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The main purpose of this paper is to establish the Milloux inequality of 𝐸-valued meromorphic function from the complex plane
C to an infinite dimensional complex Banach space 𝐸 with a Schauder basis. As an application, we study the Borel exceptional
values of an 𝐸-valued meromorphic function and those of its derivatives; results are obtained to extend some related results for
meromorphic scalar-valued function of Singh, Gopalakrishna, and Bhoosnurmath.

1. Introduction

In the 1970s, theNevanlinna theory ofmeromorphic function
is extended to the vector-valuedmeromorphic function from
the complex plane C to a finite dimensional space C𝑛 (see
Ziegler [1]). After that, some works related to vector-valued
meromorphic function in finite dimensional spaces were
done by [2–5]. In 2006, C. G. Hu and Q. J. Hu [6] established
Nevanlinna’s first and second fundamental theorems for an
𝐸-valued meromorphic function from the disk C

𝑟
= {|𝑧| <

𝑟}, 0 < 𝑟 ≤ +∞, to infinite-dimensional Banach spaces
𝐸 with a Schauder basis. Xuan and Wu [7] established
Nevanlinna’s first and second fundamental theorems for an
𝐸-valued meromorphic function from a generic domain 𝐷 ⊆

C to 𝐸 and generalized Chuang’s inequality. Motivated by
[6, 7], Bhoosnurmath and Pujari [8] studied the 𝐸-valued
Borel exceptional values of meromorphic functions, Wu and
Xuan [9, 10] studied the characteristic functions, exceptional
values, and deficiency of 𝐸-valued meromorphic function,
and Hu [11] surveyed the advancements of the Nevanlinna
theory of 𝐸-valued meromorphic functions and studied its
related Paley problems. In this paper, we will generalize Mil-
loux’s inequality (see [12] or [13]) to 𝐸-valued meromorphic
function.

2. The Nevanlinna Theory in Banach Spaces

In this section, we introduce some fundamental definitions
and notations of 𝐸-valued meromorphic function which was
introduced by C. G. Hu and Q. J. Hu [6]. See also [7–10].

Let (𝐸, ‖ ∙ ‖) be an infinite dimension complex Banach
space with Schauder basis {𝑒

𝑗
} and the norm ‖ ∙ ‖. Thus an

𝐸-valued meromorphic function 𝑓(𝑧) defined in C
𝑟
, 0 < 𝑟 ≤

+∞, can be written as
𝑓 (𝑧) = (𝑓

1
(𝑧) , 𝑓

2
(𝑧) , . . . , 𝑓

𝑘
(𝑧) , . . .) ∈ 𝐸, (1)

where𝑓
1
(𝑧), 𝑓
2
(𝑧), . . . , 𝑓

𝑘
(𝑧), . . . are the component functions

of 𝑓(𝑧). Let 𝐸
𝑛
be an 𝑛-dimensional projective space of 𝐸

with a basis {𝑒
𝑗
}
𝑛

1
. The projective operator 𝑃

𝑛
: 𝐸 → 𝐸

𝑛
is

a realization of 𝐸
𝑛
associated with the basis.

The elements of 𝐸 are called vectors and are usually
denoted by letters from the alphabet: 𝑎, 𝑏, 𝑐, . . .. The symbol
0 denotes the zero vector of 𝐸. We denote vector infinity,
complex number infinity, and the norm infinity by ∞̂, ∞,
and +∞, respectively. A vector-valued mapping is called
holomorphic (meromorphic) if all component functions of
𝑓(𝑧) are holomorphic (some of component functions of 𝑓(𝑧)

are meromorphic). The 𝑗th derivative of 𝑓(𝑧) is defined by

𝑓
(𝑗)

(𝑧) = (𝑓
(𝑗)

1
(𝑧) , 𝑓

(𝑗)

2
(𝑧) , . . . , 𝑓

(𝑗)

𝑘
(𝑧) , . . .) , (2)
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where 𝑗 = 1, 2, . . .. A point 𝑧
0

∈ C
𝑟
is called a pole (or ∞̂

point) of 𝑓(𝑧) if 𝑧
0
is a pole (or ∞ point) of at least one of the

component functions of 𝑓(𝑧). A point 𝑧
0

∈ C
𝑟
is called a zero

of 𝑓(𝑧) if 𝑧
0
is a common zero of all the component functions

of 𝑓(𝑧). A point 𝑧
0

∈ C
𝑟
is called a pole or an ∞̂-point of

𝑓(𝑧) of multiplicity 𝑞 ∈ N+ which means that in such a point
𝑧
0
at least one of the meromorphic component functions of

𝑓(𝑧) has a pole of this multiplicity in the ordinary sense of
function theory. A point 𝑧

0
∈ C
𝑟
is called a zero of 𝑓(𝑧) of

multiplicity 𝑞 ∈ N+ which means that in such a point 𝑧
0
all

component functions of 𝑓(𝑧) vanish, each with at least this
multiplicity.

An 𝐸-valued meromorphic function 𝑓(𝑧) in C is said to
be of compact projection, if for any given 𝜀 > 0, ‖𝑃

𝑛
(𝑓(𝑧)) −

𝑓(𝑧)‖ < 𝜀 as sufficiently large 𝑛 in any fixed compact subset
𝐷 ⊂ C.

Let 𝑛(𝑟, 𝑓) or 𝑛(𝑟, ∞̂) denote the number of poles of 𝑓(𝑧)

in |𝑧| ≤ 𝑟 and 𝑛(𝑟, 𝑎, 𝑓) denote the number of 𝑎-points of𝑓(𝑧)

in |𝑧| ≤ 𝑟, counting with multiplicities. Define the volume
function associated with 𝐸-valued meromorphic function
𝑓(𝑧) by

𝑉 (𝑟, ∞̂, 𝑓)

= 𝑉 (𝑟, 𝑓) =
1

2𝜋
∫
𝐶
𝑟

log


𝑟

𝜉



Δ log 𝑓 (𝜉)
 𝑑𝑥 ∧ 𝑑𝑦,

𝜉 = 𝑥 + 𝑖𝑦;

𝑉 (𝑟, 𝑎, 𝑓) =
1

2𝜋
∫
𝐶
𝑟

log


𝑟

𝜉



Δ log 𝑓 (𝜉) − 𝑎
 𝑑𝑥 ∧ 𝑑𝑦,

𝜉 = 𝑥 + 𝑖𝑦,

(3)

and the counting function of finite or infinite 𝑎-points by

𝑁 (𝑟, 𝑓) = 𝑛 (0, 𝑓) log 𝑟 + ∫

𝑟

0

𝑛 (𝑡, 𝑓) − 𝑛 (0, 𝑓)

𝑡
𝑑𝑡,

𝑁 (𝑟, ∞̂) = 𝑛 (0, ∞̂) log 𝑟 + ∫

𝑟

0

𝑛 (𝑡, ∞̂) − 𝑛 (0, ∞̂)

𝑡
𝑑𝑡,

𝑁 (𝑟, 𝑎, 𝑓) = 𝑛 (0, 𝑎, 𝑓) log 𝑟 + ∫

𝑟

0

𝑛 (𝑡, 𝑎, 𝑓) − 𝑛 (0, 𝑎, 𝑓)

𝑡
𝑑𝑡,

(4)

respectively. Next, we define

𝑚 (𝑟, 𝑓) = 𝑚 (𝑟, ∞̂, 𝑓) =
1

2𝜋
∫

2𝜋

0

log+ 
𝑓 (𝑟𝑒
𝑖𝜃

)


𝑑𝜃;

𝑚 (𝑟, 𝑎, 𝑓) =
1

2𝜋
∫

2𝜋

0

log+ 1

𝑓 (𝑟𝑒𝑖𝜃) − 𝑎


𝑑𝜃;

𝑇 (𝑟, 𝑓) = 𝑚 (𝑟, 𝑓) + 𝑁 (𝑟, 𝑓) .

(5)

Let 𝑛(𝑟, 𝑓) or 𝑛(𝑟, ∞̂) denote the number of poles of 𝑓(𝑧) in
|𝑧| ≤ 𝑟 and 𝑛(𝑟, 𝑎, 𝑓) denote the number of 𝑎-points of 𝑓(𝑧)

in |𝑧| ≤ 𝑟, ignoring multiplicities. Similarly, we can define
the counting functions 𝑁(𝑟, 𝑓), 𝑁(𝑟, ∞̂), and 𝑁(𝑟, 𝑎, 𝑓) of
𝑛(𝑟, 𝑓), 𝑛(𝑟, ∞̂), and 𝑛(𝑟, 𝑎, 𝑓).

Let 𝑓(𝑧) (𝑧 ∈ C
𝑟
) be an 𝐸-valued meromorphic function

and 𝑎 ∈ 𝐸; if 𝑘 is a positive integer, let 𝑛
𝑘
(𝑟, 𝑓) or 𝑛

𝑘
(𝑟, ∞̂)

denote the number of distinct poles of 𝑓(𝑧) of order ≤ 𝑘

in |𝑧| ≤ 𝑟 and 𝑛
𝑘
(𝑟, 𝑎, 𝑓) denote the number of distinct 𝑎-

points of 𝑓(𝑧) of order ≤ 𝑘 in |𝑧| ≤ 𝑟. Similarly, we can define
the counting functions 𝑁

𝑘
(𝑟, 𝑓), 𝑁

𝑘
(𝑟, ∞̂), and 𝑁

𝑘
(𝑟, 𝑎, 𝑓)

of 𝑛
𝑘
(𝑟, 𝑓), 𝑛

𝑘
(𝑟, ∞̂), and 𝑛

𝑘
(𝑟, 𝑎, 𝑓).

If𝑓(𝑧) is an𝐸-valuedmeromorphic function in thewhole
complex plane, then the order and the lower order of𝑓(𝑧) are
defined by

𝜆 (𝑓) = lim sup
𝑟→∞

log+𝑇 (𝑟, 𝑓)

log 𝑟
;

𝜇 (𝑓) = lim inf
𝑟→∞

log+𝑇 (𝑟, 𝑓)

log 𝑟
.

(6)

We call the 𝐸-valued meromorphic function 𝑓 admissible if

lim sup
𝑟→+∞

𝑇 (𝑟, 𝑓)

log 𝑟
= +∞. (7)

Definition 1. Let 𝑓(𝑧) be an admissible 𝐸-valued meromor-
phic function in C. One denotes by 𝑆(𝑟, 𝑓) any quantity such
that

𝑆 (𝑟, 𝑓) = 𝑂 (log𝑇 (𝑟, 𝑓) + log 𝑟) , 𝑟 → +∞, (8)

without restriction if 𝑓(𝑧) is of finite order and otherwise
except possibly for a set of values of 𝑟 of finite linear measure.

In 2006, C. G. Hu and Q. J. Hu [6] proved the following
theorems.

Theorem A (the 𝐸-valued Nevanlinna’s first fundamental
theorem). Let 𝑓(𝑧) be a nonconstant 𝐸-valued meromorphic
function in C

𝑅
= {|𝑧| < 𝑅}, 0 < 𝑅 ≤ +∞. Then, for 0 < 𝑟 < 𝑅,

𝑎 ∈ 𝐸, and 𝑓(𝑧) ̸≡ 𝑎,

𝑇 (𝑟, 𝑓) = 𝑉 (𝑟, 𝑎) + 𝑁 (𝑟, 𝑎)

+ 𝑚 (𝑟, 𝑎) + log+ 
𝑐
𝑞

(𝑎)


+ 𝜀 (𝑟, 𝑎) .

(9)

Here 𝜀(𝑟, 𝑎) is a function such that

|𝜀 (𝑟, 𝑎)| ≤ log+ ‖𝑎‖ + log 2, 𝜀 (𝑟, 0) ≡ 0, (10)

and 𝑐
𝑞
(𝑎) ∈ 𝐸 is the coefficient of the first term in the Laurent

series at the point 𝑎.

Theorem B (the 𝐸-valued Nevanlinna’s second fundamental
theorem). Let 𝑓(𝑧) be an admissible 𝐸-valued meromorphic
function of compact projection in C

𝑅
= {|𝑧| < 𝑅}, 0 < 𝑅 ≤

+∞, and 𝑎
[𝑘]

∈ 𝐸 (𝑘 = 1, 2, . . . , 𝑞) be 𝑞 ≥ 3 distinct points.
Then, for 0 < 𝑟 < 𝑅,

𝑞

∑

𝑘=1

𝑚 (𝑟, 𝑎
[𝑘]

, 𝑓) ≤ 2𝑇 (𝑟, 𝑓) − 𝑁
1

(𝑟) + 𝑆 (𝑟, 𝑓) , (11)

where 𝑁
1
(𝑟) = 2𝑁(𝑟, 𝑓) − 𝑁(𝑟, 𝑓



) + 𝑁(𝑟, 0, 𝑓


).
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3. Milloux Inequality of E-Valued
Meromorphic Function

In this section, we will establish the Milloux inequality of
𝐸-valued meromorphic function and prove the following
theorems.

Theorem 2 (Milloux inequality). Suppose that 𝑓(𝑧) is an
admissible 𝐸-valued meromorphic function of compact projec-
tion in C

𝑅
= {|𝑧| < 𝑅}, 0 < 𝑅 ≤ +∞. Let 𝑎, 𝑏 ∈ 𝐸 be distinct

points and 𝑏 ̸= 0. Then, for 0 < 𝑟 < 𝑅,

𝑇 (𝑟, 𝑓) ≤ 𝑁 (𝑟, 𝑓) + (𝑘 + 1) {𝑁 (𝑟, 𝑎, 𝑓) + 𝑉 (𝑟, 𝑎, 𝑓)}

+ {𝑁 (𝑟, 𝑏, 𝑓
(𝑘)

) + 𝑉 (𝑟, 𝑏, 𝑓
(𝑘)

)} + 𝑆 (𝑟, 𝑓) .

(12)

In order to prove Theorem 2, we will prove the following
general form ofMilloux inequality of𝐸-valuedmeromorphic
function when the multiple values are considered.

Theorem 3 (general form of Milloux inequality). Suppose
that 𝑓(𝑧) is an admissible 𝐸-valued meromorphic function of
compact projection in C

𝑅
= {|𝑧| < 𝑅}, 0 < 𝑅 ≤ +∞.

Let 𝑎
[𝑖]

, 𝑏
[𝑗]

∈ 𝐸 (𝑖 = 1, 2, . . . , 𝑝; 𝑗 = 1, 2, . . . , 𝑞) be distinct
points such that 𝑏

[𝑗]

̸= 0 (𝑗 = 1, 2, . . . , 𝑞) and let 𝑚
𝑖
, 𝑛
𝑗

(𝑖 =

1, 2, . . . , 𝑝; 𝑗 = 1, 2, . . . , 𝑞), and 𝑙 be any positive integers. Then

{

{

{

𝑝𝑞 − (

𝑝

∑

𝑖=1

𝑘𝑞 + 1

𝑚
𝑖
+ 1

+

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
+

1

𝑙 + 1
(1 + 𝑘

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
))

}

}

}

𝑇 (𝑟, 𝑓)

≤
𝑙

𝑙 + 1
(1 + 𝑘

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
) 𝑁
𝑙
(𝑟, 𝑓)

+ (𝑘𝑞 + 1)

𝑝

∑

𝑖=1

{𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓) + 𝑉 (𝑟, 𝑎
[𝑖]

, 𝑓)}

+

𝑞

∑

𝑗=1

{𝑁
𝑛
𝑗

(𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

)} + 𝑆 (𝑟, 𝑓) .

(13)

By letting 𝑝 = 𝑞 = 1 and 𝑙, 𝑚
𝑖
, 𝑛
𝑗
tend to infinity in (13),

we can get Theorem 2. In order to proveTheorem 3, we need
the following lemma.

Lemma 4 (see [10]). Let 𝑓(𝑧) be of compact projection in C;
then, for a positive integer 𝑘, one has

1

2𝜋
∫

2𝜋

0

log+

𝑓
(𝑘)

(𝑟𝑒
𝑖𝜃

)


𝑓 (𝑟𝑒𝑖𝜃)


𝑑𝜃 = 𝑆 (𝑟, 𝑓) . (14)

We are now in the position to proveTheorem 3.

Proof. We set

𝐹 (𝑧) =

𝑝

∑

𝑖=1

1

𝑓 (𝑧) − 𝑎[𝑖]


; (15)

then

1

2𝜋
∫

2𝜋

0

log+𝐹 (𝑟𝑒
𝑖𝜃

) 𝑑𝜃

≤ 𝑚 (𝑟, 0, 𝑓
(𝑘)

) +
1

2𝜋
∫

2𝜋

0

log+ {𝐹 (𝑟𝑒
𝑖𝜃

)

𝑓
(𝑘)

(𝑟𝑒
𝑖𝜃

)

} 𝑑𝜃.

(16)

By [6], we have

1

2𝜋
∫

2𝜋

0

log+𝐹 (𝑟𝑒
𝑖𝜃

) 𝑑𝜃 ≥

𝑝

∑

𝑖=1

𝑚 (𝑟, 𝑎
[𝑖]

) − log+
2𝑞

𝛿
. (17)

From (16) and (17), we can get

𝑝

∑

𝑖=1

𝑚 (𝑟, 𝑎
[𝑖]

, 𝑓)

≤ 𝑚 (𝑟, 0, 𝑓
(𝑘)

) +
1

2𝜋
∫

2𝜋

0

log+ {𝐹 (𝑟𝑒
𝑖𝜃

)

𝑓
(𝑘)

(𝑟𝑒
𝑖𝜃

)

} 𝑑𝜃

+ log+
2𝑞

𝛿
.

(18)

Hence, we can get from the above inequality and Lemma 4
that

𝑝

∑

𝑖=1

𝑚 (𝑟, 𝑎
[𝑖]

, 𝑓) ≤ 𝑚 (𝑟, 0, 𝑓
(𝑘)

) + 𝑆 (𝑟, 𝑓) . (19)

It follows fromTheorem A that

𝑇 (𝑟, 𝑓
(𝑘)

) = 𝑚 (𝑟, 0, 𝑓
(𝑘)

) + 𝑁 (𝑟, 0, 𝑓
(𝑘)

)

+ 𝑉 (𝑟, 0, 𝑓
(𝑘)

) + 𝑂 (1) .

(20)

Thus from (19) and (20) we deduce

𝑝

∑

𝑖=1

𝑚 (𝑟, 𝑎
[𝑖]

, 𝑓) ≤ 𝑇 (𝑟, 𝑓
(𝑘)

) − 𝑁 (𝑟, 0, 𝑓
(𝑘)

)

− 𝑉 (𝑟, 0, 𝑓
(𝑘)

) + 𝑆 (𝑟, 𝑓) .

(21)

ByTheorem A, we have

𝑝𝑇 (𝑟, 𝑓) ≤ 𝑇 (𝑟, 𝑓
(𝑘)

) +

𝑝

∑

𝑖=1

[𝑁 (𝑟, 𝑎
[𝑖]

, 𝑓) + 𝑉 (𝑟, 𝑎
[𝑖]

, 𝑓)]

− 𝑁 (𝑟, 0, 𝑓
(𝑘)

) − 𝑉 (𝑟, 0, 𝑓
(𝑘)

) + 𝑆 (𝑟, 𝑓) .

(22)
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Now it follows fromTheorems A and B and Lemma 4 that

𝑞𝑇 (𝑟, 𝑓
(𝑘)

)

≤

𝑞

∑

𝑗=1

{𝑁 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

)}

+ 𝑁 (𝑟, 0, 𝑓
(𝑘)

) + 𝑉 (𝑟, 0, 𝑓
(𝑘)

) + 𝑁 (𝑟, 𝑓
(𝑘)

)

− (𝑁 (𝑟, 0, 𝑓
(𝑘+1)

) + 2𝑁 (𝑟, 𝑓
(𝑘)

) − 𝑁 (𝑟, 𝑓
(𝑘+1)

))

+ 𝑆 (𝑟, 𝑓
(𝑘)

)

=

𝑞

∑

𝑗=1

{𝑁 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

)}

+ 𝑁 (𝑟, 0, 𝑓
(𝑘)

) + 𝑉 (𝑟, 0, 𝑓
(𝑘)

) + 𝑁 (𝑟, 𝑓
(𝑘+1)

)

− 𝑁 (𝑟, 𝑓
(𝑘)

) + 𝑁 (𝑟, 0, 𝑓
(𝑘+1)

) + 𝑆 (𝑟, 𝑓)

≤

𝑞

∑

𝑗=1

{𝑁 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

)}

+ 𝑁 (𝑟, 0, 𝑓
(𝑘)

) + 𝑉 (𝑟, 0, 𝑓
(𝑘)

) + 𝑁 (𝑟, 𝑓)

− 𝑁 (𝑟, 0, 𝑓
(𝑘+1)

) + 𝑆 (𝑟, 𝑓) .

(23)

It follows from (22) and (23) that

𝑝𝑞𝑇 (𝑟, 𝑓)

≤ 𝑁 (𝑟, 𝑓) + (𝑞 − 1) {

𝑝

∑

𝑖=1

𝑁 (𝑟, 𝑎
[𝑖]

, 𝑓) − 𝑁 (𝑟, 0, 𝑓
(𝑘)

)}

+

{

{

{

𝑝

∑

𝑖=1

𝑁 (𝑟, 𝑎
[𝑖]

, 𝑓)

+

𝑞

∑

𝑗=1

𝑁 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) − 𝑁 (𝑟, 0, 𝑓
(𝑘+1)

)

}

}

}

+ 𝑞

𝑝

∑

𝑖=1

𝑉 (𝑟, 𝑎
[𝑖]

, 𝑓) +

𝑞

∑

𝑗=1

𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑆 (𝑟, 𝑓) .

(24)

A zero of 𝑓 − 𝑎 of order 𝑗 > 𝑘 is a zero of 𝑓
(𝑘+1) of order

𝑗 − (𝑘 + 1) and a zero of 𝑓
(𝑘)

− 𝑏 of order 𝑚 is a zero of 𝑓
(𝑘+1)

of order 𝑚 − 1. Moreover, zeros of 𝑓 − 𝑎 of order > 𝑘 are zeros
of 𝑓
(𝑘) and so are not zeros of 𝑓

(𝑘)

− 𝑏 since 𝑏 ̸= 0. Hence
𝑝

∑

𝑖=1

𝑁 (𝑟, 𝑎
[𝑖]

, 𝑓) +

𝑞

∑

𝑗=1

𝑁 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) − 𝑁 (𝑟, 0, 𝑓
(𝑘+1)

)

≤

𝑝

∑

𝑖=1

𝑁
𝑘+1

(𝑟, 𝑎
[𝑖]

, 𝑓) +

𝑞

∑

𝑗=1

𝑁 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) ,

𝑝

∑

𝑖=1

𝑁 (𝑟, 𝑎
[𝑖]

, 𝑓) − 𝑁 (𝑟, 0, 𝑓
(𝑘)

) ≤

𝑝

∑

𝑖=1

𝑁
𝑘

(𝑟, 𝑎
[𝑖]

, 𝑓) .

(25)

Substituting (25) to (24), we obtain

𝑝𝑞𝑇 (𝑟, 𝑓) ≤ 𝑁 (𝑟, 𝑓) + (𝑞 − 1)

𝑝

∑

𝑖=1

𝑁
𝑘

(𝑟, 𝑎
[𝑖]

, 𝑓)

+

𝑝

∑

𝑖=1

𝑁
𝑘+1

(𝑟, 𝑎
[𝑖]

, 𝑓) +

𝑞

∑

𝑗=1

𝑁 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

)

+ 𝑞

𝑝

∑

𝑖=1

𝑉 (𝑟, 𝑎
[𝑖]

, 𝑓)

+

𝑞

∑

𝑗=1

𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑆 (𝑟, 𝑓) ,

(26)

since

𝑁
𝑘

(𝑟, 𝑎
[𝑖]

, 𝑓)

≤ 𝑘𝑁 (𝑟, 𝑎
[𝑖]

, 𝑓)

≤
𝑘

𝑚
𝑖
+ 1

{𝑚
𝑖
𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓) + 𝑁 (𝑟, 𝑎
[𝑖]

, 𝑓)}

≤
𝑘

𝑚
𝑖
+ 1

{𝑚
𝑖
𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓) + 𝑇 (𝑟, 𝑓)} + 𝑂 (1) ,

(27)

𝑁
𝑘+1

(𝑟, 𝑎
[𝑖]

, 𝑓)

≤ (𝑘 + 1) 𝑁 (𝑟, 𝑎
[𝑖]

, 𝑓)

≤
𝑘 + 1

𝑚
𝑖
+ 1

{𝑚
𝑖
𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓) + 𝑁 (𝑟, 𝑎
[𝑖]

, 𝑓)}

≤
𝑘 + 1

𝑚
𝑖
+ 1

{𝑚
𝑖
𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓) + 𝑇 (𝑟, 𝑓)} + 𝑂 (1) .

(28)

Similarly, we can get

𝑁 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

)

≤
1

𝑛
𝑗

+ 1
{𝑛
𝑗
𝑁
𝑛
𝑗

(𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑇 (𝑟, 𝑓
(𝑘)

)} + 𝑂 (1) ,

𝑁 (𝑟, 𝑓) ≤
1

𝑙 + 1
{𝑙𝑁
𝑙
(𝑟, 𝑓) + 𝑇 (𝑟, 𝑓)} .

(29)
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By Lemma 4, we can get

𝑇 (𝑟, 𝑓
(𝑘)

) = 𝑚 (𝑟, 𝑓
(𝑘)

) + 𝑁 (𝑟, 𝑓
(𝑘)

)

≤ 𝑚 (𝑟, 𝑓) + 𝑁 (𝑟, 𝑓
(𝑘)

)

+
1

2𝜋
∫

2𝜋

0

log+

𝑓
(𝑘)

(𝑟𝑒
𝑖𝜃

)


𝑓 (𝑟𝑒𝑖𝜃)


𝑑𝜃

≤ 𝑚 (𝑟, 𝑓) + 𝑁 (𝑟, 𝑓) + 𝑘𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝑓) + 𝑘𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(30)

Substituting (27)–(30) into (26), we obtain

𝑝𝑞𝑇 (𝑟, 𝑓)

≤ 𝑁 (𝑟, 𝑓) + (𝑞 − 1)

×

𝑝

∑

𝑖=1

𝑘

𝑚
𝑖
+ 1

{𝑚
𝑖
𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓) + 𝑇 (𝑟, 𝑓)}

+

𝑝

∑

𝑖=1

𝑘 + 1

𝑚
𝑖
+ 1

{𝑚
𝑖
𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓) + 𝑇 (𝑟, 𝑓)}

+

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
{𝑛
𝑗
𝑁
𝑛
𝑗

(𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑇 (𝑟, 𝑓
(𝑘)

)}

+ 𝑞

𝑝

∑

𝑖=1

𝑉 (𝑟, 𝑎
[𝑖]

, 𝑓) +

𝑞

∑

𝑗=1

𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑆 (𝑟, 𝑓)

≤ (1 +

𝑞

∑

𝑗=1

𝑘

𝑛
𝑗

+ 1
) 𝑁 (𝑟, 𝑓) + (𝑞 − 1)

×

𝑝

∑

𝑖=1

𝑘𝑚
𝑖

𝑚
𝑖
+ 1

𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓)

+

𝑝

∑

𝑖=1

𝑘 + 1

𝑚
𝑖
+ 1

𝑚
𝑖
𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓)

+

𝑞

∑

𝑗=1

𝑛
𝑗

𝑛
𝑗

+ 1
𝑁
𝑛
𝑗

(𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

)

+ (𝑞 − 1)

𝑝

∑

𝑖=1

𝑘

𝑚
𝑖
+ 1

𝑇 (𝑟, 𝑓)

+

𝑝

∑

𝑖=1

𝑘 + 1

𝑚
𝑖
+ 1

𝑇 (𝑟, 𝑓) +

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
𝑛
𝑗
𝑇 (𝑟, 𝑓)

+ 𝑞

𝑝

∑

𝑖=1

𝑉 (𝑟, 𝑎
[𝑖]

, 𝑓) +

𝑞

∑

𝑗=1

𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑆 (𝑟, 𝑓)

≤ (1 +

𝑞

∑

𝑗=1

𝑘

𝑛
𝑗

+ 1
)

𝑙

𝑙 + 1
𝑁
𝑙
(𝑟, 𝑓) + (𝑘𝑞 + 1)

×

𝑝

∑

𝑖=1

𝑚
𝑖

𝑚
𝑖
+ 1

𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓)

+

𝑞

∑

𝑗=1

𝑛
𝑗

𝑛
𝑗

+ 1
𝑁
𝑛
𝑗

(𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

)

+ 𝑞

𝑝

∑

𝑖=1

𝑉 (𝑟, 𝑎
[𝑖]

, 𝑓) +

𝑞

∑

𝑗=1

𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

)

+ (

𝑝

∑

𝑖=1

𝑘𝑞 + 1

𝑚
𝑖
+ 1

+

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
+

1

𝑙 + 1
(1 + 𝑘

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
))

× 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(31)

Since 𝑚
𝑖
, 𝑛
𝑗
, 𝑘, and 𝑞 are positive integers, it follows from (31)

that

𝑝𝑞𝑇 (𝑟, 𝑓)

≤ (

𝑝

∑

𝑖=1

𝑘𝑞 + 1

𝑚
𝑖
+ 1

+

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
+

1

𝑙 + 1
(1 + 𝑘

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
))

× 𝑇 (𝑟, 𝑓)

+ (𝑘𝑞 + 1)

𝑝

∑

𝑖=1

[𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓) + 𝑉 (𝑟, 𝑎
[𝑖]

, 𝑓)]

+

𝑞

∑

𝑗=1

[𝑁
𝑛
𝑗

(𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

)]

+ (1 +

𝑞

∑

𝑗=1

𝑘

𝑛
𝑗

+ 1
)

𝑙

𝑙 + 1
𝑁
𝑙
(𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(32)

Hence, (13) follows from (32).

4. E-Valued Borel Exceptional Values of
Meromorphic Function and Its Derivatives

Most recently, Bhoosnurmath and Pujari [8] studied the 𝐸-
valued Borel exceptional values of meromorphic functions
and gave the following definition.

Definition 5. Let 𝑓(𝑧) (𝑧 ∈ C) be an 𝐸-valued meromorphic
function and 𝑎 ∈ 𝐸 ∪ {∞̂} 𝑘 is a positive integer. One defines

𝜌
𝑘

(𝑎, 𝑓) = lim sup
𝑟→∞

log+ [𝑉 (𝑎, 𝑓) + 𝑁
𝑘

(𝑟, 𝑎)]

log 𝑟
;

𝜌 (𝑎, 𝑓) = lim sup
𝑟→∞

log+ [𝑉 (𝑎, 𝑓) + 𝑁 (𝑟, 𝑎)]

log 𝑟
;

𝜌 (𝑎, 𝑓) = lim sup
𝑟→∞

log+ [𝑉 (𝑎, 𝑓) + 𝑁 (𝑟, 𝑎)]

log 𝑟
.

(33)
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We say that 𝑎 is an

(i) 𝐸-valued evB (exceptional value in the sense of Borel)
for𝑓 for distinct zeros of order≤ 𝑘 if 𝜌

𝑘
(𝑎, 𝑓) < 𝜆(𝑓);

(ii) 𝐸-valued evB for 𝑓 for distinct zeros if 𝜌(𝑎, 𝑓) <

𝜆(𝑓);

(iii) 𝐸-valued evB for 𝑓 (for the whole aggregate of zeros)
if 𝜌(𝑎, 𝑓) < 𝜆(𝑓).

Suppose that 𝑓(𝑧) is an 𝐸-valued meromorphic function
with finite order 𝜌 > 0 inC. Xuan andWu [7] proved that the
order of 𝑓

 is 𝜌. Hence for any positive integer 𝑙 the order of
𝑓
(𝑙) is 𝜌. Therefore, we call 𝑎 a vector-valued evB for 𝑓

(𝑙) for
distinct zeros of order ≤ 𝑘, if

𝜌
𝑘

(𝑎, 𝑓
(𝑙)

) = lim sup
𝑟→∞

log [𝑉 (𝑟, 𝑎, 𝑓
(𝑙)

) + 𝑁
𝑘

(𝑟, 𝑎, 𝑓
(𝑙)

)]

log 𝑟

< 𝜌.

(34)

In this section, we will prove the following theorem.

Theorem 6. Let 𝑓(𝑧) be an admissible 𝐸-valued meromorphic
function of compact projection in C and the order of 𝑓(𝑧) is
𝜌 (0 < 𝜌 < +∞). Suppose that ∞̂ is an 𝐸-valued evB for 𝑓 for
distinct zeros of order≤ 𝑙, 𝑎[𝑖] ∈ 𝐸 (𝑖 = 1, 2, . . . , 𝑝) are𝐸-valued
evB for𝑓 for distinct zeros of order≤ 𝑚

𝑖
, and 𝑏

[𝑗]

( ̸= 0) ∈ 𝐸 (𝑗 =

1, 2, . . . , 𝑞) are 𝐸-valued evB for 𝑓
(𝑘) for distinct zeros of order

≤ 𝑛
𝑗
, where 𝑘, 𝑝, 𝑞, 𝑙 and all of 𝑚

𝑖
, 𝑛
𝑗
are positive integers.Then

𝑝

∑

𝑖=1

𝑘𝑞 + 1

𝑚
𝑖
+ 1

+

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
+

1

𝑙 + 1
(1 + 𝑘

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
) ≥ 𝑝𝑞.

(35)

Proof. ByTheorem 3, we obtain

{

{

{

𝑝𝑞 − (

𝑝

∑

𝑖=1

𝑘𝑞 + 1

𝑚
𝑖
+ 1

+

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
+

1

𝑙 + 1
(1 + 𝑘

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
))

}

}

}

𝑇 (𝑟, 𝑓)

≤
𝑙

𝑙 + 1
(1 + 𝑘

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
) 𝑁
𝑙
(𝑟, 𝑓)

+ (𝑘𝑞 + 1)

𝑝

∑

𝑖=1

{𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓) + 𝑉 (𝑟, 𝑎
[𝑖]

, 𝑓)}

+

𝑞

∑

𝑗=1

{𝑁
𝑛
𝑗

(𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

)} + 𝑆 (𝑟, 𝑓) .

(36)

Since ∞̂ is an 𝐸-valued evB for 𝑓 for distinct zeros of order ≤

𝑙, 𝑎[𝑖] ∈ 𝐸 (𝑖 = 1, 2, . . . , 𝑝) is an𝐸-valued evB for𝑓 for distinct
zeros of order ≤ 𝑚

𝑖
and 𝑏

[𝑗]

( ̸= 0) ∈ 𝐸 (𝑗 = 1, 2, . . . , 𝑞) is an
𝐸-valued evB for 𝑓

(𝑘) for distinct zeros of order ≤ 𝑛
𝑗
. Thus

there is a 0 < 𝜇 < 𝜌 such that for any 𝑖, 𝑗 (𝑖 = 1, 2, . . . , 𝑝; 𝑗 =

1, 2, . . . , 𝑞) we have

𝑁
𝑙
(𝑟, 𝑓) ≤ 𝑅

𝜇

,

𝑁
𝑚
𝑖

(𝑟, 𝑎
[𝑖]

, 𝑓) + 𝑉 (𝑟, 𝑎
[𝑖]

, 𝑓) ≤ 𝑅
𝜇

,

𝑁
𝑛
𝑗

(𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) + 𝑉 (𝑟, 𝑏
[𝑗]

, 𝑓
(𝑘)

) ≤ 𝑅
𝜇

.

(37)

It follows from 0 < 𝜇 < 𝜌 and (36) and (37) that

𝑝

∑

𝑖=1

𝑘𝑞 + 1

𝑚
𝑖
+ 1

+

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
+

1

𝑙 + 1
(1 + 𝑘

𝑞

∑

𝑗=1

1

𝑛
𝑗

+ 1
) ≥ 𝑝𝑞.

(38)

Letting 𝑝 = 𝑞 = 1 in Theorem 6, we can get the following
corollary.

Corollary 7. Let 𝑓(𝑧) be an admissible 𝐸-valued meromor-
phic function of compact projection in C and the order of 𝑓(𝑧)

is 𝜌 (0 < 𝜌 < +∞). Suppose that ∞̂ is an 𝐸-valued evB for 𝑓

for distinct zeros of order ≤ 𝑙, where 𝑙 is an integer ≥ 1. If there
exist 𝑎, 𝑏 ∈ 𝐸, 𝑏 ̸= 0, such that 𝑎 is an 𝐸-valued evB for 𝑓 for
distinct zeros of order ≤ 𝑝 and 𝑏 is a an 𝐸-valued evB for 𝑓

(𝑘)

for distinct zeros of order ≤ 𝑞, where 𝑝, 𝑞 are positive integers,
then

𝑞 + 1 + 𝑘

(𝑞 + 1) (𝑙 + 1)
+

𝑘 + 1

𝑝 + 1
+

1

𝑞 + 1
≥ 1. (39)

If ∞̂, 𝑎 are 𝐸-valued evB for 𝑓 for distinct zeros, that is,
letting 𝑙, 𝑝 tend to infinity in (39), we can get 1/(𝑞 + 1) ≥ 1.
This means that, for each integer 𝑘, 𝑞 ≥ 1, 𝜌

𝑞
(𝑏, 𝑓
(𝑘)

) ≥ 𝜌, for
all 𝑏 ̸= 0, ̸= ∞̂. Hence, we can get the following corollary.

Corollary 8. Let 𝑓(𝑧) be an admissible 𝐸-valued meromor-
phic function of compact projection in C and the order of 𝑓(𝑧)

is 𝜌 (0 < 𝜌 < +∞). Suppose that ∞̂, 𝑎 ∈ 𝐸 are 𝐸-valued evB
for 𝑓 for distinct zeros. Then, for all positive integers 𝑘 and 𝑞,
𝜌
𝑞
(𝑏, 𝑓
(𝑘)

) = 𝜌 for all 𝑏 ̸= 0, ̸= ∞̂.

The corresponding results of Corollaries 7 and 8 for
the meromorphic scalar value function were obtained by
Gopalakrishna and Bhoosnurmath [14] and Singh and
Gopalakrishna [15]. The corresponding results of Corollaries
7 and 8 for the meromorphic scalar value function on annuli
were obtained by Chen and Wu [16].
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