝑑

𝑡
(𝑖) + 1) . (A.1)

The random variable 𝑑
𝑡
(𝑖) has been defined in Section 2.1

as the duration spent in state 𝑖 prior to current time 𝑡, assuming
that the state at current time 𝑡 be 𝑖. 𝑑

𝑡
(𝑖) is sampled from an

arbitrary distribution:

𝑑
𝑡
(𝑖) ∼ 𝑓 (𝑑) . (A.2)

We can specify the probability that the system has been in
state 𝑖 for 𝑑 time units prior to current time 𝑡, giving the
observations and the model parameters 𝜆 and knowing that
the current state is 𝑖 as

P (𝑑
𝑡
(𝑖) = 𝑑) = P (𝑠
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𝑡
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(A.3)

We omit the conditioning to the model parameters 𝜆 in
the following equations, being inherently implied. We are
interested to derive the estimator 𝑑

𝑡
(𝑖) of 𝑑

𝑡
(𝑖), defined as its

expected value (see Equation (15)):

𝑑
𝑡
(𝑖) = E (𝑑

𝑡
(𝑖) | 𝑠

𝑡
= 𝑆

𝑖
, x

1
x
2
⋅ ⋅ ⋅ x

𝑡
) 1 ≤ 𝑖 ≤ 𝑁. (A.4)

From the definition of expectation we have

𝑑
𝑡
(𝑖) =

𝑡

∑

𝑑=1

𝑑 ⋅ P (𝑑
𝑡
(𝑖) = 𝑑)

=

𝑡

∑

𝑑=1

𝑑 ⋅ P (𝑠
𝑡−𝑑−1

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑
= 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
|

𝑠
𝑡
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
) .

(A.5)

For 𝑑
𝑡+1

(𝑖), we have

𝑑
𝑡+1

(𝑖) =

𝑡+1

∑

𝑑=1

𝑑 ⋅ P (𝑠
𝑡−𝑑

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑+1
= 𝑆

𝑖
, . . . , 𝑠

𝑡
= 𝑆

𝑖
|

𝑠
𝑡+1

= 𝑆
𝑖
, x

1
, . . . , x

𝑡+1
)

= P (𝑠
𝑡−1

̸= 𝑆
𝑖
, 𝑠

𝑡
= 𝑆

𝑖
| 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑎)

(A.6)

+

𝑡+1

∑

𝑑=2

𝑑 ⋅ P (𝑠
𝑡−𝑑

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑+1
= 𝑆

𝑖
, . . . , 𝑠

𝑡
= 𝑆

𝑖
|

𝑠
𝑡+1

= 𝑆
𝑖
, x

1
, . . . , x

𝑡+1
) .

(A.7)

By noticing that

P (𝑠
𝑡−𝑑

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑+1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
|

𝑠
𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)

= (P (𝑠
𝑡−𝑑

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑+1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
, 𝑠

𝑡
= 𝑆

𝑖
|

𝑠
𝑡+1

= 𝑆
𝑖
, x

1
, . . . , x

𝑡+1
))

⋅ (P (𝑠
𝑡
= 𝑆

𝑖
| 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
))

−1

(A.8)
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we can replace the probability of the second termof (A.7)with

P (𝑠
𝑡−𝑑

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑+1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
, 𝑠

𝑡
= 𝑆

𝑖
|

𝑠
𝑡+1

= 𝑆
𝑖
, x

1
, . . . , x

𝑡+1
)

= P (𝑠
𝑡
= 𝑆

𝑖
| 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑏)

(A.9)

⋅ P (𝑠
𝑡−𝑑

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑+1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
|

𝑠
𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
) .

(A.10)

In the last factor of (A.10), we can omit the information about
the current state and observation by observing that

P (𝑠
𝑡−𝑑

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑+1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
|

𝑠
𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)

≈ P (𝑠
𝑡−𝑑

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑+1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
| 𝑠

𝑡
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑐)

(A.11)

if the following independencies hold:

𝑠
𝑡+1

⊥ 𝑠
𝑡−𝑑+1

, . . . , 𝑠
𝑡−1

| 𝑠
𝑡
, x

1
, . . . , x

𝑡
,

𝑋
𝑡+1

⊥ 𝑠
𝑡−𝑑+1

, . . . , 𝑠
𝑡−1

| 𝑠
𝑡
, x

1
, . . . , x

𝑡
,

(A.12)

wherewith⊥we denote independency. Equation (A.12) holds
forHMMs (evenwithout conditioning on x

1
, . . . , x

𝑡
), but they

do not hold for HSMMs since the state duration (expressed
by 𝑠

𝑡−𝑑+1
, . . . , 𝑠

𝑡−1
) determines the system evolution. On

the other hand, state duration is partially known by the
observtions, x

1
, . . . , x

𝑡
.Thus, the approximation is reasonable

as long as the uncertainty on the states is within limits.
From (A.6), (A.9), and (A.11) we obtain

𝑑
𝑡+1

(𝑖) = (𝑎) +

𝑡+1

∑

𝑑=2

𝑑 ⋅ (𝑏) ⋅ (𝑐)

= P (𝑠
𝑡−1

̸= 𝑆
𝑖
, 𝑠

𝑡
= 𝑆

𝑖
| 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

P(𝐴,𝐵|𝐶)=P(𝐴|𝐵,𝐶)⋅P(𝐵|𝐶)

+

𝑡+1

∑

𝑑=2

𝑑 ⋅ P (𝑠
𝑡
= 𝑆

𝑖
| 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

it does not depend on 𝑑

⋅ P (𝑠
𝑡−𝑑

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑+1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
|

𝑠
𝑡
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
)

= {P (𝑠
𝑡−1

̸= 𝑆
𝑖
| 𝑠

𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)

⋅ P (𝑠
𝑡
= 𝑆

𝑖
| 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)}

+ P (𝑠
𝑡
= 𝑆

𝑖
| 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)

⋅

𝑡+1

∑

𝑑=2

𝑑 ⋅ P (𝑠
𝑡−𝑑

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑+1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
|

𝑠
𝑡
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
)

= P (𝑠
𝑡
= 𝑆

𝑖
| 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)

⋅ [

[

P (𝑠
𝑡−1

̸= 𝑆
𝑖
| 𝑠

𝑡
= 𝑆

𝑖
,����𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
,��x

𝑡+1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for the approximation of (A.11)

+

𝑡+1

∑

𝑑=2

𝑑 ⋅ P (𝑠
𝑡−𝑑

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑+1
= 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
|

𝑠
𝑡
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
)]

]

= P (𝑠
𝑡
= 𝑆

𝑖
| 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)

⋅ [P (𝑠
𝑡−1

̸= 𝑆
𝑖
| 𝑠

𝑡
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
) +

𝑡

∑

𝑑

=1

(𝑑

+ 1)

⋅ P (𝑠
𝑡−𝑑

−1

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑
 = 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
|

𝑠
𝑡
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
)] .

(A.13)

Noticing that

𝑡

∑

𝑑

=1

P (𝑠
𝑡−𝑑

−1

̸= 𝑆
𝑖
, 𝑠

𝑡−𝑑
 = 𝑆

𝑖
, . . . , 𝑠

𝑡−1
= 𝑆

𝑖
|

𝑠
𝑡
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
)

+ P (𝑠
𝑡−1

̸= 𝑆
𝑖
| 𝑠

𝑡
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
) = 1

(A.14)

because it represents the sum of the probabilities of all the
possible combinations of state sequences up to the current
time 𝑡, we can rewrite (A.13) as follows:

𝑑
𝑡+1

(𝑖) = P (𝑠
𝑡
= 𝑆

𝑖
| 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
) ⋅ (𝑑

𝑡
(𝑖) + 1) .

(A.15)

The intuition behind the latter induction formula is that
the current average duration is the previous average duration
plus 1 weighted with the “amount” of the current state that
was already in state 𝑖 in the previous step.

In order to transform (A.15) in terms ofmodel parameters
for an easy numerical calculation of the induction for 𝑑

𝑡+1
(𝑖),

we can consider the following equality:

P (𝑠
𝑡
= 𝑆

𝑖
| 𝑠

𝑡+1
= 𝑆

𝑖
, x

1
, . . . , x

𝑡+1
)

=
P (𝑠

𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑖
| x

1
, . . . , x

𝑡+1
)

P (𝑠
𝑡+1

= 𝑆
𝑖
| x

1
, . . . , x

𝑡+1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛾
𝑡+1

(𝑖)

.
(A.16)

If we consider the terms involved in the probability at the
numerator of the right-hand side of (A.16), we have that

x
1
, . . . , x

𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵

⊥ x
𝑡+1⏟⏟⏟⏟⏟⏟⏟

𝐶

| 𝑠
𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

. (A.17)
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If 𝐵 ⊥ 𝐶 | 𝐴, for the Bayes rule, we have that

P (𝐴 | 𝐶, 𝐵) =
P (𝐶 | 𝐴,�𝐵) ⋅ P (𝐴 | 𝐵)

P (𝐶 | 𝐵)
. (A.18)

Hence, we can rewrite the numerator of the right-hand side
of (A.16) as follows:

P (𝑠
𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑖
| x

1
, . . . , x

𝑡+1
)

= (P (𝑠
𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑖
| x

1
, . . . , x

𝑡
)

⋅ P(x
𝑡+1

|

x
𝑡+1

⊥𝑠
𝑡
|𝑠
𝑡+1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
���𝑠
𝑡
= 𝑆

𝑖
, 𝑠

𝑡+1
= 𝑆

𝑖
))

⋅ (P (x
𝑡+1

| x
1
, . . . , x

𝑡
))

−1

= (P (𝑠
𝑡+1

= 𝑆
𝑖
| 𝑠

𝑡
= 𝑆

𝑖
, x

1
, . . . , x

𝑡
)

⋅

𝛾
𝑡
(𝑖)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
P (𝑠

𝑡
= 𝑆

𝑖
| x

1
, . . . , x

𝑡
) ⋅

𝑏
𝑖
(x
𝑡+1

)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
P (x

𝑡+1
| 𝑠

𝑡+1
= 𝑆

𝑖
))

⋅ (P (x
𝑡+1

| x
1
, . . . , x

𝑡
))

−1

.

(A.19)

The first probability in the numerator of (A.19) is the state
transition which can be approximated by considering the
average duration as
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𝑡
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𝑡
)

(A.20)

while the denominator of (A.19) can be expressed as follows:
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(A.21)

By substituting (A.20) and (A.21) in (A.19) we obtain
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and then, by combining (A.22) and (A.16) we obtain
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(A.23)

Finally, by substituting (A.23) in (A.15) and considering that

𝛾
𝑡
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𝛼
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∑
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(A.24)

we derive the induction formula for 𝑑
𝑡+1

(𝑖) in terms of model
parameters as

𝑑
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