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Two families of third-order iterative methods for finding multiple roots of nonlinear equations are developed in this paper. Mild
conditions are given to assure the cubic convergence of two iteration schemes (I) and (II). The presented families include many
third-ordermethods for findingmultiple roots, such as the knownDong’s methods andNeta’s method. Some new concrete iterative
methods are provided. Each member of the two families requires two evaluations of the function and one of its first derivative per
iteration.All thesemethods require the knowledge of themultiplicity.Theobtainedmethods are also compared in their performance
with various other iteration methods via numerical examples, and it is observed that these have better performance than the
modified Newton method, and demonstrate at least equal performance to iterative methods of the same order.

1. Introduction

Finding the roots of nonlinear equations is one of the most
important problems in numerical analysis. In this study, we
use iterativemethods to find amultiple root 𝑥⋆ ofmultiplicity
𝑚 (𝑚 > 1); that is, 𝑓(𝑗)(𝑥⋆) = 0, 𝑗 = 0, 1, . . . , 𝑚 − 1, and
𝑓
(𝑚)

(𝑥
⋆

) ̸= 0, of a nonlinear equation 𝑓(𝑥) = 0.
It is known that the modified Newton method for multi-

ple roots is given by

𝑥
𝑛+1

= 𝑥
𝑛
− 𝑚

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

, (1)

which converges quadratically [1].
There exists a cubically convergent method for multiple

roots, presented by Hansen and Patrick [2]. Consider

𝑥
𝑛+1

= 𝑥
𝑛
− (𝑓 (𝑥

𝑛
))

×(

𝑚 + 1

2𝑚

𝑓


(𝑥
𝑛
) −

𝑓(𝑥
𝑛
)𝑓


(𝑥
𝑛
)

2𝑓

(𝑥
𝑛
)

)

−1

,

(2)

which is an extension of the classical Halley method of the
third order.

Another cubically convergent method for multiple roots
is proposed by Traub [3]. Consider

𝑥
𝑛+1

= 𝑥
𝑛
−

𝑚 (3 − 𝑚)

2

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

−

𝑚
2

2

𝑓(𝑥
𝑛
)
2

𝑓


(𝑥
𝑛
)

𝑓

(𝑥
𝑛
)
3

, (3)

which is an extension of the well-known Chebyshev method
of the third order.

In recent years, a lot of methods for multiple roots have
been presented and analyzed, which require the knowledge of
the multiplicity𝑚; see [4–24] and references therein.

Based on King’s fourth-order method (for simple roots)
[25], Dong [4] has developed two third-order methods for
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multiple roots, requiring two evaluations of the function and
one of its first derivative. Consider

𝑦
𝑛
= 𝑥
𝑛
− √𝑚

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
− 𝑚(1 −

1

√𝑚

)

(1−𝑚)

𝑓 (𝑦
𝑛
)

𝑓

(𝑥
𝑛
)

,

(4)

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
−

𝑓 (𝑦
𝑛
)

((𝑚 − 1) /𝑚)
𝑚−1

𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

.

(5)

Using the same information, Victory Jr. and Neta [5] have
developed a third method. Consider

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
−

𝑓 (𝑦
𝑛
)

𝑓

(𝑥
𝑛
)

𝑓 (𝑥
𝑛
) + 𝐴𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) + 𝐵𝑓 (𝑦

𝑛
)

,

(6)

where

𝐴 = (

𝑚

𝑚 − 1

)

2𝑚

− (

𝑚

𝑚 − 1

)

𝑚+1

,

𝐵 = −

(𝑚/ (𝑚 − 1))
𝑚

(𝑚 − 2) (𝑚 − 1) + 1

(𝑚 − 1)
2

.

(7)

Neta [9] has developed another third-ordermethod requiring
the same information

𝑦
𝑛
= 𝑥
𝑛
− 𝛼

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
−

(𝛽 − 𝛼)𝑓 (𝑥
𝑛
) + 𝛾𝑓 (𝑦

𝑛
)

𝑓

(𝑥
𝑛
)

,

(8)

where

𝛼 =

1

2

𝑚 (𝑚 + 3)

𝑚 + 1

, 𝛽 =

𝑚
3

+ 4𝑚
2

+ 9𝑚 + 2

(𝑚 + 3)
2

,

𝛾 =

2
𝑚+1

(𝑚
2

− 1)

(𝑚 + 3)
2

((𝑚 − 1)/(𝑚 + 1))
𝑚
.

(9)

Based onHalley’smethod, Li et al. [15] have proposed a family
of third methods using the same information. Consider

𝑦
𝑛
= 𝑥
𝑛
− 𝛼

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
−

𝑚𝛼
2

𝜇
𝑚

𝑓 (𝑥
𝑛
)

(𝑚 − 𝛼 + 𝛼
2
) 𝜇
𝑚
𝑓 (𝑥
𝑛
) − (𝑚 − 𝛼) 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

(10)

where 𝛼 is a real parameter and 𝛼 ̸= 0,𝑚, and 𝜇 = (𝑚 − 𝛼)/𝑚.

Note also that, based on Traub’s method [2], Homeier
[16] has suggested a family of third methods using the same
information. Consider

𝑦
𝑛
= 𝑥
𝑛
− 𝛼

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
− 𝛽

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

−

𝑓 (𝑦
𝑛
)

𝛾𝑓

(𝑥
𝑛
)

,

(11)

where 𝛼 ̸= 0, 𝑚 is a real parameter, 𝛽 = (𝑚/𝛼
2

)(𝛼
2

+ 𝛼 − 𝑚),
and 𝛾 = (1/𝑚)(1 − 𝛼/𝑚)

𝑚

(𝛼
2

/(𝑚 − 𝛼)).
In this paper, we propose two new families of third-order

methods formultiple roots; each of themethods requires two-
function and one-derivative evaluation per iteration, respec-
tively. The presented methods are obtained by investigating
the following two iteration schemes:

(I)

{
{
{
{

{
{
{
{

{

𝑦
𝑛
= 𝑥
𝑛
− 𝛼

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
−

𝑎𝑓 (𝑥
𝑛
) + 𝑏𝑓 (𝑦

𝑛
)

𝑐𝑓 (𝑥
𝑛
) + 𝑑𝑓 (𝑦

𝑛
)

𝑓 (𝑦
𝑛
)

𝑓

(𝑥
𝑛
)

,

(12)

(II)

{
{
{
{

{
{
{
{

{

𝑦
𝑛
= 𝑥
𝑛
− 𝛼

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
−

𝑎𝑓 (𝑥
𝑛
) + 𝑏𝑓 (𝑦

𝑛
)

𝑐𝑓 (𝑥
𝑛
) + 𝑑𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

(13)

where 𝛼, 𝑎, 𝑏, 𝑐, and 𝑑 are parameters to be determined. By
specially choosing the parameters in (12) and (13), we get two
new families of third-order methods, which include methods
(4)–(6), (8), (10), and (11). In fact, the mild conditions to
assure the cubic convergence of (I)-type iteration (12) or (II)-
type iteration (13) are given. Divided differences are adopted
successfully in developing our methods, which will be useful
in developing more new methods. Finally, we use some
numerical examples to compare the presented methods with
the modified Newton method and some known third-order
methods.

2. Preliminaries

We need the definitions of divided differences and their
properties.

Definition 1 (see [26]). The divided differences 𝑓[𝑎
0
, 𝑎
1
,

. . . , 𝑎
𝑘
] on 𝑘+1 distinct points 𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑘
of a function𝑓(𝑥)

are defined by

𝑓 [𝑎
0
] = 𝑓 (𝑎

0
) ,

𝑓 [𝑎
0
, 𝑎
1
] =

𝑓 [𝑎
0
] − 𝑓 [𝑎

1
]

𝑎
0
− 𝑎
1

,

...

𝑓 [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘
] =

𝑓 [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
] − 𝑓 [𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑘
]

𝑎
0
− 𝑎
𝑘

.

(14)
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If the function 𝑓 is sufficiently differentiable, then its divided
differences 𝑓[𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑘
] can be defined if some of the

arguments 𝑎
𝑖
coincide. For instance, if 𝑓(𝑥) has a derivative

of the 𝑘th order at 𝑎
0
, then it makes sense to define

𝑓[𝑎
0
, 𝑎
0
, . . . , 𝑎

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘+1

] =

𝑓
(𝑘)

(𝑎
0
)

𝑘!

. (15)

Lemma 2 (see [26]). The divided differences 𝑓[𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘
]

are symmetric functions of their arguments; that is, they are
invariant to permutations of the 𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑘
.

Lemma 3 (see [26]). If the function 𝑓 has (𝑘 + 1)st derivative,
then, for every argument 𝑥, the following interpolation formula
holds:

𝑓 (𝑥) = 𝑓 [𝑎
0
] +

𝑘

∑

𝑖=1

𝑓 [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑖
]

𝑖−1

∏

𝑗=0

(𝑥 − 𝑎
𝑗
)

+ 𝑓 [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘
, 𝑥]

𝑘

∏

𝑖=0

(𝑥 − 𝑎
𝑖
) .

(16)

Lemma 4. If the function 𝑓 has a derivative of the (𝑚 + 1)th
order, and 𝑥⋆ is amultiple root of multiplicity𝑚, then, for every
argument 𝑥, the following formulae hold:

𝑓 (𝑥) = 𝑓[𝑥
⋆

, 𝑥
⋆

, . . . , 𝑥
⋆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

, 𝑥] (𝑥 − 𝑥
⋆

)
𝑚

, (17)

𝑓


(𝑥) = 𝑓[𝑥
⋆

, 𝑥
⋆

, . . . , 𝑥
⋆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

, 𝑥, 𝑥] (𝑥 − 𝑥
⋆

)
𝑚

+ 𝑚𝑓[𝑥
⋆

, 𝑥
⋆

, . . . , 𝑥
⋆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

, 𝑥] (𝑥 − 𝑥
⋆

)
𝑚−1

.

(18)

Proof. Applying Lemma 3 to the case of the multiple zero 𝑥⋆
of multiplicity 𝑚 and using (15), we get (17). Differentiating
both sides of (17) gives (18).

3. Development of New Families of
Third-Order Methods

We would like to find the five parameters 𝛼, 𝑎, 𝑏, 𝑐, and 𝑑

in I-type iteration (12) and II-type iteration (13) so as to
maximize its order of convergence to a root 𝑥⋆ of multiplicity
𝑚, respectively. Let 𝑒

𝑛
, 𝑑
𝑛
be the errors at the 𝑛th step; that is,

𝑒
𝑛
= 𝑥
𝑛
− 𝑥
⋆

, 𝑑
𝑛
= 𝑦
𝑛
− 𝑥
⋆

. (19)

Define functions 𝑔(𝑥) and ℎ(𝑥) as follows:

𝑔 (𝑥) = 𝑓[𝑥
⋆

, 𝑥
⋆

, . . . , 𝑥
⋆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

𝑚

𝑥] ,

ℎ (𝑥) = 𝑓[𝑥
⋆

, 𝑥
⋆

, . . . , 𝑥
⋆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

, 𝑥, 𝑥] .

(20)

Write
𝑔
𝑛
= 𝑔 (𝑥

𝑛
) , ℎ

𝑛
= ℎ (𝑥

𝑛
) , 𝑔

⋆
= 𝑔 (𝑥

⋆

) ,

ℎ
⋆
= ℎ (𝑥

⋆

) .

(21)

In view of (17) and (18), we get the following:

𝑓 (𝑥
𝑛
) = 𝑔
𝑛
𝑒
𝑚

𝑛
, (22)

𝑓


(𝑥
𝑛
) = ℎ
𝑛
𝑒
𝑚

𝑛
+ 𝑚𝑔
𝑛
𝑒
𝑚−1

𝑛
, (23)

𝑓 (𝑦
𝑛
) = 𝑔 (𝑦

𝑛
) 𝑑
𝑚

𝑛
. (24)

Using the definitions of divided differences, we get the
following:

𝑔 (𝑦
𝑛
) = 𝑔 (𝑦

𝑛
) − 𝑔 (𝑥

𝑛
) + 𝑔 (𝑥

𝑛
)

= 𝑓[𝑥
⋆

, 𝑥
⋆

, . . . , 𝑥
⋆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

, 𝑦
𝑛
, 𝑥
𝑛
] (𝑑
𝑛
− 𝑒
𝑛
) + 𝑔
𝑛

= (𝑓[𝑥
⋆

, 𝑥
⋆

, . . . , 𝑥
⋆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

, 𝑦
𝑛
, 𝑥
𝑛
] − ℎ (𝑥

𝑛
) + ℎ (𝑥

𝑛
))

× (𝑑
𝑛
− 𝑒
𝑛
) + 𝑔
𝑛

= 𝑝
𝑛
(𝑑
𝑛
− 𝑒
𝑛
)
2

+ ℎ
𝑛
(𝑑
𝑛
− 𝑒
𝑛
) + 𝑔
𝑛
,

(25)

where

𝑝
𝑛
= 𝑓[𝑥

⋆

, 𝑥
⋆

, . . . , 𝑥
⋆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

, 𝑦
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] . (26)

In view of (22), (23), (12), and (13), we get in turn

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

=

𝑔
𝑛
𝑒
𝑛

ℎ
𝑛
𝑒
𝑛
+ 𝑚𝑔
𝑛

, (27)

𝑑
𝑛
= 𝑒
𝑛
− 𝛼

𝑔
𝑛
𝑒
𝑛

ℎ
𝑛
𝑒
𝑛
+ 𝑚𝑔
𝑛

=

ℎ
𝑛
𝑒
𝑛
+ (𝑚 − 𝛼) 𝑔

𝑛

ℎ
𝑛
𝑒
𝑛
+ 𝑚𝑔
𝑛

𝑒
𝑛
, (28)

𝑑
𝑛
− 𝑒
𝑛
= −

𝛼𝑔
𝑛
𝑒
𝑛

ℎ
𝑛
𝑒
𝑛
+ 𝑚𝑔
𝑛

. (29)

Substituting (29) into (25) yields

𝑔 (𝑦
𝑛
) = 𝑝
𝑛
(−

𝛼𝑔
𝑛
𝑒
𝑛

ℎ
𝑛
𝑒
𝑛
+ 𝑚𝑔
𝑛

)

2

+ ℎ
𝑛
(−

𝛼𝑔
𝑛
𝑒
𝑛

ℎ
𝑛
𝑒
𝑛
+ 𝑚𝑔
𝑛

) + 𝑔
𝑛

=

𝑔
𝑛

(ℎ
𝑛
𝑒
𝑛
+ 𝑚𝑔
𝑛
)
2
([𝛼
2

𝑝
𝑛
𝑔
𝑛
+ (1 − 𝛼) ℎ

2

𝑛
] 𝑒
2

𝑛

+ (2 − 𝛼)𝑚ℎ
𝑛
𝑔
𝑛
𝑒
𝑛
+ 𝑚
2

𝑔
2

𝑛
) .

(30)

Substituting (30) and (28) into (24) leads to

𝑓 (𝑦
𝑛
) =

𝑔
𝑛
[ℎ
𝑛
𝑒
𝑛
+ (𝑚 − 𝛼) 𝑔

𝑛
]
𝑚

(ℎ
𝑛
𝑒
𝑛
+ 𝑚𝑔
𝑛
)
𝑚+2

× ([𝛼
2

𝑝
𝑛
𝑔
𝑛
+ (1 − 𝛼) ℎ

2

𝑛
] 𝑒
2

𝑛

+ (2 − 𝛼)𝑚ℎ
𝑛
𝑔
𝑛
𝑒
𝑛
+ 𝑚
2

𝑔
2

𝑛
) 𝑒
𝑚

𝑛
.

(31)
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Write
𝐴
𝑛
= ℎ
𝑛
𝑒
𝑛
+ 𝑚𝑔
𝑛
,

𝐵
𝑛
= ℎ
𝑛
𝑒
𝑛
+ (𝑚 − 𝛼) 𝑔

𝑛
,

𝐶
𝑛
= [𝛼
2

𝑝
𝑛
𝑔
𝑛
+ (1 − 𝛼) ℎ

2

𝑛
] 𝑒
2

𝑛
+ (2 − 𝛼)𝑚ℎ

𝑛
𝑔
𝑛
𝑒
𝑛
+ 𝑚
2

𝑔
2

𝑛
.

(32)

Using (23), (24), and (32), we get

𝑓


(𝑥
𝑛
) = 𝐴

𝑛
𝑒
𝑚−1

𝑛
,

𝑓 (𝑦
𝑛
) =

𝑔
𝑛
𝐵
𝑚

𝑛
𝐶
𝑛

𝐴
𝑚+2

𝑛

𝑒
𝑚

𝑛
.

(33)

Then, we can get the error equations as follows:

𝑒
𝑛+1

=

𝐵
𝑛

𝐴
𝑛

𝑒
𝑛
−

𝑎𝑔
𝑛
𝑒
𝑚

𝑛
+ 𝑏 (𝑔

𝑛
𝐵
𝑚

𝑛
𝐶
𝑛
/𝐴
𝑚+2

𝑛
) 𝑒
𝑚

𝑛

𝑐𝑔
𝑛
𝑒
𝑚

𝑛
+ 𝑑 (𝑔

𝑛
𝐵
𝑚

𝑛
𝐶
𝑛
/𝐴
𝑚+2

𝑛
) 𝑒
𝑚

𝑛

×

(𝑔
𝑛
𝐵
𝑚

𝑛
𝐶
𝑛
/𝐴
𝑚+2

𝑛
) 𝑒
𝑚

𝑛

𝐴
𝑛
𝑒
𝑚−1

𝑛

= − ([(𝑎𝐴
𝑚+2

𝑛
+ 𝑏𝐵
𝑚

𝑛
𝐶
𝑛
) 𝑔
𝑛
𝐵
𝑚−1

𝑛
𝐶
𝑛

− (𝑐𝐴
𝑚+2

𝑛
+ 𝑑𝐵
𝑚

𝑛
𝐶
𝑛
)𝐴
𝑚+2

𝑛
] 𝐵
𝑛
𝑒
𝑛
)

× ((𝑐𝐴
𝑚+2

𝑛
+ 𝑑𝐵
𝑚

𝑛
𝐶
𝑛
)𝐴
𝑚+3

𝑛
)

−1

,

(34)

for I-type iteration (12), and

𝑒
𝑛+1

=

𝐵
𝑛

𝐴
𝑛

𝑒
𝑛
−

𝑎𝑔
𝑛
𝑒
𝑚

𝑛
+ 𝑏 (𝑔

𝑛
𝐵
𝑚

𝑛
𝐶
𝑛
/𝐴
𝑚+2

𝑛
) 𝑒
𝑚

𝑛

𝑐𝑔
𝑛
𝑒
𝑚

𝑛
+ 𝑑 (𝑔

𝑛
𝐵
𝑚

𝑛
𝐶
𝑛
/𝐴
𝑚+2

𝑛
) 𝑒
𝑚

𝑛

×

𝑔
𝑛
𝑒
𝑚

𝑛

𝐴
𝑛
𝑒
𝑚−1

𝑛

= − ([(𝑎𝐴
𝑚+2

𝑛
+ 𝑏𝐵
𝑚

𝑛
𝐶
𝑛
) 𝑔
𝑛
− (𝑐𝐴

𝑚+2

𝑛
+ 𝑑𝐵
𝑚

𝑛
𝐶
𝑛
) 𝐵
𝑛
] 𝑒
𝑛
)

× ((𝑐𝐴
𝑚+2

𝑛
+ 𝑑𝐵
𝑚

𝑛
𝐶
𝑛
)𝐴
𝑛
)

−1

,

(35)

for II-type iteration (13).
In view of (34) and (35), the order of convergence for I-

type or II-type iteration will arrive at three provided that

Φ
𝑛

(𝑐𝐴
𝑚+2

𝑛
+ 𝑑𝐵
𝑚

𝑛
𝐶
𝑛
) 𝐴
𝑚+3

𝑛

= 𝑂 (𝑒
2

𝑛
) , (36)

or
Ψ
𝑛

(𝑐𝐴
𝑚+2

𝑛
+ 𝑑𝐵
𝑚

𝑛
𝐶
𝑛
) 𝐴
𝑛

= 𝑂 (𝑒
2

𝑛
) , (37)

holds true, respectively. Here

Φ
𝑛
= [(𝑎𝐴

𝑚+2

𝑛
+ 𝑏𝐵
𝑚

𝑛
𝐶
𝑛
) 𝑔
𝑛
𝐵
𝑚−1

𝑛
𝐶
𝑛

− (𝑐𝐴
𝑚+2

𝑛
+ 𝑑𝐵
𝑚

𝑛
𝐶
𝑛
)𝐴
𝑚+2

𝑛
] 𝐵
𝑛
,

Ψ
𝑛
= (𝑎𝐴

𝑚+2

𝑛
+ 𝑏𝐵
𝑚

𝑛
𝐶
𝑛
) 𝑔
𝑛
− (𝑐𝐴

𝑚+2

𝑛
+ 𝑑𝐵
𝑚

𝑛
𝐶
𝑛
) 𝐵
𝑛
.

(38)

Write

𝜆 = 𝑚 − 𝛼. (39)

In view of (32), we can get, as 𝑛 → ∞,

𝐴
𝑛
→ 𝑚𝑔

⋆
= 𝑚𝑓[𝑥

⋆

, 𝑥
⋆

, . . . , 𝑥
⋆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚+1

] = 𝑚

𝑓
(𝑚)

(𝑥
⋆

)

𝑚!

̸= 0,

𝐵
𝑛
→ 𝜆𝑔

⋆
,

𝐶
𝑛
→ (𝑚𝑔

⋆
)
2

,

(40)

and then

(𝑐𝐴
𝑚+2

𝑛
+ 𝑑𝐵
𝑚

𝑛
𝐶
𝑛
)𝐴
𝑚+3

𝑛
→ (𝑐𝑚

𝑚

+ 𝑑𝜆
𝑚

)𝑚
𝑚+5

𝑔
2𝑚+5

⋆
,

(𝑛 → ∞) ,

(𝑐𝐴
𝑚+2

𝑛
+ 𝑑𝐵
𝑚

𝑛
𝐶
𝑛
)𝐴
𝑛
→ (𝑐𝑚

𝑚

+ 𝑑𝜆
𝑚

)𝑚
3

𝑔
𝑚+3

⋆
,

(𝑛 → ∞) ,

(41)

which show that, in order to assure the denominators in (36)
and (37) are not equal to zero, we demand naturally that

𝑐𝑚
𝑚

+ 𝑑𝜆
𝑚

̸= 0. (42)

It is obvious that, under the condition (42), the error relations
(36) and (37) are equivalent to

Φ
𝑛
= 𝑂 (𝑒

2

𝑛
) , (43)

Ψ
𝑛
= 𝑂 (𝑒

2

𝑛
) , (44)

respectively.
Next we will find conditions to assure (43) and (44). Note

that the factor 𝐵
𝑛
of Φ
𝑛
plays an important role on the order

of Φ
𝑛
. In fact, using the Taylor formula, we get from (32) the

following:

𝐵
𝑛
= 𝜆𝑔
⋆
+ 𝑂 (𝑒

𝑛
) . (45)

Then, in the case 𝜆 = 0, to assure the relation (43) holds true,
the following estimate is needed:

Δ
𝑛
= (𝑎𝐴

𝑚+2

𝑛
+ 𝑏𝐵
𝑚

𝑛
𝐶
𝑛
) 𝑔
𝑛
𝐵
𝑚−1

𝑛
𝐶
𝑛

− (𝑐𝐴
𝑚+2

𝑛
+ 𝑑𝐵
𝑚

𝑛
𝐶
𝑛
)𝐴
𝑚+2

𝑛
= 𝑂 (𝑒

𝑛
) ,

(46)

which demands

Δ
𝑛
→ −𝑐(𝑚𝑔

⋆
)
2𝑚+4

= 0, (𝑛 → ∞) ; (47)

that is, 𝑐 = 0. This is a contradiction to (42). Hence, in the
case 𝜆 = 0, the relation (43) cannot be satisfied; that is, we
cannot choose parameters so that the order of convergence
of (I)-type iteration (12) arrives at three.
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In what follows, we suppose 𝜆 ̸= 0. In this case, 𝐵
𝑛

→

𝜆𝑔
⋆

̸= 0(𝑛 → ∞), and then (43) is equivalent to

Δ
𝑛
= 𝑂 (𝑒

2

𝑛
) . (48)

In view of (32), and by a straight computation, we can get

Δ
𝑛
= 𝑢
𝑛
+ V
𝑛
𝑒
𝑛
+ 𝑂 (𝑒

2

𝑛
) , (49)

where

𝑢
𝑛
= (𝑚
𝑚

𝜆
𝑚−1

𝑎 + 𝜆
2𝑚−1

𝑏 − 𝑚
2𝑚

𝑐 − 𝑚
𝑚

𝜆
𝑚

𝑑)𝑚
4

𝑔
2𝑚+4

𝑛
,

(50)

V
𝑛
= (𝑚

𝑚

𝜆
𝑚−2

[𝜆
2

+ 4𝜆 + 𝑚 (𝑚 − 1)] 𝑎

+ 𝜆
2𝑚−2

[2𝜆
2

+ (4 − 2𝑚) 𝜆 + 𝑚 (2𝑚 − 1)] 𝑏

− (2𝑚 + 4)𝑚
2𝑚

𝑐

−𝑚
𝑚

𝜆
𝑚−1

(𝜆
2

+ 4𝜆 + 𝑚
2

) 𝑑)𝑚
3

𝑔
2𝑚+3

𝑛
ℎ
𝑛
.

(51)

In view of (49) and in order to assure the relation (48) holds,
we should choose parameters 𝜆, 𝑎, 𝑏, 𝑐, and 𝑑 such that

𝑚
𝑚

𝜆
𝑚−1

𝑎 + 𝜆
2𝑚−1

𝑏 − 𝑚
2𝑚

𝑐 − 𝑚
𝑚

𝜆
𝑚

𝑑 = 0,

𝑚
𝑚

𝜆
𝑚−2

[𝜆
2

+ 4𝜆 + 𝑚 (𝑚 − 1)] 𝑎

+ 𝜆
2𝑚−2

[2𝜆
2

+ (4 − 2𝑚) 𝜆 + 𝑚 (2𝑚 − 1)] 𝑏

− (2𝑚 + 4)𝑚
2𝑚

𝑐 − 𝑚
𝑚

𝜆
𝑚−1

(𝜆
2

+ 4𝜆 + 𝑚
2

) 𝑑 = 0.

(52)

By a straight computation, we deduce that

𝑐 =

𝑚
𝑚+1

𝜆
𝑚−1

𝑎 + [𝑚 − (𝜆 − 𝑚)
2

] 𝜆
2𝑚−1

𝑏

(𝜆 − 𝑚)
2

𝑚
2𝑚

, (53)

𝑑 =

[(𝜆 − 𝑚)
2

− 𝑚]𝑚
𝑚

𝑎 + [2(𝜆 − 𝑚)
2

− 𝑚] 𝜆
𝑚

𝑏

𝜆(𝜆 − 𝑚)
2

𝑚
𝑚

. (54)

Substituting (53) and (54) into the left side of (42), we get

𝑐𝑚
𝑚

+ 𝑑𝜆
𝑚

=

𝑚
𝑚+1

𝜆
𝑚−1

𝑎 + [𝑚 − (𝜆 − 𝑚)
2

] 𝜆
2𝑚−1

𝑏

(𝜆 − 𝑚)
2

𝑚
𝑚

+

[(𝜆 − 𝑚)
2

− 𝑚]𝑚
𝑚

𝜆
𝑚−1

𝑎 + [2(𝜆 − 𝑚)
2

− 𝑚] 𝜆
2𝑚−1

𝑏

(𝜆 − 𝑚)
2

𝑚
𝑚

=

𝑚
𝑚

𝑎 + 𝜆
𝑚

𝑏

𝑚
𝑚

𝜆
𝑚−1

,

(55)

which shows the condition (42) is equivalent to

𝑎𝑚
𝑚

+ 𝑏(𝑚 − 𝛼)
𝑚

̸= 0. (56)

We summarize our development of newmethods done so
far in the following theorem.

Theorem 5. Let 𝑥⋆ ∈ 𝐼 be a multiple root of multiplicity
𝑚 (𝑚 > 1) of a sufficiently differentiable function 𝑓 : 𝐼 → R

for an open interval 𝐼. If 𝑥
0
is sufficiently close to 𝑥

⋆, then
the methods defined by (I)-type iteration (12) are cubically
convergent for any parameters 𝛼, 𝑎, 𝑏, 𝑐, and 𝑑 such that 𝛼 ̸= 0

and (53), (54), and (56) hold.

Next, we turn to find the proper conditions to establish
the relation (44). In view of (32), and by a straight computa-
tion, we can get

Ψ
𝑛
= 𝑟
𝑛
+ 𝑠
𝑛
𝑒
𝑛
+ 𝑂 (𝑒

2

𝑛
) , (57)

where

𝑟
𝑛
= (𝑚
𝑚

𝑎 + 𝜆
𝑚

𝑏 − 𝑚
𝑚

𝜆𝑐 − 𝜆
𝑚+1

𝑑)𝑚
2

𝑔
𝑚+3

𝑛
,

𝑠
𝑛
= ((𝑚 + 2)𝑚

𝑚+1

𝑎 + [(2 − 𝛼)𝑚𝜆
𝑚

+ 𝑚
3

𝜆
𝑚−1

] 𝑏

− [𝑚
𝑚+2

+ 𝑚
𝑚+1

(𝑚 + 2) 𝜆] 𝑐

− [(2 − 𝛼)𝑚𝜆
𝑚+1

+ 𝑚
2

(𝑚 + 1) 𝜆
𝑚

] 𝑑) 𝑔
𝑚+2

𝑛
ℎ
𝑛
.

(58)

In view of (57) and in order to assure the relation (44)
holds, we should choose parameters 𝜆, 𝑎, 𝑏, 𝑐, and 𝑑 such that

𝑚
𝑚

𝑎 + 𝜆
𝑚

𝑏 − 𝑚
𝑚

𝜆𝑐 − 𝜆
𝑚+1

𝑑 = 0,

(𝑚 + 2)𝑚
𝑚

𝑎 + [(2 − 𝛼) 𝜆 + 𝑚
2

] 𝜆
𝑚−1

𝑏

− [𝑚 + (𝑚 + 2) 𝜆]𝑚
𝑚

𝑐

− [(2 − 𝛼) 𝜆 + 𝑚 (𝑚 + 1)] 𝜆
𝑚

𝑑 = 0.

(59)

By a straight computation, we deduce that

𝑐 =

[(𝜆 − 𝑚)
2

+ 𝑚]𝑚
𝑚−1

𝑎 + 𝜆
𝑚

𝑏

𝜆(𝜆 − 𝑚)
2

𝑚
𝑚−1

,

𝑑 =

−𝑚
𝑚+1

𝑎 + [(𝜆 − 𝑚)
2

− 𝑚] 𝜆
𝑚

𝑏

𝜆
𝑚+1

(𝜆 − 𝑚)
2

.

(60)

Substituting (60) into the left side of (42), we get

𝑐𝑚
𝑚

+ 𝑑𝜆
𝑚

=

𝑚
𝑚

𝑎 + 𝜆
𝑚

𝑏

𝜆

, (61)

which shows the condition (42) is also equivalent to the
condition given by (56).

We can summarize the development of new methods
involving (II)-type iteration (13) done so far in the following
theorem.

Theorem 6. Let 𝑥⋆ ∈ 𝐼 be a multiple root of multiplicity
𝑚 (𝑚 > 1) of a sufficiently differentiable function 𝑓 : 𝐼 → R

for an open interval 𝐼. If 𝑥
0
is sufficiently close to 𝑥

⋆, then
the methods defined by (II)-type iteration (13) are cubically
convergent for any parameters 𝛼, 𝑎, 𝑏, 𝑐, and 𝑑 such that 𝛼 ̸= 0

and (60) and (56) hold.



6 Journal of Applied Mathematics

Choosing 𝛼 = √𝑚, 𝑎 = 1, and 𝑏 = 0, we can deduce from
(53), (54), and (56) that

𝑐 =

(𝑚 − √𝑚)
𝑚−1

𝑚
𝑚

,
(62)

𝑑 = 0, (63)

𝑎𝑚
𝑚

+ 𝑏(𝑚 − 𝛼)
𝑚

= 𝑚
𝑚

̸= 0. (64)

Using the parameters 𝛼, 𝑎, 𝑏, 𝑐, and 𝑑 given above in (I)-type
iteration (12), we can obtain Dong’s method (4), and its order
of convergence arrives at three byTheorem 5.

Choosing 𝛼 = 1, 𝑎 = 1, and 𝑏 = 0, we can deduce from
(53), (54), and (56) that

𝑐 =

(𝑚 − 1)
𝑚−1

𝑚
𝑚−1

,

𝑑 = −1,

𝑎𝑚
𝑚

+ 𝑏(𝑚 − 𝛼)
𝑚

= 𝑚
𝑚

̸= 0.

(65)

Using the parameters 𝛼, 𝑎, 𝑏, 𝑐, and 𝑑 given above in (I)-type
iteration (12), we can obtain Dong’s method (5), and its order
of convergence arrives at three byTheorem 5.

Choosing 𝛼 = 1, 𝑎 = 1, and 𝑏 = (𝑚/(𝑚 − 1))
2𝑚

−

(𝑚/(𝑚 − 1))
𝑚+1, we can deduce from (53), (54), and (56) that

𝑐 = 1, (66)

𝑑 = −

(𝑚/(𝑚 − 1))
𝑚

(𝑚 − 2) (𝑚 − 1) + 1

(𝑚 − 1)
2

, (67)

𝑎𝑚
𝑚

+ 𝑏(𝑚 − 𝛼)
𝑚

= 𝑚
𝑚

[1 + (

𝑚

𝑚 − 1

)

𝑚

−

𝑚

𝑚 − 1

] ̸= 0.

(68)

Using the parameters 𝛼, 𝑎, 𝑏, 𝑐, and 𝑑 given above in (I)-type
iteration (12), we can obtain Victory and Neta’s method (6),
and its order of convergence arrives at three byTheorem 5.

Let 𝛼 = (1/2)(𝑚(𝑚 + 3)/(𝑚 + 1)), 𝑎 = (𝑚
3

+ 4𝑚
2

+ 9𝑚 +

2)/(𝑚 + 3)
2

− (1/2)(𝑚(𝑚 + 3)/(𝑚 + 1)), 𝑏 = 2
𝑚+1

(𝑚
2

−

1)/(𝑚 + 3)
2

((𝑚 − 1)/(𝑚 + 1))
𝑚, 𝑐 = 0, and 𝑑 = 1. Using the

definition of 𝜆, we get

𝜆 =

𝑚 (𝑚 − 1)

2 (𝑚 + 1)

. (69)

We can verify that the parameters given above satisfy (52),
and thus they also satisfy (53) and (54) (as 𝑐 given in (53) and
𝑑 given in (54) are solved from (52)). Furthermore, it is easy
to verify that the condition (42) holds:

𝑐𝑚
𝑚

+ 𝑑𝜆
𝑚

= (

𝑚(𝑚 − 1)

2(𝑚 + 1)

)

𝑚

̸= 0. (70)

This means that the condition (56) is also true, since (56) is
equivalent to (42). Using the parameters 𝛼, 𝑎, 𝑏, 𝑐, and 𝑑 given
in (I)-type iteration (12), we can obtainNeta’smethod (8), and
its order of convergence arrives at three byTheorem 5.

We can verify that the family of methods (11) given by
Homeier [16] satisfies all conditions in Theorem 5. First, we
can rewrite (11) as follows:

𝑦
𝑛
= 𝑥
𝑛
− 𝛼

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
−

(𝛽 − 𝛼)𝑓 (𝑥
𝑛
) + (1/𝛾) 𝑓 (𝑦

𝑛
)

𝑓 (𝑦
𝑛
)

𝑓 (𝑦
𝑛
)

𝑓

(𝑥
𝑛
)

,

(71)

where𝛼 ̸= 0, 𝑚 is a real parameter,𝛽 = (𝑚/𝛼
2

)(𝛼
2

+(𝛼−𝑚)) =

(𝑚/𝛼
2

)(𝛼
2

− 𝜆), and 𝛾 = (1/𝑚)(1 − 𝛼/𝑚)
𝑚

(𝛼
2

/(𝑚 − 𝛼)) =

(𝜆
𝑚−1

𝛼
2

/𝑚
𝑚+1

). Choosing 𝑎 = 𝛽 − 𝛼 and 𝑏 = 1/𝛾, we can
deduce from (53), (54), and (56) that 𝑐 = 0, 𝑑 = 1, and

𝑐𝑚
𝑚

+ 𝑑𝜆
𝑚

= (𝑚 − 𝛼)
𝑚

̸= 0. (72)

This means that the condition (56) is also true. Using the
parameters 𝛼, 𝑎, 𝑏, 𝑐, and 𝑑 given in (I)-type iteration (12),
we can obtain Homeier’s family of methods (11), which has
cubic convergence byTheorem 5.

We can verify that the family of methods (10) given by
Homeier [16] satisfies all conditions in Theorem 6. First, we
can rewrite (10) as follows:

𝑦
𝑛
= 𝑥
𝑛
− 𝛼

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

, (73)

𝑥
𝑛+1

= 𝑦
𝑛
− ((𝑚𝛼

2

− 𝑚𝛼 + 𝛼
2

− 𝛼
3

)

×𝜇
𝑚

𝑓 (𝑥
𝑛
) + 𝛼 (𝑚 − 𝛼) 𝑓 (𝑦

𝑛
))

× ((𝑚 − 𝛼 + 𝛼
2

) 𝜇
𝑚

𝑓 (𝑥
𝑛
) − (𝑚 − 𝛼) 𝑓 (𝑦

𝑛
))

−1

×

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

(74)

where 𝛼 is a real parameter and 𝛼 ̸= 0,𝑚, and 𝜇 = (𝑚 − 𝛼)/𝑚.
Let 𝑎 = 𝜆

𝑚+1

𝛼(𝛼 − 1)/𝑚
𝑚, 𝑏 = 𝛼𝜆, 𝑐 = (𝜆 + 𝛼

2

)𝜆
𝑚

/𝑚
𝑚,

and 𝑑 = −𝜆. We can verify that the parameters given above
satisfy (60) and (56). Using the parameters 𝛼, 𝑎, 𝑏, 𝑐, and 𝑑

given in (II)-type iteration (13), we can obtain Shengguo et
al.’s family of methods (10), which has cubic convergence by
Theorem 6.

4. Some Concrete Methods

In this section, we give some concrete iterative forms of (I)-
type iteration (12) and (II)-type iteration (13).

Method 1. Choosing 𝛼 = 1, 𝑎 = 0, and 𝑏 = 1, we obtain
from (63) and (64) that 𝑐 = ((𝑚 − 1)/𝑚)

2𝑚, 𝑑 = (2 −

𝑚)(𝑚 − 1)
𝑚−1

/𝑚
𝑚, and 𝑎𝑚

𝑚

+ 𝑏(𝑚 − 𝛼)
𝑚

= (𝑚 − 1)
𝑚

̸= 0.
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Using these parameters in (12), we get a new method.
Consider

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
− (𝑓 (𝑦

𝑛
)) × ((

𝑚 − 1

𝑚

)

2𝑚

𝑓 (𝑥
𝑛
)

+

(2 − 𝑚) (𝑚 − 1)
𝑚−1

𝑚
𝑚

𝑓 (𝑦
𝑛
))

−1

×

𝑓 (𝑦
𝑛
)

𝑓

(𝑥
𝑛
)

,

(75)
which has cubic convergence byTheorem 5.

Method 2. Choosing 𝛼 = 1, 𝑐 = 1, and 𝑑 = 0, we can
obtain from (61) and (62) that 𝑎 = (2 − 𝑚)𝑚

𝑚

/(𝑚 − 1)
𝑚−1,

𝑏 = 𝑚
2𝑚

/(𝑚 − 1)
2𝑚−2, and 𝑐𝑚𝑚+𝑑(𝑚 − 𝛼)

𝑚

= 𝑚
𝑚

̸= 0. Using
these parameters in (12), we get a new method. Consider

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
− (

(2 − 𝑚)𝑚
𝑚

(𝑚 − 1)
𝑚−1

𝑓 (𝑥
𝑛
)

+

𝑚
2𝑚

(𝑚 − 1)
2𝑚−2

𝑓 (𝑦
𝑛
))

× (𝑓 (𝑥
𝑛
))
−1

×

𝑓 (𝑦
𝑛
)

𝑓

(𝑥
𝑛
)

,

(76)

which has cubic convergence byTheorem 5.

Method 3. Choosing 𝛼 = 1, 𝑏 = 1, and 𝑑 = 1, we can obtain
from (61) and (62) that 𝑎 = ((𝑚 − 1)

𝑚−1

(2 − 𝑚) − 𝑚
𝑚

)/𝑚
𝑚,

𝑐 = ((𝑚 − 1)
2𝑚−2

− 𝑚
𝑚+1

(𝑚 − 1)
𝑚−1

)/𝑚
2𝑚, and 𝑐𝑚

𝑚

+

𝑑(𝑚 − 𝛼)
𝑚

= (𝑚 − 1)
𝑚−1

[(𝑚 − 1)
𝑚−1

− 𝑚
𝑚

]/𝑚
𝑚

̸= 0. Using
these parameters in (12), we get a new method. Consider

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
− (

(𝑚 − 1)
𝑚−1

(2 − 𝑚) − 𝑚
𝑚

𝑚
𝑚

𝑓 (𝑥
𝑛
) + 𝑓 (𝑦

𝑛
))

× (

(𝑚 − 1)
2𝑚−2

− 𝑚
𝑚+1

(𝑚 − 1)
𝑚−1

𝑚
2𝑚

×𝑓 (𝑥
𝑛
) + 𝑓 (𝑦

𝑛
))

−1

×

𝑓 (𝑦
𝑛
)

𝑓

(𝑥
𝑛
)

,

(77)
which has cubic convergence byTheorem 5.

Method 4. Choosing 𝛼 = 1, 𝑎 = 1, and 𝑏 = 0, we can
obtain from (70) and (71) that 𝑐 = (𝑚 + 1)/(𝑚 − 1), 𝑑 =

−(𝑚/(𝑚 − 1))
𝑚+1, and 𝑎𝑚

𝑚

+ 𝑏(𝑚 − 𝛼)
𝑚

= 𝑚
𝑚

̸= 0. Using
these parameters in (13), we get a new method. Consider

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
− (𝑓 (𝑥

𝑛
))

× (

𝑚 + 1

𝑚 − 1

𝑓 (𝑥
𝑛
) − (

𝑚

𝑚 − 1

)

𝑚+1

𝑓 (𝑦
𝑛
))

−1

×

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

(78)

which has cubic convergence byTheorem 6.

Method 5. Choosing 𝛼 = 1, 𝑎 = 1, and 𝑐 = 0, we can obtain
from (68) and (69) that 𝑏 = −(𝑚 + 1)𝑚

𝑚−1

/(𝑚 − 1)
𝑚, 𝑑 =

−𝑚
𝑚−1

/(𝑚 − 1)
𝑚+1, and 𝑐𝑚

𝑚

+ 𝑑(𝑚 − 𝛼)
𝑚

= −𝑚
𝑚−1

/(𝑚 −

1) ̸= 0. Using these parameters in (13), we get a new method.
Consider

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
+ (𝑓 (𝑥

𝑛
) −

(𝑚 + 1)𝑚
𝑚−1

(𝑚 − 1)
𝑚

𝑓 (𝑦
𝑛
))

× (

𝑚
𝑚−1

(𝑚 − 1)
𝑚+1

𝑓 (𝑦
𝑛
))

−1

×

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

(79)

which has cubic convergence byTheorem 6.

Method 6. Choosing 𝛼 = √𝑚, 𝑎 = 1, and 𝑏 = 0, we
can obtain from (70) and (71) that 𝑐 = 2/(𝑚 − √𝑚), 𝑑 =

−𝑚
𝑚

/(𝑚 − √𝑚)
(𝑚+1), and 𝑎𝑚𝑚 +𝑏(𝑚 − 𝛼)

𝑚

= 𝑚
𝑚

̸= 0. Using
these parameters in (13), we get a new method. Consider

𝑦
𝑛
= 𝑥
𝑛
− √𝑚

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑦
𝑛
− (𝑓 (𝑥

𝑛
))

× (

2

𝑚 − √𝑚

𝑓(𝑥
𝑛
) −

𝑚
𝑚

(𝑚 − √𝑚)
𝑚+1

𝑓 (𝑦
𝑛
))

−1

×

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
)

,

(80)

which has cubic convergence byTheorem 6.

5. Numerical Examples

We employ Method 1 (RM1), (75)–Method 6 (RM6), (80) to
solve some nonlinear equations and compare them with the
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Table 1: Comparison of various iterative methods for the function
𝑓
1
(𝑥) under the same total number of function evaluations (TNFE)

required by all methods.

Method |𝑥
𝑛
− 𝑥
⋆

| |𝑓(𝑥
𝑛
)| COC

MNM 3.92𝑒 − 94 9.48𝑒 − 187 2.0000000
DM 4.83𝑒 − 117 1.44𝑒 − 232 3.0000000
VM 1.42𝑒 − 118 1.24𝑒 − 235 3.0000000
RM1 4.63𝑒 − 116 1.32𝑒 − 230 3.0000000
RM2 4.63𝑒 − 116 1.32𝑒 − 230 3.0000000
RM3 5.53𝑒 − 130 1.88𝑒 − 258 3.0000000
RM4 3.98𝑒 − 140 9.77𝑒 − 279 3.0000000
RM5 1.14𝑒 − 102 7.95𝑒 − 204 3.0000000
RM6 1.04𝑒 − 103 6.71𝑒 − 206 3.0000000
TNFE = 12.

Table 2: Comparison of various iterative methods for the function
𝑓
2
(𝑥) under the same total number of function evaluations (TNFE)

required by all methods.

Method |𝑥
𝑛
− 𝑥
⋆

| |𝑓(𝑥
𝑛
)| COC

MNM 2.83𝑒 − 95 1.06𝑒 − 283 2.0000000
DM 1.88𝑒 − 109 3.11𝑒 − 326 3.0000000
VM 3.19𝑒 − 107 1.52𝑒 − 319 3.0000000
RM1 2.04𝑒 − 106 4.00𝑒 − 317 3.0000000
RM2 2.59𝑒 − 104 8.11𝑒 − 311 3.0000000
RM3 8.19𝑒 − 110 2.57𝑒 − 327 3.0000000
RM4 2.09𝑒 − 113 4.27𝑒 − 338 3.0000000
RM5 4.66𝑒 − 100 4.73𝑒 − 298 3.0000000
RM6 1.05𝑒 − 144 5.39𝑒 − 432 3.0000000
TNFE = 12.

Table 3: Comparison of various iterative methods for the function
𝑓
3
(𝑥) under the same total number of function evaluations (TNFE)

required by all methods.

Method |𝑥
𝑛
− 𝑥
⋆

| |𝑓(𝑥
𝑛
)| COC

MNM 1.53𝑒 − 119 4.09𝑒 − 478 2.0000000
DM 5.39𝑒 − 167 6.27𝑒 − 668 3.0000000
VM 1.91𝑒 − 176 9.90𝑒 − 706 3.0000000
RM1 9.39𝑒 − 185 5.79𝑒 − 739 3.0000000
RM2 3.08𝑒 − 169 6.69𝑒 − 677 3.0000000
RM3 9.92𝑒 − 164 7.21𝑒 − 655 3.0000000
RM4 1.38𝑒 − 156 2.73𝑒 − 626 3.0000000
RM5 1.84𝑒 − 152 8.48𝑒 − 610 3.0000000
RM6 7.89𝑒 − 143 2.89𝑒 − 571 3.0000000
TNFE = 12.

modifiedNewtonmethod (MNM), (1), Dong’smethod (DM),
(4), and Victory-Neta’s method (VM).

Tables 1, 2, and 3 show the difference of the root𝑥⋆ and the
approximation 𝑥

𝑛
to 𝑥⋆ for the function 𝑓

1
−𝑓
3
, respectively,

where 𝑥
⋆ is the exact root computed with 650 significant

digits and 𝑥
𝑛
is calculated by using the same total number

of function evaluations (TNFE) for all methods.The absolute
values of the function (|𝑓(𝑥

𝑛
)|) and the computational order

of convergence (COC) are also shown in these tables. Here,
COC is defined by [27]

𝜌 ≈

ln 

(𝑥
𝑛+1

− 𝑥
⋆

) / (𝑥
𝑛
− 𝑥
⋆

)





ln 

(𝑥
𝑛
− 𝑥
⋆
) / (𝑥
𝑛−1

− 𝑥
⋆
)





. (81)

The following functions are used for the comparison:

𝑓
1
(𝑥) = (sin2𝑥 − 𝑥2 + 1)

2

,

𝑥
0
= 1.45,

𝑥
⋆

≈ 1.4044916482153412260350868178,

𝑓
2
(𝑥) = (cos𝑥 − 𝑥)3,

𝑥
0
= 0.9,

𝑥
⋆

≈ 0.73908513321516064165531208767,

𝑓
3
(𝑥) = (ln (𝑥) + √𝑥 − 5)4,

𝑥
0
= 8.0,

𝑥
⋆

≈ 8.3094326942315717953469556827.

(82)

As shown in Tables 1, 2, and 3, the presented methods
in this contribution are preferable to the modified Newton
method by numerical tests. Note also that the presented
methods show at least equal performance as compared with
some other methods of the same order.

6. Conclusion

In this work, we obtained two families of third-ordermethods
by using new techniques of divided differences for solv-
ing nonlinear equations with multiple roots. The proposed
methods contain many known methods, such as Dong’s
methods andNeta’smethod.We conclude from the numerical
examples that the proposed methods have at least equal
performance as compared with the other iterative methods
of the same order. Moreover, it was observed that these
methods have better performance than the modified Newton
method. We will continue our study to confirm if some
fourth-order methods can be obtained using the same ideas
in this contribution.
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