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The collection of signature data for system development and evaluation generally requires significant time and effort. To overcome
this problem, this paper proposes a detector generation based clonal selection algorithm for synthetic signature set generation.The
goal of synthetic signature generation is to improve the performance of signature verification by providing more training samples.
Our method uses the clonal selection algorithm to maintain the diversity of the overall set and avoid sparse feature distribution.
The algorithm firstly generates detectors with a segmented r-continuous bits matching rule and P-receptor editing strategy to
provide a more wider search space. Then the clonal selection algorithm is used to expand and optimize the overall signature set.
We demonstrate the effectiveness of our clonal selection algorithm, and the experiments show that adding the synthetic training
samples can improve the performance of signature verification.

1. Introduction

Handwriting signature recognition is an effective identity
authentication method by using signature data, since every
person’s signature is different, and especially the dynamic
characteristic is difficult to imitate. Recently, lots of signature
verificationmethods have been proposed [1–3], and themain
goal is to improve the identification effect by investigating the
effective classification feature and algorithm.

An important challenge is that most existing approaches
require sufficient signature samples to guarantee the effect.
First, the performance evaluation of these systems needs to
provide a large number of test samples [4]. More importantly,
most of the classifier algorithms’ (such as neural networks,
hidden Markov model) performance generally depends on
the amount of training data, and training a stable and efficient
classifier needs providing a sufficient number of samples [5].
Although some commercial signature databases have been
established, the sharing and distribution of these data are very
difficult due to some legal issues [6]. Besides, the number
of signature databases that can be shared is fairly limited.
A direct solution is to collect signature samples by oneself.
However, the database collection is time consuming and
expensive, since users are unwilling to submit their privacy
data due to potential security problems. In addition, the

boring repeated submission process will affect the quality of
signature samples.

To overcome the database collection problem, some
synthetic signature generation methods have been presented.
By these methods, some synthetic signatures can be automat-
ically created by synthesizing real signatures [4–7]. Accord-
ing to the sample synthesis strategies, existing methods
can be divided into three categories: duplicated samples,
combination of different samples, and synthetic individuals.
The duplicate-based method [7–10] generates a new sample
through different transformation, and it is suitable for pro-
ducing different signatures corresponding to the same per-
son. The combination-based method [11] creates a new sam-
ple by combining person’s handwritten letters or units from
different samples. In the synthetic-based method [6], some
kind of a priori knowledge (such as stroke placement distri-
bution, length feature) is used to create a new sample, and this
method can create new individuals’ signature. In summary,
existing methods focus on novel sample deformation tech-
nology, which can make the new sample simulate the charac-
teristics of the real data.Meanwhile, the accuracy of signature
verification is improved by adding new training data.

In fact, adding synthetic training samples does not always
improve the performance of the classifier. On one hand,
adding the synthetic samples can increase the diversity of
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Figure 1: The process of our method.

the training set, which is helpful to optimize the decision
parameters in order to improve the identity rate. On the
other hand, unnatural deformation will produce large bias
away from real samples, which can lead to a deterioration of
the accuracy. Besides, the feature distribution of the whole
sample set also affects the classifier’s performance. Sparse
or uneven distribution will make the classifier unstable [12].
Therefore, the diversity and effectiveness of the overall train-
ing sample set have an important impact on the performance
of signature verification.

Accordingly, the artificial immune system (AIS) is intro-
duced as a means for creating synthetic signatures. Our goal
is to use the clonal selection algorithm (CSA) for expanding
the signature set from an initial set, composed of a small
amount of data. The result sample set can be used as the
training data to improve the verification performance. Our
method expands the population of signature data in each
generation rather than creating a synthetic sample succes-
sively. Throughout the process, we focus on the quality of
the population more than that of the individuals. By utilizing
the advantages of AIS in the self-recognition capabilities
and the diversity manipulation mechanisms, the diversity
and effectiveness of the overall training sample set can be
guaranteed. To investigate whether AIS improves the quality
of the synthetic sample set, the duplicated-based method is
selected as our synthesis strategy and a new clonal selection
algorithm is proposed by introducing a novel detector gener-
ation algorithm. The detector generation algorithm uses the
segmented 𝑟-continuous bits matching rule and 𝑃-receptor
editing strategy to create the initial population of CSA. The
experiment shows the effectiveness of the method.

2. Algorithm Overview

This paper uses the clonal selection algorithm to expand the
signature data set. On the basis of ensuring the effectiveness
of each new sample, this method focuses on the diversity
and effectiveness of the overall set. Standard clonal selection
algorithmgenerates the initial population randomly [13]. Due

to lack of the guidance of the input samples, the structures of
the antibodies in the initial population and the antigens will
be quite dissimilar, which affects the convergence efficiency of
the algorithm.Therefore, the detector generation algorithm is
introduced into the clonal selection process to present a novel
clonal selection algorithm.

The process is shown as in Figure 1. Our process flow
can be divided into two steps: detector generation and clonal
selection. In detector generation, an iterative enumeration
algorithm is firstly used to generate some new samples that
can be matched with the input sample by segmented 𝑟-
continuous bits matching rule, which means that the new
sample has several successive stroke sections that are similar
to some sections of the input sample.Then𝑃-receptor editing
strategy is used to create some new samples that have 𝑃

different strokes from the input sample. At last, the two sets
are combined as the detector set, and the purpose is to get
some individuals that have some differences with the input
sample in advance. Therefore, the clonal selection algorithm
will search the samples in a wider range to avoid losing the
opportunity to generate other useful individuals. In the clonal
selection process, the initial population is iteratively updated
by cloning-mutation-selection operation. Andmore effective
samples can be obtained by hypermutation and the diversity
of the overall set is maintained.

Before introducing the algorithm, we firstly introduce
our individual representation method that is used in our
algorithm. In this paper, every signature is defined as an
immune cell. The input samples are defined as antigens, and
the synthetic samples are treated as antibodies. A signature
sample TS consists of several sequences of strokes, and every
stroke 𝑠 is a sampling point sequence, which consists of the
points sampled between a pair of pen-down and pen-up oper-
ations.The horizontal coordinate 𝑥, the vertical coordinate 𝑦,
the pressure 𝑝

𝑟
, and the time 𝑡 are recorded for each sampling

point sp. Because different persons have different writing
habits, it is difficult to use a fixed-length sequence to define
all the signatures. Evenwhen the same personwrites the same
signature at different times, the number of strokes is not fixed.
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Figure 2: The segmented 𝑟-continuous bits matching rule: (a) 3-continuous bits matched but not segmented 3-continuous bits matched; (b)
segmented 3-continuous bits matched.

So every signature TS is defined as a variable-length stroke
sequence as follows:

TS = 𝑠
0
, 𝑠
1
, . . . , 𝑠

𝑁
, (1)

where𝑁 is the number of the strokes.

3. Detector Generation Algorithm

Detector generation algorithm is the key of this algorithm.
Detector generation algorithm [14] is widely used in negative
selection algorithm to generate the candidate data. Here, it is
used to create the initial population. The initial population
of the standard CSA is generally generated randomly, and
the structure of the random individual is much different
from that of the antigen. Theoretically, it requires many
times of iterations to get the population that can identify
antigens. The efficiency problem caused by the random
initial population can be improved by creating the antigen-
guided initial population. For example, the mature detector
or existing memory cells created by self-tolerance can be
used as the initial population [15]. However, the diversity
of the initial population created by this method is not as
wide as that of the random initial population. As a result,
it may make the algorithm fall into a local convergence to
lose the opportunity to learn other effective structures. To
solve it, a new detector generation algorithm is presented
by combining the segmented 𝑟-continuous bits matching
rule and 𝑃-receptor editing strategy. The detectors that are
generated by segmented 𝑟-continuous bits matching rule
capture the global structure of the antigen, and the detectors
that are generated by 𝑃-receptor editing strategy make the
initial population have a wider search space.

3.1. The Segmented 𝑟-Continuous Bits Matching Rule. The
𝑟-continuous bits matching rule is used to compute the
matching degree of two strings, which is widely used in
artificial immune system [16, 17]. The value 𝑟 determines the
matching degree. Since the 𝑟-continuous bits matching rule
only measures the partial sequence, it is difficult to make
the generated detector maintain the global structure of the
antigen by the rule directly. Therefore, we introduce the idea
of sequence segmentation. First, given two signatures, the
two stroke sequences are divided into 𝑛 (𝑛 > 1) segments
simultaneously. Then a single stroke is defined as a matching
bit, and if every pair of corresponding segments between the
signatures is 𝑟-continuous bits matched, the two signatures
are segmented 𝑟-continuous bits matched. Compared with
previous 𝑟-continuous bits matching rule, the segmented 𝑟-
continuous bits matching rule improves the global matching
degree of two signatures.

Figure 2 shows the segmented 𝑟-continuous bits match-
ing rule indicated by string.The two strings in Figure 2(a) are
3-continuous bits matched but not segmented 3-continuous
bits matched, because the second string only has one seg-
ment that is 3-continuous bits matched. And the strings in
Figure 2(b) are segmented 3-continuous bits matched, since
the two strings have 2 segments that are 3-continuous bits
matched. The vertical line is the segment line, while the bits
in the rectangles are the same. From the simple example
of Figure 2, we can see that the generated detector that is
only 𝑟-continuous bits matched cannot control the last 4
bits, because the front 4 bits have satisfied the requirement.
According to the segmented 𝑟-continuous bits rule, the global
structure controllability is improved.

There are two important parameters in the segmented
𝑟-continuous bits matching rule: bits length 𝑟 and segment
number 𝑛. The bits length 𝑟 shows the local matching degree,
and the segment number 𝑛 shows the global matching
degree.There is considerable variability in the stroke number
of different signatures; even the signatures given by the
same person often have different stroke number in different
acquisition sessions. Therefore, if fixed segment number
and bits length are used to control the matching degree
between the detector and antigen, it is difficult to capture the
important structure information while adapting to different
sketching habits and acquisition sessions. To solve it, the two
parameters are determined according to the stroke number
𝑁 of the signature as follows:

𝑛 = ⌊𝑁 ÷ 10⌋ + 2,

𝑟 = ⌊𝑁 ÷ 𝑛⌋ − 1.

(2)

Given a signature sample TS, a mutated sample is indi-
cated by TS

𝜒
, where the symbol 𝜒 is a subset of {1, 2, . . . , 𝑁}.

And if the 𝑖th stroke in the sample TS is mutated in TS
𝜒
,

𝑖 is an element of 𝜒. The possible set 𝜒 is exponentially
large, that is, 2𝑁. However, not every 𝜒 can make the TS
and TS

𝜒
segmented 𝑟-continuous bitsmatched. It is infeasible

to check every set 𝜒 successively to find the desirable cases;
besides, it is unnecessary to search all the cases. Our goal is to
generate the samples that can be segmented 𝑟-continuous bits
matched with the antigen, while introducing more mutation
to improve the diversity of the initial population.Accordingly,
an iterative enumerationmethod is proposed to add the valid
bit to the set𝜒 progressively whilemaintaining the segmented
𝑟-continuous bits matching rule, until the set 𝜒 cannot be
expanded. The whole process is shown in Algorithm 1.

A constraint-based enumeration method is proposed to
update the set 𝜒. Given any set 𝜒 (𝑡 is the maximum in
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(1) Input: number of matched continuous bits 𝑟; number of segments 𝑛
(2)Output: the result set list Ψ, which is a set of integral sets.
(3) Set the initial integral set 𝜒 = 0;
(4) Add the set 𝜒 into the set Ψ;
(5) Set the segment flag 𝑇 of set 𝜒 as 0;
(6) repeat
(7) for all 𝜒 ∈ Ψ do
(8) Update the set 𝜒 and get the candidate set Ψ󸀠; (see Algorithm 2)
(9) Remove 𝜒 from Ψ;
(10) if Update succeed then
(11) Add all the elements of the set Ψ󸀠 into Ψ;
(12) end if
(13) end for
(14) until Ψ is not changed

Algorithm 1: The segmented 𝑟-continuous bits matched detector generation.

the set 𝜒), the method uses a segment flag 𝑇 to indicate
the segment number of the subsequence 𝑠

0
, 𝑠
1
, . . . , 𝑠

𝑡
of

sample TS
𝜒
; that is, the front 𝑡 bits of samples TS and TS

𝜒

are segmented 𝑟-continuous bits matched, and the largest
segment number is 𝑇. According to the current set 𝜒, 4 bit
positions are defined: 𝐴, 𝐵, 𝐶, and 𝐷. Here, 𝐴 means the
next possible mutated bit position; 𝐵 is the smallest value that
makes the front 𝐵 bits of samples TS and TS

𝜒
segmented 𝑟-

continuous bits matched (segment number is 𝑇 + 1); 𝐶 is the
largest value thatmakes the last (𝑁−𝐶) bits of samples TS and
TS
𝜒
segmented 𝑟-continuous bits matched (segment number

is (𝑛−𝑇));𝐷 is the largest value thatmakes the last (𝑁−𝐷) bits
of samples TS and TS

𝜒
segmented 𝑟-continuous bits matched

(segment number is (𝑛 − 𝑇 − 1)). The four positions are
computed according to the maximum 𝑡 and the segment flag
𝑇 as follows:

𝐴 = 𝑡 + 1,

𝐵 = 𝑡 + 1 + 𝑟,

𝐶 = 𝑁 − (𝑛 − 𝑇) × 𝑟,

𝐷 = 𝑁 − (𝑛 − 𝑇 − 1) × 𝑟.

(3)

Then the bits from 𝐴 to 𝐷 are selected successively to
update the set𝜒, and the detail of the process is described as in
Algorithm 2. By Algorithm 2, the possible set 𝜒 is generated
to make TS and TS

𝜒
segmented 𝑟-continuous bits matched.

The corresponding positions of the strokes in the set 𝜒 are
thenmutated by adding the randomnoise to create amutated
sample TS

𝜒
. The generated samples are the first part of the

detector set.

3.2. The 𝑃-Receptor Editing Strategy. Figure 3 shows the hier-
archical structure of receptor editing. This type of mutation
can edit the stroke in any position without any 𝑟-continuous
bits matching requirement. The 𝑝-receptor editors can be
created from (𝑝 − 1)-receptor editors. According to the
property, the generation efficiency of the 𝑝-receptor editors
can be improved. The detail of this process is described as in
Algorithm 3.

In Algorithm 3, the parameter 𝑝
󸀠 shows the degree of

discrimination between the antigen TS and the new sample
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Figure 3: Hierarchical structure of receptor editing (RE) on sample
TS.

TS
𝜒
. Because the𝑝󸀠-receptor editors can be created from (𝑝

󸀠

−

1)-receptor editors, the process is the same as the mutation in
the clonal selection process. As a result, the parameter𝑝󸀠 is set
as a small value for generating the initial population (in this
paper 𝑝󸀠 = 2). The 𝑃-receptor editors are the second part of
the detector set, which is used as the initial population Pop

0

of the clonal selection algorithm.

4. Clonal Selection Algorithm

After getting the initial population, the clonal selection
algorithm is used to remove the invalid samples and generate
more valid samples. In this section, we first give some basic
operators in our CSA, such as affinity operator, mutation
operator, and density operator. Then the process and stop
criterion of our CSA are described.

Affinity Operator.The affinity measures the degree of match-
ing between the antigen and antibody. Because different
signatures often have different number of strokes, it is difficult
to compute the matching cost directly. So the stroke seg-
mentation algorithm based on dynamic programming (DP)
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(1) Input: the current set 𝜒;
(2)Output: the candidate set Ψ󸀠;
(3) Compute the 4 positions 𝐴, 𝐵, 𝐶 and𝐷 by (3);
(4) if 𝐵 > 𝐶 then
(5) for 𝑝 = 𝐴 → 𝐶 and 𝐵 → 𝐷 do
(6) Create the new candidate integral set 𝜒󸀠 = 𝜒 ∪ {𝑝} and push it into the set Ψ󸀠;
(7) end for
(8) else
(9) for 𝑝 = 𝐴 → 𝐷 do
(10) Create the new candidate integral set 𝜒󸀠 = 𝜒 ∪ {𝑝} and push it into the set Ψ󸀠;
(11) end for
(12) end if

Algorithm 2: Updating the integral set.

(1) Input: the initial sample TS = 𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑁
; the number 𝑝󸀠;

(2)Output: the result sample set Φ;
(3) Add the sample TS

0
into the set Φ;

(4) for 𝑖 = 1 → 𝑝
󸀠 do

(5) for all TS
𝜒
∈ Φ do

(6) 𝑡 = the maximum in the 𝜒;
(7) for 𝑗 = 𝑡 + 1 → 𝑁 do
(8) Create the new set 𝜒󸀠 = 𝜒 ∪ {𝑗};
(9) Mutate the 𝑗th stroke of TS

𝜒
;

(10) Create the new sample TS
𝜒
󸀠 and add it into Φ;

(11) end for
(12) Remove the sample TS

𝜒
from the Φ;

(13) end for
(14) end for

Algorithm 3: The 𝑃-receptor detector generation.

[18] is firstly used to make the two signatures have the same
number of strokes and establish a bijective mapping between
the two stroke sequences. During theDP-based segmentation
process, the set of temporal ordered candidate segment
points are firstly extracted according to the curvature feature,
and then the segmentation of two signatures is treated as
an optimization problem, which maximizes the matching
degree between the two signatures by selecting the segment
points from the ordered candidate segment points. For a
selected segment point, optimal segmentation contains the
optimal segmentation of the input stroke(s) up to this point.
Accordingly, the dynamic programming is used to search the
segment points recursively through a retroactive formula in
order to achieve the optimization. Figure 4 shows the DP-
based segmentation result. The sample in Figure 4(a) has 17
strokes, and the sample in Figure 4(b) has 10 strokes. The
𝑥-axis coordinate curves of the two samples are shown in
Figure 4(c), and the horizontal and vertical axis are the time
stamp and 𝑥-axis coordinate of the sample point, respectively.
The endpoints are also shown by the circles. By the DP-based
segmentation, each sample is divided into 17 strokes. And the
vertical lines in Figure 4(d) are the segmentation lines.

Then, Mahalanobis distance is used to compare the fea-
ture between the corresponding strokes of the two segmented

samples. And the affinity between the two signatures is com-
puted by

Aff (TS
1
,TS
2
) =

𝑛
󸀠

∑

𝑖=1

𝑒
−(distance

𝑖
)
2

, (4)

where 𝑛󸀠 is the segment number after the DP-based segmen-
tation, and distance

𝑖
is the Mahalanobis distance between

the 𝑖th segments of the samples TS
1
and TS

2
. The feature

vector that is used to computeMahalanobis distance includes
2 geometric features and 4 dynamic features, as shown in
Table 1. Given𝑁

𝑔
antigens Ag, the affinity of the antibody Ab

is the maximum value of the affinity between the antibody
and the𝑁

𝑔
antigens, which is computed by

Aff (Ab) = max Aff (Ab,Ag
𝑖
) , 1 ≤ 𝑖 ≤ 𝑁

𝑔
. (5)

MutationOperator.Themutation operator firstly selects some
strokes randomly from the signature tomutate the individual.
Then each selected stroke is distorted by adding randomnoise
to the horizontal coordinate 𝑥, the vertical coordinate 𝑦, and
the pressure 𝑝

𝑟
of the sampling points as follows:

𝑥 = 𝑥 + 𝑈
1
(−𝜔, 𝜔) ×

(max
𝑥
−min

𝑥
)

Aff (Ab)
,
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Figure 4: The segmentation result. (a) The first sample; (b) the second sample and its 𝑥-axis coordinate curves; (c) two samples’ 𝑥-axis
coordinate curves; (d) the segmentation results of the two samples.

𝑦 = 𝑦 + 𝑈
2
(−𝜔, 𝜔) ×

(max
𝑦
−min

𝑦
)

Aff (Ab)
,

𝑝
𝑟
= 𝑝
𝑟
+ 𝑈
3
(−𝜔, 𝜔) ×

(max
𝑝
−min

𝑝
)

Aff (Ab)
,

(6)

where 𝑈
1
(−𝜔, 𝜔), 𝑈

2
(−𝜔, 𝜔), and 𝑈

3
(−𝜔, 𝜔) are uniform

randomnumber from−𝜔 to𝜔 (in this paper,𝜔 = 0.05),max
𝑥
,

min
𝑥
, max

𝑦
, min
𝑦
, max

𝑝
, and min

𝑝
are the maximum and

minimum values of the 𝑥-axis coordinate, 𝑦-axis coordinate,
and pressure of the antibody Ab, respectively. Figure 5 shows
the new sample that is created by mutating the sample in
Figure 4(a).

Density Operator. Density manipulation is an important
characteristic in CSA to maintain the diversity of the sample
set. The density of the antibody Ab is computed by

Density (Ab) =
∑
𝑀

𝑖=1
Aff (Ab,Ab

𝑖
)

𝑀

,
(7)

where𝑀 is the size of the current sample set.
After defining the above three operators, the clonal

selection algorithm is used to expand the initial population
Pop
0
while improving the diversity and distribution of the

population. The clonal selection algorithm is described as in
Algorithm 4.

The algorithm is terminated when the sample set meets
the following requirements: (1) the size of the population

Table 1: The stroke feature.

Type Symbol Description

Geometric
mean 𝑥

Mean value of the sampling points’
horizontal coordinates

mean 𝑦
Mean value of the sampling points’
vertical coordinates

Dynamic

mean 𝑝
Mean value of the sampling points’
pressure

mean V Mean value of the sampling points’
velocity

mean 𝜃
Mean value of the sampling points’
tangent direction

str dr Duration time of the stroke

exceeds a threshold 𝜂
1
; (2) the dispersion is below a threshold

𝜂
2
; (3) the change of the dispersion is below a threshold

𝜂
3
. The dispersion 𝐷 measures the sparsity of the sample

distribution, which is computed by

𝐷 =

𝑀

∑

𝑖=1

(1 − Aff (Ab
𝑖
)) . (8)

5. Evaluation

We have implemented the proposed algorithm and used
several signatures to show the efficiency of our method.
The experiment environment is Intel Core i5-2400 3.10Ghz
with 8G of memory, based on a single threaded C++
implementation.
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Figure 5: The mutated individual. (a) The mutated sample; (b) the mutated 𝑥-axis coordinate curve.

(1) Input: the initial population Pop
0
;

(2)Output: the result population Pop
𝑅
;

(3) Pop
𝑅
= Pop

0
;

(4) repeat
(5) Add some random individuals to Pop

𝑅
;

(6) Compute the affinity of every individual of Pop
𝑅
;

(7) Select the𝑁
1
highest affinity individuals and generate a temporary population Pop

1
;

(8) Compute the density of every individual of Pop
1
;

(9) Clone every individual Ab of Pop
1
to generate a clone population Pop

2
, and the clone number is computed

by𝑁
2
× (Aff(Ab)/Density(Ab))/∑𝑀

𝑖=1
(Aff(Ab

𝑖
)/Density(Ab

𝑖
));

(10) Mutate the clone population Pop
2
to a degree inversely proportional to their affinity to produce a mature

population Pop
3
;

(11) Compute the affinity of the individuals of Pop
3
and select the𝑁

3
highest affinity individuals to generate

the new population Pop
𝑅

(12) until Termination

Algorithm 4: The clonal selection algorithm.

5.1. Data Collection. We collect some signature data for our
experiment. Thirteen students are invited to give their signa-
tures. Every student is first asked to write his signature for
50 times. Then, five other students are asked to forge his/her
signature for 10 times for every student. So there are 50 gen-
uine samples and 50 forged samples for every person. During
the collection process, we record the horizontal and vertical
coordinate, the pressure, and the time stamp of the sample
points. The pen-up and pen-down events are also captured
and the sample points between a pair of pen-up and pen-
down events constitute a stroke. Then the genuine samples
are divided into 10 groups and each group has five samples.
Besides, we also include a public benchmark provided by
the First International Signature Verification Competition
(SVC2004) [19]. This corpus consists of 40 sets of signatures.
Each set contains 20 genuine signatures from one contributor
and 20 skilled forgeries from five other contributors, and the
20 genuine signatures are divided into 4 groups.

Fierrez’s method is used as our verification system
[20], which uses the hidden Markov models (HMM). The
similarity of the signature is computed by using 10 left-to-
right HMM states and mixtures of 8 Gaussians per state.

We compute the equal error rate (EER) for performance
comparison. Figure 6 shows the relation between the size
of training set and EER for person 1. When the size of the
training set increases (𝑥-axis) before three groups, the EER
(𝑦-axis) decreases significantly. Our experiment focuses
on investigating whether our algorithm can improve the
performance when the size of the training set is small. So
each time only one group (five samples) is used as the input
training set. The other signatures are used as the test samples
to evaluate the performance.

5.2. Parameter Settings. 𝑁
1
,𝑁
2
, and𝑁

3
are the three param-

eters that determine the size of the temporary, clone, and
new population. We have ascertained experimentally that
higher numbers of𝑁

1
,𝑁
2
, and𝑁

3
will achieve better results.

However, in order to deal with the tradeoff of computational
time and accuracy, we set𝑁

1
= 30,𝑁

2
= 1000, and𝑁

3
= 200.

Themutation range𝜔 is set as 0.05.The termination criterion
includes three parameters: the size of the population 𝜂

1
is set

as 200; the dispersion threshold 𝜂
2
is set as 0.75; the variation

threshold of the dispersion 𝜂
3
is set as 0.01.
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Figure 6: The relation between the size of training set and EER.

Table 2: EER statistics in % of repeating our CSA for 10 times by the same input (20 subjects).

User ID Average SD Maximum User ID Average SD Maximum
1 13.50 3.37 20.00 2 14.50 1.58 15.00
3 30.50 1.58 35.00 4 14.50 1.58 15.00
5 22.50 2.64 25.00 6 19.50 1.58 20.00
7 9.50 1.58 10.00 8 26.00 3.16 30.00
9 14.00 2.11 15.00 10 5.00 1.58 10.00
11 17.00 3.50 20.00 12 7.50 1.67 10.00
13 14.00 2.11 15.00 14 29.50 1.58 30.00
15 7.50 0.00 7.50 16 7.50 1.67 10.00
17 13.00 2.58 15.00 18 9.50 1.58 10.00
19 13.50 2.41 15.00 20 0.50 1.58 5.00
SD denotes standard deviation.

Table 3: Average EERs in % of different training samples.

User ID 1 2 3 4 5 6 7 8 9 10 11 12 13
Real 14.8 3.6 5.8 15.8 1.8 30.2 10.4 13.4 7.2 18.4 13.6 1.8 8.4
Synthetic 6.3 2.6 3.2 15.0 0.8 25.0 4.6 12.0 3.6 14.2 11.6 5.8 6.0

5.3. Statistical Analysis. We select 20 sets of signatures from
the SVC2004 database to show the statistical analysis result of
the proposed CSA.The input consists of one group randomly
selected from each set of signatures and the proposed CSA
is executed for 10 times to generate 10 sets of synthetic
signatures from the same input. Then the corresponding
hiddenMarkovmodels are trained by the synthetic signatures
and evaluated for signature verification. A summary of eval-
uation results is given in Table 2, which shows the average,
standard deviation, and maximum values of the EERs. From
the statistical analysis result, we can see that though the CSA
is a random algorithm, the evaluation performance of the
generated synthetic signatures is stable.The reason is that our
detector generation algorithm creates the initial population
under the guidance of the input samples and many invalid
samples will not be searched due to the high quality of the
initial population.

5.4. Comparison between Real and Synthetic Training Samples.
We compare the performance by using different training
samples to train the corresponding HMMs. The proposed

CSA is firstly used to create some synthetic signatures in
order to expand the initial group. Then the initial group
and the expanded group (five genuine signatures) are used
as the training set for the HMM-based verification system,
respectively. The cross validation method is used to compare
the performance, and each time one group is used for training
the HMM-based recognition system. Then the other nine
groups and all the forged samples are used for estimating
the corresponding EER. The comparison result of our own
database is shown in Table 3, which records the average EER
for every invited contributor. The bolded values show better
case. From the table, we can see that the performance is
improved by our method. Except person 12, the EERs of
the other twelve persons are decreased. Among the twelve
persons, the EERs of persons 1, 5, 7, and 9 have fallen by
more than 50%. Figure 7 shows the relation between false
acceptance rate (FAR) and false rejection rate (FRR) of
persons 1, 7, and 9. From the FAR-FRR curve, we can see
that the performance is improved significantly by using the
expanded sample set as the training set.
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Figure 7: Training samples experiment: the relation between false acceptance rate (FAR) and false rejection (FFR) for persons 1, 7, and 9.

5.5. Comparison betweenGalbally’sMethod andOurs. Weuse
the SVC2004 database and our collection to compare the
quality of our generated synthetic signature setwithGalbally’s
method [7]. The cross validation method is used to compute
the average EERs for each set of signatures, and the same
process is described in Section 5.4. Galbally’s method and
ours use one group as the input and create the corresponding
synthetic signatures each time, respectively.Then the average
EER is computed to compare the performance. Table 4 shows
the comparison using SVC2004 database, while Table 5
shows the comparison using our own collection. The bolded
values show better results. From the 40 sets of signatures
in Table 4, there are 27 sets showing that the corresponding
average EERs of our method are lower than that of Galbally’s
method, while there are 9 sets showing that Galbally’smethod
performs better than ours. From the 13 sets of signatures in
Table 5, there are 8 sets showing that the average EERs of
our method are lower than that of Galbally’s method, while
there are 4 sets showing that Galbally’s method performs
better than ours. A summary of evaluation results is given
in Table 6, which shows average, standard deviation, and

maximum values of all the average EERs by SVC2004 and
our own database. The results show that introducing our
CSA method to optimize the whole signature improves the
verification performance (12.7% and 20.8% improvement in
the SVC2004 and our collection database, resp.). Besides, the
verification performance of ours is more stable for different
sets of signatures (the standard deviation of ours is lower than
that of Galbally’s method).

5.6. Comparison between Our CSA and Other CSAs. Then
we compare the performance of different CSAs for synthetic
sample generation. We compare three algorithms: the stan-
dard CSA (CSA1), the CSA by using the antigen as the
initial population (CSA2), and our CSA (CSA3). The main
differences are the generation of the initial population. CSA1
generates the initial population randomly. And CSA2 uses
the antigen group as the initial population. CSA3 uses the
segmented 𝑟-continuous bits matched detectors and the 𝑃-
receptor editors as the initial population.We randomly select
one group as the antigen group and then use the three
algorithms to expand the sample set for each person.
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Table 4: Average EERs (%) comparison between Galbally’s method and ours by SVC2004.

User ID 1 2 3 4 5 6 7 8 9 10
Galbally’s 11.25 11.25 22.50 18.75 7.50 15.63 22.50 13.75 28.75 21.25
Ours 5.63 7.50 17.50 21.25 12.50 25.00 31.25 12.50 15.00 20.00
User ID 11 12 13 14 15 16 17 18 19 20
Galbally’s 1.25 11.25 21.25 12.50 11.25 16.25 45.00 25.00 5.00 0.00
Ours 10.00 6.25 20.00 20.00 11.25 15.00 22.50 25.00 3.75 0.00
User ID 21 22 23 24 25 26 27 28 29 30
Galbally’s 5.63 3.75 10.00 3.13 20.00 11.25 10.00 3.75 6.88 8.75
Ours 0.63 0.00 1.88 1.25 8.13 6.88 8.13 2.50 6.25 0.63
User ID 31 32 33 34 35 36 37 38 39 40
Galbally’s 13.75 28.75 9.38 2.50 13.75 15.00 11.25 11.88 1.88 0.00
Ours 10.00 25.00 5.00 0.00 20.00 26.25 12.50 11.25 0.00 0.00

Table 5: Average EERs (%) comparison between Galbally’s method and ours by our own collection.

User ID 1 2 3 4 5 6 7 8 9 10 11 12 13
Galbally’s 16.0 1.6 4.5 14.6 1.7 25.6 3.4 7.6 3.6 25.6 16.6 12.6 6.5
Ours 6.3 2.6 3.2 15.0 0.8 25.0 4.6 12.0 3.6 14.2 11.6 5.8 6.0

Table 6: EER statistics in % for the comparison between Galbally’s method and ours.

Database Galbally’s Ours
Average SD Maximum Average SD Maximum

SVC2004 12.83 9.22 45.00 11.20 8.99 31.25
Our collection 10.76 8.46 25.60 8.52 6.76 25.00
SD denotes standard deviation.

Table 7: Comparison of the average running time(s).

User ID 1 2 3 4 5 6 7 8 9 10 11 12 13
CSA1 2608 1292 1779 934 115 3043 1131 1212 47 2171 3005 1386 1322
CSA2 2491 1151 629 751 98 2637 629 1222 75 2054 2712 1478 919
CSA3 791 102 729 215 200 525 286 110 89 226 686 584 183

The dispersion of each iteration
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Figure 8: The convergence analysis. (a) The dispersion; (b) the population size.
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Table 8: Average EERs in % of different CSA algorithms.

User ID 1 2 3 4 5 6 7 8 9 10 11 12 13
CSA1 16 6 10 18 6 44 10 18 12 10 20 8 10
CSA2 18 6 10 18 6 52 10 12 12 10 20 8 14
CSA3 8 4 6 12 4 26 8 8 2 2 20 4 6
Real 24 8 16 18 6 34 16 8 12 10 20 4 8

We compare the running time of the three algorithms,
as shown in Table 7. The bolded values show the fastest
algorithm. The input consists of one group that is selected
randomly from each set of our own collection. Each CSA is
executed for 10 times, and the average running time is then
computed. FromTable 7, we can see that our algorithm is sig-
nificantly faster than the other two algorithms in most cases.
Themain reason is that our initial population is created by the
proposed detector generation algorithm. Figure 8 shows the
corresponding convergence analysis results.Thedispersion of
the initial population in CSA1 is rather high, while the size of
the initial population in CSA2 is very small. So it needs suffi-
cient number of iteration to achieve the convergence. Andour
algorithm uses the segmented 𝑟-continuous bits matching
rule and 𝑃-receptor editing strategy to create the initial
population, and both the size and dispersion are optimized
preliminarily. The iteration number of CSA3 is 4 in this case,
which is significantly smaller than that of CSA1 and CSA2.

We also use the expanded sample sets that are created by
the three algorithms to trainHMMs for signature verification,
respectively.The average EERs are shown in Table 8. From the
table, we can see that the EERs of our algorithm are better
than that of the CSA1 and CSA2. In some cases, the EERs of
CSA1 and CSA2 are larger than that of verification using the
initial real samples as the training set. The experiment shows
that the generation of better initial population is important to
improve both the efficiency and effectiveness of the method.

6. Conclusion

In this paper, we present a novel clonal selection algorithm
for synthetic sample generation. Our method focuses on
the overall set rather than creating a sample successively in
order to improve the signature verification performance by
expanding the initial signature set.The proposed clonal selec-
tion algorithm keeps the diversity of the population while
maintaining the feature distribution nonsparse. To improve
the efficiency and effectiveness of the standard CSA, the
detector generation algorithm is introduced by combining
the segmented 𝑟-continuous bits matching rule and the 𝑃-
receptor editing strategy to create the initial population for
clonal selection process.The experiment shows the efficiency
and effectiveness of the method. By using the synthetic
samples as the training samples, the performance of the
signature verification system is improved. The future work is
to extend our method to other types of synthetic signature
generation methods, such as the combination-based or the
synthetic-individual method.
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