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This paper focuses on a generalized two-component Hunter-Saxton system. From a dynamic point of view, the existence of different
kinds of periodic wave, solitary wave, and blow-up wave is proved and the sufficient conditions to guarantee the existence of the
above solutions in different regions of the parametric space are given. Also, some exact parametric representations of the travelling
waves are presented.

1. Introduction

TheHunter-Saxton equation,

𝑢
𝑡𝑥𝑥

+ 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

= 0, (1)

was first introduced by Hunter and Saxton [1] as a model of
the dynamics of a nematic liquid crystal. Geometrically, the
HS equation (1) describes geodesic flow associated with the
right-invariant metrics on a homogeneous space [2]. It is a
particular case of the Euler-Poincaré equation on the diffeo-
morphisms in one spatial dimension [3]. Its integrability was
proved by Hunter and Zheng [4].

The two-component Hunter-Saxton system is as follows:

𝑢
𝑡𝑥𝑥

+ 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

− 𝜌𝜌
𝑥
= 0,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0,

(2)

which is a generalization of the Hunter-Saxton equation, and
was proposed by Wunsch [5] in a periodic setting. It is a
particular case of the Gurevich-Zybin system [6] pertaining
to nonlinear one-dimensional dynamics of dark matter as
well as nonlinear ion-acoustic waves [7].The two-component
system in a periodic setting has received some attention lately
[8, 9].

Very recently, the generalized two-component Hunter-
Saxton system

𝑢
𝑡𝑥𝑥

+ 2𝜎𝑢
𝑥
𝑢
𝑥𝑥

+ 𝜎𝑢𝑢
𝑥𝑥𝑥

− 𝜌𝜌
𝑥
+ 𝐴𝑢
𝑥
= 0,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0, 𝜎 ∈ R, 𝐴 ≥ 0,

(3)

was studied [10–12]. Moon and Liu [10] studied the wave-
breaking phenomena and global existence for (3). Moon [11]
determined the existence of solitary wave solutions for 𝜎 = 0

and classified the solitary waves for 𝜎 ̸= 0. The existence of
peaked solitary waves for 𝜎 > 1 was shown. The wave-
breaking criterion and local well-posedness were studied in
[12].

In this paper, we investigated the following generalized
two-component Hunter-Saxton system:

𝑢
𝑡𝑥𝑥

+ 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

− 𝜌𝜌
𝑥
+ 𝐴𝑢
𝑥
= 0,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0, 𝐴 ∈ R.

(4)

Obviously, system (4) becomes system (2) when 𝐴 = 0. We
will prove the existence of different kinds of travelling wave
of (4) and give some new exact travelling solutions using the
approach of dynamical system [13–17].
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Using the following independent variable transformation:

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝑢 (𝑥, 𝑡) = 𝜌 (𝜉) , 𝜉 = 𝑥 − 𝑐𝑡, (5)

where 𝑐 (𝑐 ̸= 0) is thewave speed, and substituting (5) into (4),
we obtain

−𝑐𝑢


+ 2𝑢

𝑢


+ 𝑢𝑢


− 𝜌𝜌

+ 𝐴𝑢

= 0,

−𝑐𝜌

+ (𝜌𝑢)



= 0,

(6)

where “” is the derivative with respect to 𝜉.
Integrating equations of (6) once with respect to 𝜉,

respectively, and setting the integral constants that are both
−2𝑐
2, we have

−𝑐𝑢


+

1

2

(𝑢

)

2

+ 𝑢𝑢


−

1

2

𝜌
2
+ 𝐴𝑢 = −2𝑐

2
,

−𝑐𝜌 + (𝜌𝑢) = −2𝑐
2
.

(7)

The second equation of (7) becomes

𝜌 = −

2𝑐
2

𝑐 − 𝑢

. (8)

Substituting (8) into the first equation of (7) yields

𝑢


=

𝑢 (𝐴𝑢
2
− 2𝑐 (𝐴 − 𝑐) 𝑢 + 𝑐

2
(𝐴 − 4𝑐)) + (1/2) (𝑐 − 𝑢)

2
(𝑢

)

2

(𝑐 − 𝑢)
3

.

(9)

Letting 𝑦 = 𝑑𝑢/𝑑𝜉, we get the following planar dynamical
system:

𝑑𝑢

𝑑𝜉

= 𝑦,

𝑑𝑦

𝑑𝜉

=

𝑢 (𝐴𝑢
2
− 2𝑐 (𝐴 − 𝑐) 𝑢 + 𝑐

2
(𝐴 − 4𝑐)) + (1/2) (𝑐 − 𝑢)

2
𝑦
2

(𝑐 − 𝑢)
3

.

(10)

The rest of this paper is organized as follows. In Section 2,
we discuss the bifurcation sets and phase portraits of system
(10), where explicit parametric conditions will be derived. In
Section 3, we give all possible exact periodic wave, solitary
wave, and blow-up wave solutions of system (4). A short
conclusion will be given in Section 4.

2. Bifurcation Sets and Phase
Portraits of System (10)

Using the transformation 𝑑𝜉 = (𝑐 − 𝑢)
3
𝑑𝜏, it carries (10) into

the Hamiltonian system:
𝑑𝑢

𝑑𝜏

= (𝑐 − 𝑢)
3
𝑦,

𝑑𝑦

𝑑𝜏

= 𝑢 (𝐴𝑢
2
− 2𝑐 (𝐴 − 𝑐) 𝑢 + 𝑐

2
(𝐴 − 4𝑐)) +

1

2

(𝑐 − 𝑢)
2
𝑦
2
,

(11)

with the following first integral:

𝐻(𝑢, 𝑦) =

(𝑐 − 𝑢)
2
𝑦
2
+ 𝐴𝑢
3
− 𝑐 (𝐴 − 4𝑐) 𝑢

2
− 4𝑐
3
𝑢 + 4𝑐

4

𝑐 − 𝑢

= ℎ.

(12)

For a fixed ℎ, the level curve 𝐻(𝜙, 𝑦) = ℎ defined by
(12) determines a set of invariant curves of system (11) which
contains different branches of curves. As ℎ is varied, it defines
different families of orbits of (11) with different dynamical
behaviors.

Write Δ = 𝑐(2𝐴 + 𝑐). Clearly, when 𝐴 ̸= 0 and Δ > 0,
system (11) has three equilibrium points at (0, 0), (𝑢

1
, 0), and

(𝑢
2
, 0) in 𝑢-axis, where 𝑢

1,2
= 𝑐((𝐴−𝑐)±√Δ)/𝐴. When𝐴 ̸= 0

and Δ = 0, system (11) has two equilibrium points at (0, 0)

and (𝑐(𝐴 − 𝑐)/𝐴, 0) in 𝑢-axis. When 𝐴 = 0, system (11) has
only one equilibrium point at (0, 0) in 𝑢-axis. There is no any
equilibrium point of system (11) in line 𝑢 = 𝑐.

Let 𝑀(𝜙
𝑒
, 𝑦
𝑒
) be the coefficient matrix of the linearized

system of (11) at equilibrium point (𝜙
𝑒
, 𝑦
𝑒
), then we have

Trace𝑀(𝜙
𝑒
, 0) = 0 and

𝐽 (0, 0) = det𝑀(0, 0) = −𝑐
5
(𝐴 − 4𝑐) ,

𝐽 (𝑢
1
, 0) = det𝑀(𝑢

1
, 0)

=

2𝑐
5
(−𝑐 + √Δ)

3

(𝑐 (2𝐴 + 𝑐) + (𝐴 − 𝑐)√Δ)

𝐴
4

,

𝐽 (𝑢
2
, 0) = det𝑀(𝑢

2
, 0)

=

2𝑐
5
(𝑐 + √Δ)

3

(−𝑐 (2𝐴 + 𝑐) + (𝐴 − 𝑐)√Δ)

𝐴
4

.

(13)

For an equilibrium point (𝜙
𝑒
, 𝑦
𝑒
) of a planar integrable

system, we know that (𝜙
𝑒
, 𝑦
𝑒
) is a saddle point if 𝐽(𝜙

𝑒
, 𝑦
𝑒
) < 0,

a center point if 𝐽(𝜙
𝑒
, 𝑦
𝑒
) > 0 and Trace𝑀(𝜙

𝑒
, 𝑦
𝑒
) = 0, and a

cusp if 𝐽(𝜙
𝑒
, 𝑦
𝑒
) = 0 and the Poincaré index of (𝜙

𝑒
, 𝑦
𝑒
) is zero.

Since both systems (10) and (11) have the same first
integral (12), then the two systems above have the same
topological phase portraits. Therefore we can obtain the
bifurcation sets and phase portraits of system (10) from that
of system (11).

By using the properties of equilibrium points and bifur-
cation method of dynamical systems, we can show that
bifurcation sets and phase portraits of system (10) are drawn
in Figure 1.
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5
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Figure 1: Continued.
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(i) 𝑐 > 0, 𝐴 = −(1/2)𝑐

0

y
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(j) 𝑐 > 0, −(1/2)𝑐 < 𝐴 < 0

y

2
u

(k) 𝑐 > 0, 𝐴 = 0

y

–10
u

(l) 𝑐 > 0, 0 < 𝐴 < 4𝑐

y

–5
u

(m) 𝑐 > 0, 𝐴 = 4𝑐

y

u

(n) 𝑐 > 0, 𝐴 > 4𝑐

Figure 1: Bifurcation sets and phase portraits of system (10).

3. Exact Travelling Wave
Solutions of System (4)

Denote that

ℎ
0
= 4𝑐
3
,

ℎ
1
=

𝑐
2
(𝑐 (7𝐴

2
+ 2𝐴𝑐 + 4𝑐

2
) + (𝐴

2
+ 2𝐴𝑐 − 4𝑐

2
)√Δ)

𝐴 (𝑐 − √Δ)

,

ℎ
2
=

𝑐
2
(−𝑐 (7𝐴

2
+ 2𝐴𝑐 + 4𝑐

2
) + (𝐴

2
+ 2𝐴𝑐 − 4𝑐

2
)√Δ)

𝐴 (−𝑐 − √Δ)

.

(14)

From Figure 1, we give some exact travelling wave solutions
of system (4) as follows.

3.1. Different Kinds of Periodic Wave Solutions. From
Figures 1(d) and 1(k), we see that there is one periodic orbit



Advances in Mathematical Physics 5

of system (10) defined by𝐻(𝑢, 𝑦) = ℎ if and only if one of the
following conditions holds:

(𝑎
1
) 𝑐 < 0, 𝐴 = 0, ℎ < ℎ

0
;

(𝑎
2
) 𝑐 > 0, 𝐴 = 0, ℎ > ℎ

0
.

The periodic orbit passes points (𝑢
𝑚
, 0) and (𝑢

𝑀
, 0), where

𝑢
𝑀,𝑚

= (−ℎ + 4𝑐
3
± √ℎ
2
+ 8𝑐
3
ℎ − 48𝑐

6
)/8𝑐
2. Its expression is

𝑦 = ±

2𝑐√(𝑢
𝑀

− 𝑢) (𝑢 − 𝑢
𝑚
)

𝑐 − 𝑢

, 𝑢
𝑚

≤ 𝑢 ≤ 𝑢
𝑀
.

(15)

If introducing a new parametric variable 𝜒 and letting

𝑑𝜉 = (𝑐 − 𝑢) 𝑑𝜒, (16)

then we have

𝑑𝑢

𝑑𝜒

= (𝑐 − 𝑢) 𝑦. (17)

Substituting (15) into (17) and integrating it along the
periodic orbit yield the following:

∫

𝑢𝑀

𝑢

𝑑𝑠

√(𝑢
𝑀

− 𝑠) (𝑠 − 𝑢
𝑚
)

= 2




𝑐𝜒





. (18)

Completing (18) and using (8) and (16), we can get a periodic
wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) = 𝑢
𝑚
sin2 (𝑐𝜒) + 𝑢

𝑀
cos2 (𝑐𝜒) ,

𝜌 (𝑥, 𝑡) =

2𝑐
2

𝑢
𝑚
sin2 (𝑐𝜒) + 𝑢

𝑀
cos2 (𝑐𝜒) − 𝑐

,

𝑡 =

1

𝑐

(𝑥 − ((𝑐 −

1

2

(𝑢
𝑚

+ 𝑢
𝑀
)) 𝜒 +

𝑢
𝑚

− 𝑢
𝑀

4𝑐

sin (2𝑐𝜒))) .

(19)

From Figures 1(a), 1(b), 1(c), 1(h), 1(i), and 1(j), we see that
there are one periodic orbit and an open curve of system (10)
defined by 𝐻(𝑢, 𝑦) = ℎ if and only if one of the following
conditions holds:

(𝑏
1
) 𝑐 < 0, 𝐴 < 4𝑐, ℎ < ℎ

2
;

(𝑏
2
) 𝑐 < 0, 𝐴 < 4𝑐, ℎ

0
< ℎ < ℎ

1
;

(𝑏
3
) 𝑐 < 0, 𝐴 = 4𝑐, ℎ < ℎ

2
;

(𝑏
4
) 𝑐 < 0, 4𝑐 < 𝐴 < 0, ℎ > ℎ

2
;

(𝑏
5
) 𝑐 < 0, 4𝑐 < 𝐴 < 0, ℎ

1
< ℎ < ℎ

0
;

(𝑏
6
) 𝑐 > 0, 𝐴 < −(1/2)𝑐, ℎ > ℎ

0
;

(𝑏
7
) 𝑐 > 0, 𝐴 = −(1/2)𝑐, ℎ > ℎ

0
;

(𝑏
8
) 𝑐 > 0, −(1/2)𝑐 < 𝐴 < 0, ℎ > ℎ

0
;

(𝑏
9
) 𝑐 > 0, −(1/2)𝑐 < 𝐴 < 0, ℎ

2
< ℎ < ℎ

1
.

The periodic orbit passing points (𝛾
3
, 0) and (𝛾

2
, 0) and

the open curve passing point (𝛾
1
, 0), where 𝛾

1
, 𝛾
2
, 𝛾
3

(𝛾
3
< 𝛾
2
< 𝛾
1
), are three real roots of𝐴𝑧

3
+ 𝑐(4𝑐 −𝐴)𝑧

2
+ (ℎ −

4𝑐
3
)𝑧 + 𝑐(4𝑐

3
− ℎ) = 0. Their expressions are, respectively,

𝑦 = ±

√−𝐴 (𝛾
1
− 𝑢) (𝛾

2
− 𝑢) (𝑢 − 𝛾

3
)

𝑐 − 𝑢

, 𝛾
3
≤ 𝑢 ≤ 𝛾

2
,

(20)

𝑦 = ±

√−𝐴 (𝑢 − 𝛾
1
) (𝑢 − 𝛾

2
) (𝑢 − 𝛾

3
)

𝑐 − 𝑢

, 𝑢 ≥ 𝛾
1
.

(21)

Substituting (20) into (17) and integrating it along the
periodic orbit yield equation

∫

𝑢

𝛾3

𝑑𝑠

√(𝛾
1
− 𝑠) (𝛾

2
− 𝑠) (𝑠 − 𝛾

3
)

= √−𝐴




𝜒




. (22)

Completing (22) and using (8) and (16), we can get a periodic
wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) = 𝛾
3
+ (𝛾
2
− 𝛾
3
) sn2 (𝜔𝜒, 𝑘) ,

𝜌 (𝑥, 𝑡) =

2𝑐
2

(𝛾
3
− 𝑐) + (𝛾

2
− 𝛾
3
) sn2 (𝜔𝜒, 𝑘)

,

𝑡 =

1

𝑐

(𝑥 − ((𝑐 − 𝛾
3
) 𝜒 +

𝛾
3
− 𝛾
2

𝜔𝑘
2

× (𝜔𝜒 − E (am (𝜔𝜒, 𝑘) , 𝑘)))) ,

(23)

where 𝜔 = (1/2)√−𝐴(𝛾
1
− 𝛾
3
), 𝑘 = √(𝛾

2
− 𝛾
3
)/(𝛾
1
− 𝛾
3
),

sn(⋅, 𝑘) is the Jacobian elliptic function with the modulus 𝑘,
E(am(𝑢

1
, 𝑘), 𝑘) is the normal elliptic integral of the second

kind, and am(𝑢
1
, 𝑘) reads amplitude 𝑢

1
(see [18]).

Substituting (21) into (17) and integrating it along the
open curve yield the following:

∫

+∞

𝑢

𝑑𝑠

√(𝑠 − 𝛾
1
) (𝑠 − 𝛾

2
) (𝑠 − 𝛾

3
)

= √−𝐴




𝜒




. (24)

Completing (24) and using (8) and (16), we can get a periodic
blow-up wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) = 𝛾
3
+ (𝛾
1
− 𝛾
3
) ns2 (𝜔𝜒, 𝑘) ,

𝜌 (𝑥, 𝑡) =

2𝑐
2

(𝛾
3
− 𝑐) + (𝛾

1
− 𝛾
3
) ns2 (𝜔𝜒, 𝑘)

,

𝑡=

1

𝑐

(𝑥 − ((𝑐 − 𝛾
1
) 𝜒 +

𝛾
1
− 𝛾
3

𝜔

× (E (am (𝜔𝜒, 𝑘), 𝑘)+dn (𝜔𝜒, 𝑘) cs (𝜔𝜒, 𝑘)))) ,

(25)

where 𝜔 = (1/2)√−𝐴(𝛾
1
− 𝛾
3
), 𝑘 = √(𝛾

2
− 𝛾
3
)/(𝛾
1
− 𝛾
3
),

ns(⋅, 𝑘), dn(⋅, 𝑘), and cs(⋅, 𝑘) are the Jacobian elliptic functions
(see [18]).

From Figures 1(e), 1(f), 1(g), 1(l), 1(m), and 1(n), we see
that there are one periodic orbit and an open curve of system
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(10) defined by𝐻(𝑢, 𝑦) = ℎ if and only if one of the following
conditions holds:

(𝑐
1
) 𝑐 < 0, 0 < 𝐴 < −(1/2)𝑐, ℎ < ℎ

0
;

(𝑐
2
) 𝑐 < 0, 0 < 𝐴 < −(1/2)𝑐, ℎ

2
< ℎ < ℎ

1
;

(𝑐
3
) 𝑐 < 0, 𝐴 = −(1/2)𝑐, ℎ < ℎ

0
;

(𝑐
4
) 𝑐 < 0, 𝐴 > −(1/2)𝑐, ℎ < ℎ

0
;

(𝑐
5
) 𝑐 > 0, 0 < 𝐴 < 4𝑐, ℎ

0
< ℎ < ℎ

2
;

(𝑐
6
) 𝑐 > 0, 0 < 𝐴 < 4𝑐, ℎ < ℎ

1
;

(𝑐
7
) 𝑐 > 0, 𝐴 = 4𝑐, ℎ < ℎ

1
;

(𝑐
8
) 𝑐 > 0, 𝐴 > 4𝑐, ℎ

2
< ℎ < ℎ

0
;

(𝑐
9
) 𝑐 > 0, 𝐴 > 4𝑐, ℎ < ℎ

1
.

The periodic orbit passes points (𝛾
1
, 0) and (𝛾

2
, 0), and the

open curve passes point (𝛾
3
, 0), where 𝛾

1
, 𝛾
2
, 𝛾
3
(𝛾
3
< 𝛾
2
< 𝛾
1
)

are three real roots of𝐴𝑧
3
+𝑐(4𝑐−𝐴)𝑧

2
+(ℎ−4𝑐

3
)𝑧+𝑐(4𝑐

3
−ℎ) =

0. Their expressions are, respectively,

𝑦 = ±

√𝐴 (𝛾
1
− 𝑢) (𝑢 − 𝛾

2
) (𝑢 − 𝛾

3
)

𝑐 − 𝑢

, 𝛾
2
≤ 𝑢 ≤ 𝛾

1
,

(26)

𝑦 = ±

√𝐴 (𝛾
1
− 𝑢) (𝛾

2
− 𝑢) (𝛾

3
− 𝑢)

𝑐 − 𝑢

, 𝑢 ≤ 𝛾
3
.

(27)

Substituting (26) into (17) and integrating it along the
periodic orbit yield the following:

∫

𝛾1

𝑢

𝑑𝑠

√(𝛾
1
− 𝑠) (𝑠 − 𝛾

2
) (𝑠 − 𝛾

3
)

= √𝐴




𝜒




. (28)

Completing (28) and using (8) and (16), we can get a periodic
wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) = 𝛾
1
+ (𝛾
2
− 𝛾
1
) sn2 (𝜔𝜒, 𝑘) ,

𝜌 (𝑥, 𝑡) =

2𝑐
2

(𝛾
1
− 𝑐) + (𝛾

2
− 𝛾
1
) sn2 (𝜔𝜒, 𝑘)

,

𝑡 =

1

𝑐

(𝑥 − ((𝑐 − 𝛾
1
) 𝜒 +

𝛾
1
− 𝛾
2

𝜔𝑘
2

× (𝜔𝜒 − E (am (𝜔𝜒, 𝑘) , 𝑘)))) ,

(29)

where 𝜔 = (1/2)√𝐴(𝛾
1
− 𝛾
3
), 𝑘 = √(𝛾

1
− 𝛾
2
)/(𝛾
1
− 𝛾
3
).

Substituting (27) into (17) and integrating it along the
open curve yield the following:

∫

𝑢

−∞

𝑑𝑠

√(𝛾
1
− 𝑠) (𝛾

2
− 𝑠) (𝛾

3
− 𝑠)

= √𝐴




𝜒




. (30)

Completing (30) and using (8) and (16), we can get a periodic
blow-up wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) = 𝛾
1
+ (𝛾
3
− 𝛾
1
) ns2 (𝜔𝜒, 𝑘) ,

𝜌 (𝑥, 𝑡) =

2𝑐
2

(𝛾
1
− 𝑐) + (𝛾

3
− 𝛾
1
) ns2 (𝜔𝜒, 𝑘)

,

𝑡 =

1

𝑐

(𝑥 − ((𝑐 − 𝛾
3
) 𝜒 +

𝛾
3
− 𝛾
1

𝜔

× (E (am (𝜔𝜒, 𝑘) , 𝑘)+dn (𝜔𝜒, 𝑘) cs (𝜔𝜒, 𝑘)))) ,

(31)

where 𝜔 = (1/2)√𝐴(𝛾
1
− 𝛾
3
), 𝑘 = √(𝛾

1
− 𝛾
2
)/(𝛾
1
− 𝛾
3
).

3.2. Solitary Wave and Blow-Up Wave Solutions. From
Figure 1(a), we see that there are one homoclinic orbit and
an open curve of system (10) defined by 𝐻(𝜙, 𝑦) = ℎ

0
when

𝑐 < 0, 𝐴 < 4𝑐. The homoclinic orbit connecting with saddle
point (0, 0) and passes point (𝑢

𝑚
, 0), and the open curve

passes saddle point (0, 0), where 𝑢
𝑚

= 𝑐(𝐴 − 4𝑐)/𝐴. Their
expressions are, respectively,

𝑦 = ±

𝑢√−𝐴 (𝑢 − 𝑢
𝑚
)

𝑐 − 𝑢

, 𝑢
𝑚

≤ 𝑢 < 0,
(32)

𝑦 = ±

𝑢√−𝐴 (𝑢 − 𝑢
𝑚
)

𝑐 − 𝑢

, 𝑢 ≥ 0.
(33)

Substituting (32) into (17) and integrating it along the
homoclinic orbit yield the following:

∫

𝑢

𝑢𝑚

𝑑𝑠

𝑠√𝑠 − 𝑢
𝑚

= −√−𝐴




𝜒




. (34)

Completing (34) and using (8) and (16), we can get a solitary
wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) =

𝑐 (𝐴 − 4𝑐)

𝐴

sech2 (𝜔𝜒) ,

𝜌 (𝑥, 𝑡) =

2𝐴𝑐

(𝐴 − 4𝑐) sech2 (𝜔𝜒) − 𝐴

,

𝑡 =

1

𝑐

(𝑥 − 𝑐 (𝜒 −

(𝐴 − 4𝑐)

𝜔𝐴

tanh (𝜔𝜒))) ,

(35)

where 𝜔 = (1/2)√𝑐(𝐴 − 4𝑐).
Substituting (33) into (17) and integrating it along the

open curve yield the following:

∫

+∞

𝑢

𝑑𝑠

𝑠√𝑠 − 𝑢
𝑚

= √−𝐴




𝜒




. (36)
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Completing (36) and using (8) and (16), we can get a blow-up
wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) =

𝑐 (4𝑐 − 𝐴)

𝐴

csch2 (𝜔𝜒) ,

𝜌 (𝑥, 𝑡) =

2𝐴𝑐

(4𝑐 − 𝐴) csch2 (𝜔𝜒) − 𝐴

,

𝑡 =

1

𝑐

(𝑥 − 𝑐 (𝜒 +

(𝐴 − 4𝑐)

𝜔𝐴

coth (𝜔𝜒))) ,

(37)

where 𝜔 = (1/2)√𝑐(𝐴 − 4𝑐).
From Figure 1(n), we see that there are one homoclinic

orbit and an open curve of system (10) defined by 𝐻(𝜙, 𝑦) =

ℎ
0
when 𝑐 > 0, 𝐴 > 4𝑐. The homoclinic orbit connects with

saddle point (0, 0) and passes point (𝑢
𝑀
, 0), and the open

curve passes saddle point (0, 0), where 𝑢
𝑀

= 𝑐(𝐴 − 4𝑐)/𝐴.
Their expressions are, respectively,

𝑦 = ±

𝑢√𝐴 (𝑢
𝑀

− 𝑢)

𝑐 − 𝑢

, 0 < 𝑢 ≤ 𝑢
𝑀
,

(38)

𝑦 = ±

𝑢√𝐴 (𝑢
𝑀

− 𝑢)

𝑐 − 𝑢

, 𝑢 ≤ 0.
(39)

Substituting (38) into (17) and integrating it along the
homoclinic orbit yield the following:

∫

𝑢𝑀

𝑢

𝑑𝑠

𝑠√𝑢
𝑀

− 𝑠

= √𝐴




𝜒




. (40)

Completing (40) and using (8) and (16), we can get a solitary
wave solution of system (4) the same as (35).

Substituting (39) into (17) and integrating it along the
open curve yield the following:

∫

𝑢

−∞

𝑑𝑠

𝑠√𝑢
𝑀

− 𝑠

= √𝐴




𝜒




. (41)

Completing (41) and using (8) and (16), we can get a blow-up
wave solution of system (4) same as (37).

From Figure 1(b), we see that there is an open curve of
system (10) defined by 𝐻(𝜙, 𝑦) = ℎ

0
passing cusp (0, 0) when

𝑐 < 0, 𝐴 = 4𝑐. Its expression is

𝑦 = ±

2𝑢√−𝑐𝑢

𝑐 − 𝑢

, 𝑢 ≥ 0. (42)

Substituting (42) into (17) and integrating it along the
open curve yield the following:

∫

+∞

𝑢

𝑑𝑠

𝑠√−𝑐𝑠

= 2




𝜒




. (43)

Completing (43) and using (8) and (16), we can get a blow-up
wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) = −

1

𝑐𝜒
2
,

𝜌 (𝑥, 𝑡) = −

2𝑐
3
𝜒
2

1 + 𝑐
2
𝜒
2
,

𝑡 =

1

𝑐

(𝑥 − (𝑐𝜒 −

1

𝑐𝜒

)) .

(44)

From Figure 1(m), we see that there is an open curve of
system (10) defined by 𝐻(𝜙, 𝑦) = ℎ

0
passes cusp (0, 0) when

𝑐 > 0, 𝐴 = 4𝑐. Its expression is

𝑦 = ±

2𝑢√−𝑐𝑢

𝑐 − 𝑢

, 𝑢 ≤ 0. (45)

Substituting (45) into (17) and integrating it along the
open curve yield the following:

∫

𝑢

−∞

𝑑𝑠

𝑠√−𝑐𝑠

= −2




𝜒




. (46)

Completing (46) and using (8) and (16), we can get a blow-up
wave solution of system (4) the same as (44).

From Figure 1(c), we see that there are one homoclinic
orbit and an open curve of system (10) defined by 𝐻(𝜙, 𝑦) =

ℎ
1
when 𝑐 < 0, 4𝑐 < 𝐴 < 0. The homoclinic orbit connects

with saddle point (𝑢
1
, 0) and passes point (𝑢

𝑚
, 0), and the

open curve passes saddle point (𝑢
1
, 0), where 𝑢

𝑚
= −𝑐((𝐴 +

2𝑐) + 2√𝑐(2𝐴 + 𝑐))/𝐴. Their expressions are, respectively,

𝑦 = ±

(𝑢
1
− 𝑢)√−𝐴 (𝑢 − 𝑢

𝑚
)

𝑐 − 𝑢

, 𝑢
𝑚

≤ 𝑢 < 𝑢
1
,

(47)

𝑦 = ±

(𝑢 − 𝑢
1
)√−𝐴 (𝑢 − 𝑢

𝑚
)

𝑐 − 𝑢

, 𝑢 ≥ 𝑢
1
.

(48)

Substituting (47) into (17) and integrating it along the
homoclinic orbit yield the following:

∫

𝑢

𝑢𝑚

𝑑𝑠

(𝑢
1
− 𝑠)√𝑠 − 𝑢

𝑚

= √−𝐴




𝜒




. (49)

Completing (49) and using (8) and (16), we can get a solitary
wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) = Ω + (𝑢
1
− Ω) tanh2 (𝜔𝜒) ,

𝜌 (𝑥, 𝑡) =

2𝑐
2

(Ω − 𝑐) + (𝑢
1
− Ω) tanh2 (𝜔𝜒)

,

𝑡 =

1

𝑐

(𝑥 − ((𝑐 − 𝑢
1
) 𝜒 +

𝑢
1
− Ω

𝜔

tanh (𝜔𝜒))) ,

(50)

where Ω = −𝑐((𝐴 + 2𝑐) + 2√𝑐(2𝐴 + 𝑐))/𝐴, 𝜔 = (1/2)

√𝐴(Ω − 𝑢
1
).
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Substituting (48) into (17) and integrating it along the
open curve yield the following:

∫

+∞

𝑢

𝑑𝑠

(𝑠 − 𝑢
1
)√𝑠 − 𝑢

𝑚

= √−𝐴




𝜒




. (51)

Completing (51) and using (8) and (16), we can get a blow-up
wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) = Ω + (𝑢
1
− Ω) coth2 (𝜔𝜒) ,

𝜌 (𝑥, 𝑡) =

2𝑐
2

(Ω − 𝑐) + (𝑢
1
− Ω) coth2 (𝜔𝜒)

,

𝑡 =

1

𝑐

(𝑥 − ((𝑐 − 𝑢
1
) 𝜒 +

𝑢
1
− Ω

𝜔

coth (𝜔𝜒))) ,

(52)

where Ω = −𝑐((𝐴 + 2𝑐) + 2√𝑐(2𝐴 + 𝑐))/𝐴, 𝜔 = (1/2)

√𝐴(Ω − 𝑢
1
).

From Figure 1(e), we see that there are one homoclinic
orbit and an open curve of system (10) defined by 𝐻(𝜙, 𝑦) =

ℎ
1
when 𝑐 < 0, 0 < 𝐴 < −(1/2)𝑐. The homoclinic

orbit connects with saddle point (𝑢
1
, 0) and passes point

(𝑢
𝑀
, 0), and the open curve passes saddle point (𝑢

1
, 0), where

𝑢
𝑀

= −𝑐((𝐴 + 2𝑐) + 2√𝑐(2𝐴 + 𝑐))/𝐴. Their expressions are,
respectively,

𝑦 = ±

(𝑢 − 𝑢
1
)√𝐴 (𝑢

𝑀
− 𝑢)

𝑐 − 𝑢

, 𝑢
1
< 𝑢 ≤ 𝑢

𝑀
,

(53)

𝑦 = ±

(𝑢
1
− 𝑢)√𝐴 (𝑢

𝑀
− 𝑢)

𝑐 − 𝑢

, 𝑢 ≤ 𝑢
1
.

(54)

Substituting (53) into (17) and integrating it along the
homoclinic orbit yield the following:

∫

𝑢𝑀

𝑢

𝑑𝑠

(𝑠 − 𝑢
1
)√𝑢
𝑀

− 𝑠

= √𝐴




𝜒




. (55)

Completing (55) and using (8) and (16), we can get a solitary
wave solution of system (4) the same as (50).

Substituting (54) into (17) and integrating it along the
open curve yield the following:

∫

𝑢

−∞

𝑑𝑠

(𝑢
1
− 𝑠)√𝑢

𝑀
− 𝑠

= √𝐴




𝜒




. (56)

Completing (56) and using (8) and (16), we can get a blow-up
wave solution of system (4) the same as (52).

From Figure 1(f), we see that there is an open curve of
system (10) defined by 𝐻(𝜙, 𝑦) = −(19/2)𝑐

3 passes cusp
(3𝑐, 0) when 𝑐 < 0, 𝐴 = −(1/2)𝑐. Its expression is

𝑦 = ±

(3𝑐 − 𝑢)√− (1/2) 𝑐 (3𝑐 − 𝑢)

𝑐 − 𝑢

, 𝑢 ≤ 3𝑐. (57)

Substituting (57) into (17) and integrating it along the
open curve yield the following:

∫

𝑢

−∞

𝑑𝑠

(3𝑐 − 𝑠)√3𝑐 − 𝑠

= √−

𝑐

2





𝜒




. (58)

Completing (58) and using (8) and (16), we can get a blow-up
wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) = 3𝑐 +

8

𝑐𝜒
2
,

𝜌 (𝑥, 𝑡) =

2𝑐
3
𝜒
2

8 + 2𝑐
2
𝜒
2
,

𝑡 =

1

𝑐

(𝑥 + (2𝑐𝜒 −

8

𝑐𝜒

)) .

(59)

From Figure 1(i), we see that there is an open curve of
system (10) defined by 𝐻(𝜙, 𝑦) = −(19/2)𝑐

3 passes cusp
(3𝑐, 0) when 𝑐 > 0, 𝐴 = −(1/2)𝑐. Its expression is

𝑦 = ±

(𝑢 − 3𝑐)√(1/2) 𝑐 (𝑢 − 3𝑐)

𝑐 − 𝑢

, 3𝑐 ≤ 𝑢. (60)

Substituting (60) into (17) and integrating it along the
open curve yield the following:

∫

+∞

𝑢

𝑑𝑠

(𝑠 − 3𝑐)√𝑠 − 3𝑐

= √

𝑐

2





𝜒




. (61)

Completing (61) and using (8) and (16), we can get a blow-up
wave solution of system (4) the same as (59).

From Figure 1(j), we see that there are one homoclinic
orbit and an open curve of system (10) defined by 𝐻(𝜙, 𝑦) =

ℎ
2
when 𝑐 > 0, −(1/2)𝑐 < 𝐴 < 0. The homoclinic

orbit connects with saddle point (𝑢
2
, 0) and passes point

(𝑢
𝑚
, 0), and the open curve passes saddle point (𝑢

2
, 0), where

𝑢
𝑚

= −𝑐((𝐴 + 2𝑐) − 2√𝑐(2𝐴 + 𝑐))/𝐴. Their expressions are,
respectively,

𝑦 = ±

(𝑢
2
− 𝑢)√−𝐴 (𝑢 − 𝑢

𝑚
)

𝑐 − 𝑢

, 𝑢
𝑚

≤ 𝑢 < 𝑢
2
,

(62)

𝑦 = ±

(𝑢 − 𝑢
2
)√−𝐴 (𝑢 − 𝑢

𝑚
)

𝑐 − 𝑢

, 𝑢 ≥ 𝑢
2
.

(63)

Substituting (62) into (17) and integrating it along the
homoclinic orbit yield the following:

∫

𝑢

𝑢𝑚

𝑑𝑠

(𝑢
2
− 𝑠)√𝑠 − 𝑢

𝑚

= √−𝐴




𝜒




. (64)

Completing (64) and using (8) and (16), we can get a solitary
wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) = Ω + (𝑢
2
− Ω) tanh2 (𝜔𝜒) ,

𝜌 (𝑥, 𝑡) =

2𝑐
2

(Ω − 𝑐) + (𝑢
2
− Ω) tanh2 (𝜔𝜒)

,

𝑡 =

1

𝑐

(𝑥 − ((𝑐 − 𝑢
2
) 𝜒 +

𝑢
2
− Ω

𝜔

tanh (𝜔𝜒))) ,

(65)

where Ω = −𝑐((𝐴 + 2𝑐) − 2√𝑐(2𝐴 + 𝑐))/𝐴, 𝜔 = (1/2)

√𝐴(Ω − 𝑢
2
).
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Substituting (63) into (17) and integrating it along the
open curve yield the following:

∫

+∞

𝑢

𝑑𝑠

(𝑠 − 𝑢
2
)√𝑠 − 𝑢

𝑚

= √−𝐴




𝜒




. (66)

Completing (66) and using (8) and (16), we can get a blow-up
wave solution of system (4) as follows:

𝑢 (𝑥, 𝑡) = Ω + (𝑢
2
− Ω) coth2 (𝜔𝜒) ,

𝜌 (𝑥, 𝑡) =

2𝑐
2

(Ω − 𝑐) + (𝑢
2
− Ω) coth2 (𝜔𝜒)

,

𝑡 =

1

𝑐

(𝑥 − ((𝑐 − 𝑢
2
) 𝜒 +

𝑢
2
− Ω

𝜔

coth (𝜔𝜒))) ,

(67)

where Ω = −𝑐((𝐴 + 2𝑐) − 2√𝑐(2𝐴 + 𝑐))/𝐴, 𝜔 =

(1/2)√𝐴(Ω − 𝑢
2
).

From Figure 1(l), we see that there are one homoclinic
orbit and an open curve of system (10) defined by 𝐻(𝜙, 𝑦) =

ℎ
2
when 𝑐 > 0, 0 < 𝐴 < 4𝑐. The homoclinic orbit connects

with saddle point (𝑢
2
, 0) and passes point (𝑢

𝑀
, 0), and the

open curve passes saddle point (𝑢
2
, 0), where 𝑢

𝑀
= −𝑐((𝐴 +

2𝑐) − 2√𝑐(2𝐴 + 𝑐))/𝐴. Their expressions are, respectively,

𝑦 = ±

(𝑢 − 𝑢
2
)√𝐴 (𝑢

𝑀
− 𝑢)

𝑐 − 𝑢

, 𝑢
2
< 𝑢 ≤ 𝑢

𝑀
,

(68)

𝑦 = ±

(𝑢
2
− 𝑢)√𝐴 (𝑢

𝑀
− 𝑢)

𝑐 − 𝑢

, 𝑢 ≤ 𝑢
2
.

(69)

Substituting (68) into (17) and integrating it along the
homoclinic orbit yield the following:

∫

𝑢𝑀

𝑢

𝑑𝑠

(𝑠 − 𝑢
2
)√𝑢
𝑀

− 𝑠

= √𝐴




𝜒




. (70)

Completing (70) and using (8) and (16), we can get a solitary
wave solution of system (4) the same as (65).

Substituting (69) into (17) and integrating it along the
open curve yield the following:

∫

𝑢

−∞

𝑑𝑠

(𝑢
2
− 𝑠)√𝑢

𝑀
− 𝑠

= √𝐴




𝜒




. (71)

Completing (71) and using (8) and (16), we can get a blow-up
wave solution of system (4) the same as (67).

4. Conclusion

In this paper, we studied the bifurcations of travelling wave
solutions of a generalized two-component Hunter-Saxton
system and obtained different kinds of periodic wave solu-
tions, which concluded periodic blow-up wave and periodic
loop solutions and so forth. Some solitary wave and blow-
up wave solutions are also obtained. The results of this paper
have enriched the results of [10–12].
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