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We prove the existence and uniqueness of regular solution to the coupled Maxwell-Boltzmann-Euler system, which governs the
collisional evolution of a kind of fast moving, massive, and charged particles, globally in time, in a Bianchi of types I to VIII
spacetimes. We clearly define function spaces, and we establish all the essential energy inequalities leading to the global existence
theorem.

1. Introduction

In this paper, we study the coupled Maxwell-Boltzmann-
Euler systemwhich governs the collisional evolution of a kind
of fast moving, massive, and charged particles and which is
one of the basic systems of the kinetic theory.

The spacetimes considered here are the Bianchi of types
I to VIII spacetimes where homogeneous phenomena such
as the one we consider here are relevant. Note that the whole
universe is modeled and particles in the kinetic theory may
be particles of ionized gas as nebular galaxies or even cluster
of galaxies, burning reactors, and solar wind, for which only
the evolution in time is really significant, showing thereafter
the importance of homogeneous phenomena.

The relativistic Boltzmann equation rules the dynamics
of a kind of particles subject to mutual collisions, by deter-
mining their distribution function, which is a nonnegative
real-valued function of both the position and themomentum
of the particles. Physically, this function is interpreted as
the probability of the presence density of the particles in a
given volume, during their collisional evolution.We consider
the case of instantaneous, localized, binary, and elastic col-
lisions. Here the distribution function is determined by the
Boltzmann equation through a nonlinear operator called the
collision operator. The operator acts only on the momentum
of the particles and describes, at any time, at each point
where two particles collide with each other, the effects of

the behaviour imposed by the collision on the distribution
function, also taking in account the fact that the momen-
tum of each particle is not the same, before and after the
collision, with only the sum of their two momenta being
preserved.

TheMaxwell equations are the basic equations of electro-
magnetism and determine the electromagnetic field𝐹 created
by the fast moving charged particles. We consider the case
where the electromagnetic field 𝐹 is generated, through the
Maxwell equations by the Maxwell current defined by the
distribution function 𝑓 of the colliding particles, a charge
density 𝑒, and a future pointing unit vector 𝑢, tangent at any
point to the temporal axis.

The matter and energy content of the spacetime is rep-
resented by the energy-momentum tensor which is a
function of the distribution function 𝑓, the electromagnetic
field 𝐹, and a massive scalar field Φ, which depends only on
the time 𝑡.

The Euler equations simply express the conservation of
the energy-momentum tensor.

The system is coupled in the sense that 𝑓, which is
subject to the Boltzmann equation, generates the Maxwell
current in the Maxwell equations and is also present in the
Euler equations, whereas the electromagnetic field 𝐹, which
is subject to the Maxwell equations, is in the Lie derivative of
𝑓 with respect to the vectors field tangent to the trajectories
of the particles. 𝐹 also figures in the Euler equations.
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We consider for the study all the Bianchi of types I to VIII
spacetimes, excluding thereby the Bianchi type IX spacetime
also called the Kantowski-Sachs spacetime which has the
flaw to develop singularities in peculiar finite time and is
not convenient for the investigation of global existence of
solutions.

The main objective of the present work is to extend
the result obtained in [1–3] where the particular case of
the Bianchi type I spacetime is investigated. The choice of
function spaces and the process of establishing the energy
inequalities are highly improved.

The paper is organized as follows.
In Section 2, we introduce the spacetime and we give the

unknowns.
In Section 3, we describe the Maxwell-Boltzmann-Euler

system.
In Section 4, we define the function spaces and we

establish the energy inequalities.
In Section 5, we study the local existence of the solution.
In Section 6, we prove the global existence of the solution.

2. The Spacetime and the Unknowns

Greek indexes 𝛼, 𝛽, 𝛾, . . . range from 0 to 3, and Latin indexes
𝑖, 𝑗, 𝑘, . . . from 1 to 3. We adopt the Einstein summation
convention:

𝐴
𝛼

𝐵
𝛼
= ∑

𝛼

𝐴
𝛼

𝐵
𝛼
. (1)

We consider the collisional evolution of a kind of fast
moving, massive, and charged particles in the time-oriented
Bianchi types 1 to 8 spacetimes (R4, 𝑔) and denote by 𝑥𝛼 =
(𝑥
0

, 𝑥
𝑖

) = (𝑡, 𝑥
𝑖

) the usual coordinates in R4, where 𝑥0 =

𝑡 represents the time and (𝑥
𝑖

) the space; 𝑔 stands for the
givenmetric tensor of Lorentzian signature (−, +, +, +)which
writes

𝑔 = −(𝑑𝑡)
2

+ 𝑔
𝑖𝑗
𝑑𝑥
𝑖

𝑑𝑥
𝑗

, (2)

where 𝑔
𝑖𝑗
are continuously differentiable functions on R,

components of a 3-symmetric metric tensor 𝑔 = (𝑔
𝑖𝑗
), whose

variable is denoted by 𝑡.
The expression of the Levi-Civita connection∇ associated

with 𝑔, which is

Γ
𝜆

𝛼𝛽
=
1

2
𝑔
𝜆𝜇

[𝜕
𝛼
𝑔
𝜇𝛽
+ 𝜕
𝛽
𝑔
𝛼𝜇
− 𝜕
𝜇
𝑔
𝛼𝛽
] , (3)

gives directly

Γ
0

𝑖𝑗
=
1

2
𝜕
0
𝑔
𝑖𝑗
, Γ

𝑖

0𝑗
=
1

2
𝑔
𝑖𝑙

𝜕
0
𝑔
𝑗𝑙
, 𝑖, 𝑗 ∈ {1, 2, 3}

Γ
𝜆

𝛼𝛽
= 0 otherwise.

(4)

Recall that Γ𝜆
𝛼𝛽
= Γ
𝜆

𝛽𝛼
.

We require the assumption that 𝜕
0
𝑔
𝑖𝑗
/𝑔
𝑖𝑗
are bounded.

This implies that there exists a constant 𝐶 > 0 such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
0
𝑔
𝑖𝑗

𝑔
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶. (5)

As a direct consequence, we have, for 𝑡 ∈ R+,

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑖𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑔
0

𝑖𝑗
𝑒
𝐶𝑡

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑔
𝑖𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

𝑔
0

𝑖𝑗

𝑒
𝐶𝑡

, (6)

where 𝑔0
𝑖𝑗
= 𝑔
𝑖𝑗
(0).

The massive particles have a rest mass𝑚 > 0, normalized
to the unity, that is, 𝑚 = 1. We denote by 𝑇(R4) the
tangent bundle of R4 with coordinates (𝑥𝛼, 𝑝𝛽), where 𝑝 =

(𝑝
𝛽

) = (𝑝
0

, 𝑝) stands for the momentum of each particle and
𝑝 = (𝑝

𝑖

), 𝑖 = 1, 2, 3. Really the charged particles move on
the future sheet of the mass shell or the mass hyperboloid
𝑃(R4) ⊂ 𝑇(R4), whose equation is 𝑃

𝑥
(𝑝) : 𝑔

𝑥
(𝑝, 𝑝) − 1 or,

equivalently, using expression (2) of 𝑔:

𝑝
0

= √1 + 𝑔
𝑖𝑗
𝑝𝑖𝑝𝑗, (7)

where the choice 𝑝0 > 0 symbolizes the fact that, naturally,
the particles eject towards the future.

Setting

󰜚 = √

3

∑

𝑖=1

(𝑝𝑖)
2

= 󰜚 (𝑝) , (8)

if 󰜚 > 1, the relations (6) and (7) also show that in any interval
[0, 𝑇], 𝑇 > 0:

𝐴𝑝
0

≤ 󰜚 ≤ 𝐵𝑝
0

, (9)

where 𝐴 = 𝐴(𝑇) > 0, 𝐵 = 𝐵(𝑇) > 0 are constants.
The invariant volume element in 𝑃

𝑥
(𝑝) reads

𝜔
𝑝
=
󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨

1/2 𝑑𝑝
1

𝑑𝑝
2

𝑑𝑝
3

𝑝0
, (10)

where
󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
det𝑔

𝛼𝛽

󵄨󵄨󵄨󵄨󵄨
. (11)

We denote by𝑓 the distribution functionwhichmeasures
the probability of the presence of particles in the plasma. 𝑓
is a nonnegative unknown real-valued function of both the
position (𝑥𝛼) and the 4-momentum of the particles 𝑝 = (𝑝𝛼),
so:

𝑓 : 𝑇 (R
4

) ≈ R
4

×R
4

󳨀→ R
+

,

(𝑥
𝛼

, 𝑝
𝛼

) 󳨃󳨀→ 𝑓 (𝑥
𝛼

, 𝑝
𝛼

) ∈ R
+

.

(12)

We define a scalar product on R3 by setting for 𝑝 =

(𝑝
0

, 𝑝) = (𝑝
0

, 𝑝
𝑖

) and 𝑞 = (𝑞0, 𝑞) = (𝑞0, 𝑞𝑖):

𝑝 ⋅ 𝑞 = 𝑔
𝑖𝑗
𝑝
𝑖

𝑞
𝑗

. (13)

In this paper we consider the homogeneous case for
which 𝑓 depends only on the time 𝑥0 = 𝑡 and 𝑝. According
to the Laplace law, the fast moving and charged particles
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create an unknown electromagnetic field 𝐹 which is a 2-
closed antisymmetric form and locally writes

𝐹 = 𝐹
𝛼𝛽
𝑑𝑥
𝛼

∧ 𝑑𝑥
𝛽

. (14)

So in the homogeneous case we consider

𝐹
𝛼𝛽
: R 󳨀→ R, 𝑡 󳨃󳨀→ 𝐹

𝛼𝛽
(𝑡) ∈ R. (15)

In the presence of the electromagnetic field 𝐹, the tra-
jectories 𝑠 󳨃→ (𝑥

𝛼

(𝑠), 𝑝
𝛼

(𝑠)) of the charged particles are no
longer the geodesics of spacetime (R4, 𝑔) but the solutions of
the differential system:

𝑑𝑥
𝛼

𝑑𝑠
= 𝑝

𝛼

;
𝑑𝑝
𝛼

𝑑𝑠
= 𝑃

𝛼

, (16)

where

𝑃
𝛼

= 𝑃 (𝐹, 𝑓) = −Γ
𝛼

𝜆𝜇
𝑝
𝜆

𝑝
𝜇

+ 𝑒𝑝
𝛽

𝐹
𝛼

𝛽
, (17)

where 𝑒 = 𝑒 (𝑡) denotes the charge density of particles.
Notice that the differential system (16) shows that the

vectors field𝑋(𝐹) defined locally by

𝑋(𝐹) = (𝑝
𝛼

, 𝑃
𝛼

(𝐹)) , (18)

where 𝑃𝛼 is given by (17), is tangent to the trajectories.
The charged particles also create a current 𝐽 = (𝐽

𝛽

), 𝛽 =

0, 1, 2, 3, called theMaxwell currentwhichwe take in the form

𝐽
𝛽

= ∫
R3
𝑝
𝛽

𝑓𝜔
𝑝
− 𝑒𝑢

𝛽 (19)

in which 𝑢 = (𝑢
𝛽

) is a unit future pointing timelike vector,
tangent to the time axis at any point, whichmeans that 𝑢0 = 1,
𝑢
𝑖

= 𝑢
𝑖
= 0, and 𝑖 = 1, 2, 3. The particles are then supposed to

be spatially at rest.
The electromagnetic field 𝐹 = (𝐹

0𝑖

, 𝐹
𝑖𝑗
), where 𝐹0𝑖 and

𝐹
𝑖𝑗
stand for the electric and magnetic parts, respectively, is

subject to the Maxwell equations.

3. The Maxwell-Boltzmann-Euler
System in 𝐹, 𝑓, and Φ

3.1. The Maxwell Equations in 𝐹. The Maxwell system in 𝐹

can be written, using the covariant notation:

∇
𝛼
𝐹
𝛼𝛽

= 𝐽
𝛽 (20)

∇
𝛼
𝐹
𝛽𝛾
+ ∇
𝛽
𝐹
𝛾𝛼
+ ∇
𝛾
𝐹
𝛼𝛽
= 0. (21)

Equations (20) and (21) are, respectively, the first and
second groups of theMaxwell equations, and∇

𝛼
stands for the

convariant derivative in 𝑔. In (20), 𝐽𝛽 represents the Maxwell
currentwe take in the form (19). Now thewell-known identity
∇
𝛼
∇
𝛽
𝐹
𝛼𝛽

= 0 imposes, given (20), that the current 𝑗𝛽 is always
subject to the conservation law:

∇
𝛽
𝐽
𝛽

= 0. (22)

However using 𝛽 = 0 in (20), we obtain since 𝐹 = 𝐹(𝑡),
𝐹
𝛼𝜆

= −𝐹
𝜆𝛼 and by (4) that

𝐽
0

= 0. (23)

By (23), the expression (19) of 𝐽𝛽 in which we set 𝛽 = 0

then allows to compute 𝑒 and gives, since 𝑢0 = 1,

𝑒 (𝑡) = ∫
R3
𝑓 (𝑡, 𝑝) (det𝑔)1/2𝑑𝑝, (24)

which shows that 𝑓 determines 𝑒.
The second set (21) of theMaxwell equations is identically

satisfied since 𝐹 = 𝐹(𝑡), and the first set reduces to 𝜕𝐹
𝑖𝑗
= 0.

Then 𝐹
𝑖𝑗
is constant and

𝐹
𝑖𝑗
= 𝐹
𝑖𝑗
(0) = 𝜑

𝑖𝑗
. (25)

This physically shows that themagnetic part of𝐹 does not
evolve and stays in its primitive state. It remains to determine
the electric part 𝐹0𝑖.

Writing (19) for 𝛽 = 𝑖, using (4), 𝜔
𝑝

=

|𝑔|
1/2

(𝑑𝑝
1

𝑑𝑝
2

𝑑𝑝
3

/𝑝
0

), and 𝑢𝑖 = 0, implies that

𝐽
𝑖

= ∫
R3

𝑝
𝑖

𝑓 (𝑡, 𝑝) (det𝑔)1/2

𝑝0
𝑑𝑝. (26)

By (20), we obtain the linear o.d.e in 𝐹0𝑖 which writes

𝜕
0
𝐹
0𝑖

− 𝐻𝐹
0𝑖

= ∫
R3

𝑝
𝑖

𝑓 (𝑡, 𝑝) (det𝑔)1/2

𝑝0
𝑑𝑝. (27)

Remark 1. In (27), the expression

𝐻 = −
1

2
𝑔
𝑘𝑙

𝜕
0
𝑔
𝑘𝑙

(28)

represents the second fundamental form in (R3, 𝑔). Really𝐻
is the trace of the 2-symmetric tensor 𝐾 = (𝐾

𝑖𝑗
) where 𝐾

𝑖𝑗
=

−(1/2)𝜕
0
𝑔
𝑖𝑗
.𝐻 is called themiddle curvature of (R4, 𝑔). Since

𝑔 = (𝑔
𝑖𝑗
) is given, so is𝐻.

3.2.The Relativistic Boltzmann Equation in 𝑓. The relativistic
Boltzmann equation in𝑓, for charged particles in the Bianchi
types 1 to 8 spacetimes, can be written:

𝐿
𝑋
𝑓 = 𝑄 (𝑓, 𝑓) , (29)

where 𝐿
𝑋
is the Lie derivative of 𝑓with respect to the vectors

field 𝑋(𝐹) defined by (18) and 𝑄(𝑓, 𝑓), the collision operator
we now introduce.

According to Lichnerowicz and Chernikov, we consider a
scheme, in which, at a given position (𝑡, 𝑥𝑖), only two particles
collide with each other, without destroying each other, with
the collision affecting only the momentum of each particle,
which changes after shock, only the sum of the two momenta
being preserved. If 𝑝, 𝑞 stand for the twomomenta before the
shock and 𝑝󸀠, 𝑞󸀠 for the two momenta after the shock, then
we have

𝑝 + 𝑞 = 𝑝
󸀠

+ 𝑞
󸀠

. (30)
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The collision operator 𝑄 is then defined, using functions
𝑓 and 𝑔 on R3, and the previous notations by

𝑄 (𝑓, 𝑔) = 𝑄
+

(𝑓, 𝑔) − 𝑄
−

(𝑓, 𝑔) , (31)

where

𝑄
+

(𝑓, 𝑔) = ∫
R3
𝜔
𝑞
∫
𝑆
2

𝑓 (𝑝
󸀠

) 𝑔 (𝑞
󸀠

) 𝜎 (𝑡, 𝑝, 𝑞, 𝑝
󸀠

, 𝑞
󸀠

, Ω) 𝑑Ω

𝑄
−

(𝑓, 𝑔) = ∫
R3
𝜔
𝑞
∫
𝑆
2

𝑓 (𝑝) 𝑔 (𝑞) 𝜎 (𝑡, 𝑝, 𝑞, 𝑝
󸀠

, 𝑞
󸀠

, Ω) 𝑑Ω

(32)

whose elements we now introduce step by step, specifying
properties and hypotheses we adopt:

(i) 𝑆2 is the unit sphere of R3, whose area element is
denoted by 𝑑Ω;

(ii) 𝜎 is a nonnegative continuous real-valued function
of all its arguments, called the collision kernel or the
cross-section of the collisions, on which we require the
boundedness and Lipschitz continuity assumptions,
in which 𝐶

1
> 0 is a constant:

0 ≤ 𝜎 (𝑡, 𝑝, 𝑞, Ω) ≤ 𝐶
1

󵄨󵄨󵄨󵄨󵄨
𝜎 (𝑡, 𝑝

1
, 𝑞, 𝑝

󸀠

, 𝑞
󸀠

, Ω) − 𝜎 (𝑡, 𝑝
2
, 𝑞, 𝑝

󸀠

, 𝑞
󸀠

, Ω)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
1

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩 ,

(33)

where ‖𝑝‖ = (∑3
𝑖=1
(𝑝
𝑖

)
2

)

1/2

= 󰜚 is the norm in R3.
(iii) The conservation law 𝑝 + 𝑞 = 𝑝

󸀠

+ 𝑞
󸀠 splits into

𝑝
0

+ 𝑞
0

= 𝑝
󸀠0

+ 𝑞
󸀠0

, (34)

𝑝 + 𝑞 = 𝑝
󸀠

+ 𝑞
󸀠

. (35)

Equation (34) expresses, using (7), the conservation of the
quantity:

𝑒 = √1 + 𝑔
𝑖𝑗
𝑝𝑖𝑝𝑗 + √1 + 𝑔

𝑖𝑗
𝑞𝑖𝑞𝑗 (36)

called the elementary energy of the unit rest mass particles;
we can interpret (35) by setting, followingGlassey and Strauss
in [4, equation (42)],

𝑝
󸀠

= 𝑝 + 𝑎 (𝑝, 𝑞, Ω)Ω

𝑞
󸀠

= 𝑞 − 𝑎 (𝑝, 𝑞, Ω)Ω
(Ω ∈ 𝑆

2

) (37)

in which 𝑎 (𝑝, 𝑞, Ω) is a real-valued function. Using (7) to
express 𝑝󸀠0, 𝑞󸀠0 in terms of 𝑝󸀠, 𝑞󸀠 and next (37) to express 𝑝󸀠,
𝑞
󸀠 in terms of 𝑝, 𝑞, we prove that (34) leads to a quadratic
equation in 𝑎, which solves to give the only nontrivial
solution:

𝑎 (𝑝, 𝑞, Ω) =

2𝑝
0

𝑞
0

𝑒Ω ⋅ (𝑞̂ −
̂
𝑝)

(𝑒)
2

− [Ω ⋅ (𝑝 + 𝑞)]
2

(38)

in which ̂
𝑝 = 𝑝/𝑝

0, 𝑒 is given by (36), and the dot (⋅) is the
scalar product defined by (13).

It consequently appears, using (37), that the functions
in the integrals (32) depend only on 𝑝, 𝑞, Ω and that these
integrals with respect to 𝑞 andΩ give functions 𝑄+(𝑓, 𝑔) and
𝑄
−

(𝑓, 𝑔) of the single variable 𝑝.
Using now the usual properties of the determinants, we

compute the Jacobian of the change of variables (𝑝, 𝑞) 󳨃→

(𝑝
󸀠

, 𝑞
󸀠

) defined by (37) and find

𝜕 (𝑝
󸀠

, 𝑞
󸀠

)

𝜕 (𝑝, 𝑞)
= −

𝑝
󸀠0

𝑞
󸀠0

𝑝0𝑞0
. (39)

But 𝑓 = 𝑓(𝑡, 𝑝), so using (7), the Boltzmann equation
(29) leads to the following form:

𝜕𝑓

𝜕𝑡
+
𝑃
𝑖

𝑝0

𝜕𝑓

𝜕𝑝𝑖
=

1

𝑝0
𝑄 (𝑓, 𝑓) . (40)

3.3. The Euler Equations. The Euler equations only express
the conservation of the energy-momentum tensor 𝑇

𝛼𝛽
and

write

∇
𝛼
𝑇
𝛼𝛽

= 0. (41)

In (41),

𝑇
𝛼𝛽
= 𝑇

1

𝛼𝛽
+ 𝜏
𝛼𝛽
+ 𝑇
2

𝛼𝛽
, (42)

where

𝑇
1

𝛼𝛽
= ∫

R3

𝑝
𝛼
𝑝
𝛽
𝑓 (𝑡, 𝑝) (det𝑔)1/2𝑑𝑝

𝑝0
, (43)

𝜏
𝛼𝛽
= −

𝑔
𝛼𝛽

4
𝐹
𝜆𝜇

𝐹
𝜆𝜇
+ 𝐹
𝛽𝜆
𝐹
𝜆

𝛼
, (44)

𝑇
2

𝛼𝛽
= ∇
𝛼
Φ∇
𝛽
Φ −

𝑔
𝛼𝛽

2
[∇
𝜆

Φ∇
𝜆
Φ + 𝑚

2

0
Φ
2

] . (45)

(i) 𝑇1
𝛼𝛽

is the energy-momentum tensor associated with
𝑓;

(ii) 𝜏
𝛼𝛽

is the Maxwell tensor associated with 𝐹;

(iii) 𝑇2
𝛼𝛽

is the energy-momentum tensor associated with
the scalar field Φ whose mass is denoted by 𝑚

0
, with

𝑚
0
> 0.

Equation (42) shows that (41) writes

∇
𝛼
𝑇
1,𝛼𝛽

+ ∇
𝛼
𝜏
𝛼𝛽

+ ∇
𝛼
𝑇
2,𝛼𝛽

= 0. (46)

But it is proved in [5] that if 𝑓 verifies the Boltzmann
equation (40), then 𝑇1,𝛼𝛽 defined by (43) verifies ∇

𝛼
𝑇
1,𝛼𝛽

= 0;
(46) reduces then to

∇
𝛼
𝜏
𝛼𝛽

+ ∇
𝛼
𝑇
2,𝛼𝛽

= 0. (47)
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Now, using (21), we have

∇
𝛼
𝜏
𝛼𝛽

= 𝐹
𝛽

𝜆
∇
𝛼
𝐹
𝛼𝜆

, (48)

and using (45),

∇
𝛼
𝑇
2,𝛼𝛽

= ∇
𝛽

Φ(◻
𝑔
Φ − 𝑚

2

0
) , (49)

where ◻
𝑔
= ∇
𝛼
∇
𝛼 is the D’Alembertian.

We deduce from (20), (48), and (49) that the Euler
equations (41) are satisfied if Φ verifies the second-order
differential equation:

∇
𝛽

Φ(◻
𝑔
Φ − 𝑚

2

0
) + 𝐹

𝛽

𝜆
∇
𝛼
𝐹
𝛼𝜆

= 0. (50)

For 𝛽 = 𝑖, (50) leads to the constraints system:

𝐹
𝑖

𝑗
∫
R3

𝑝
𝑗

𝑝0
𝑓 (𝑡, 𝑝) (det𝑔)1/2𝑑𝑝 = 0, 𝑖 = 1, 2, 3, (51)

between the unknown functions 𝐹 and 𝑓, constraints which
we have to solve in what is to follow.

For 𝛽 = 0, (50) leads to a nonlinear differential equation
of second order:

Φ̇ (Φ̈ − 𝐻Φ̇ + 𝑚
2

0
Φ) = 𝑔

𝑖𝑗
𝐹
0𝑗

∫
R3

𝑝
𝑗

𝑝0
𝑓 (𝑡, 𝑝) (det𝑔)1/2𝑑𝑝,

(52)

where𝐻 is defined in (27).
Setting in (52)

𝑈 =
1

2
(Φ̇)

2

, (53)

it comes that

𝑈 ≥ 0

Φ̇ = ±√2𝑈.
(54)

One supposes in what follows that Φ is continuously
differentiable, is not a constant, and is decreasing. This implies
that

Φ̇ = −√2𝑈

Φ (𝑡) ≤ Φ (0) , 𝑡 ∈ R
+

.

(55)

Equation (52) is then equivalent to the nonlinear first-
order differential system given as follows:

Φ̇ = −√2𝑈, (56)

𝑈̇ = 2𝐻𝑈 + 𝑚
2

0
Φ√2𝑈 + 𝑔

𝑖𝑗
𝐸
𝑖

∫
R3

𝑝
𝑗

𝑝0
𝑓 (𝑡, 𝑝) (det𝑔)1/2𝑑𝑝,

(57)

where 𝐸𝑖 = 𝐹0𝑖.

3.4. The Coupled System. From (17), using (4), we obtain

𝑃
𝑖

𝑝0
= −2Γ

𝑖

0𝑗
𝑝
𝑗

+ 𝑒 [−𝐸
𝑖

+ 𝑔
𝑖𝑗
𝑝
𝑘

𝐹
𝑘𝑗

𝑝0
] , 𝑖 = 1, 2, 3. (58)

Using (24), (27), (40), (56), and (57), the Maxwell-
Boltzmann-Euler system in (𝐹, 𝑓,Φ,𝑈) reduces to the follow-
ing form:

𝐸̇
𝑖

= 𝐻𝐸
𝑖

+ ∫
R3

𝑝
𝑖

𝑓 (𝑡, 𝑝) (det𝑔)1/2

𝑝0
𝑑𝑝, (59)

𝜕𝑓

𝜕𝑡
+ [−2Γ

𝑖

0𝑗
𝑝
𝑗

+ (−𝐸
𝑖

+ 𝑔
𝑖𝑗
𝑝
𝑘

𝜑
𝑘𝑗

𝑝0
)

×∫
R3
𝑓 (𝑡, 𝑝) (det 𝑔)1/2𝑑𝑝]

𝜕𝑓

𝜕𝑝𝑖
=

1

𝑝0
𝑄 (𝑓, 𝑓) ,

(60)

Φ̇ = −√2𝑈, (61)

𝑈̇ = 2𝐻𝑈 + 𝑚
2

0
Φ√2𝑈 + 𝑔

𝑖𝑗
𝐸
𝑗

∫
R3

𝑝
𝑖

𝑝0
𝑓 (𝑡, 𝑝) (det𝑔)1/2𝑑𝑝

(62)

which is an integrodifferential system to solve in what is to
follow.

We are searching a solution (𝐹, 𝑓,Φ,𝑈) of the Cauchy
problem (59)-(60)-(61)-(62) globally in time on [0, +∞[ for
the initial data:

𝐸
𝑖

(0) = 𝐸
𝑖

0
; 𝐹

𝑖𝑗
(0) = 𝜑

𝑖𝑗
, 𝑓 (0, 𝑝) = 𝑓

0
(𝑝) ,

𝑝 ∈ R
3

; Φ (0) = Φ
0
; 𝑈 (0) = 𝑈

0
.

(63)

3.5. The Problem of Constraints. We must find a nontrivial
solution (𝐹, 𝑓,Φ,𝑈) of the Cauchy problem (59)-(60)-(61)-
(62) satisfying the system (51) of constraints which writes
after computation

(𝑔
12

𝐽
1

− 𝑔
11

𝐽
2

) 𝜑
21
+ (𝑔

13

𝐽
1

− 𝑔
11

𝐽
3

) 𝜑
31

+ (𝑔
13

𝐽
2

− 𝑔
12

𝐽
3

) 𝜑
32
= 0

(𝑔
22

𝐽
1

− 𝑔
21

𝐽
2

) 𝜑
21
+ (𝑔

23

𝐽
1

− 𝑔
21

𝐽
3

) 𝜑
31

+ (𝑔
23

𝐽
2

− 𝑔
22

𝐽
3

) 𝜑
32
= 0

(𝑔
32

𝐽
1

− 𝑔
31

𝐽
2

) 𝜑
21
+ (𝑔

33

𝐽
1

− 𝑔
31

𝐽
3

) 𝜑
31

+ (𝑔
33

𝐽
2

− 𝑔
32

𝐽
3

) 𝜑
32
= 0.

(64)

4. Function Spaces and Energy Inequalities

We define now the function spaces in which we are searching
the solution to the Maxwell-Boltzmann-Euler system. We
also establish some useful energy estimations.
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Definition 2 (𝐸𝑚
𝑠
(0, 𝑇,R3)). Let𝑇 > 0,𝑚 ∈ N, 𝑠 ∈ R be given.

We define 𝐸𝑚
𝑠
(R3) as

𝐸
𝑚

𝑠
(R
3

)

= {ℎ : R3 󳨀→ R, (1 + 󰜚)
𝑠+|𝛽|

𝜕
𝛽

𝑝
ℎ ∈ 𝐿

2

(R3) ,

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 ≤ 𝑚} .

(65)

𝐸
𝑚

𝑠
(R3) will be endowed with the norm

‖ℎ‖
𝐸
𝑚

𝑠
(R3) = max

0≤|𝛽|≤𝑚

󵄩󵄩󵄩󵄩󵄩󵄩
(1 + 󰜚)

𝑠+|𝛽|

𝜕
𝛽

𝑝
ℎ
󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(R3)

. (66)

𝐸
𝑚

𝑠
(R3) will be the completion of 𝐸𝑚

𝑠
(R3) in the norm

‖ ⋅ ‖
𝐸
𝑚

𝑠
(R3).

We also define

𝐸
𝑚

𝑠
(0, 𝑇,R

3

𝑝
)

= {𝑦 ∈ C ([0, 𝑇] ;E (R
3

𝑝
)) ,

(1 + 󰜚)
𝑠+|𝛽|

𝜕
𝛽

𝑝
𝑦 (𝑡, ⋅)∈ 𝐿

2

(R
3

𝑝
) ,

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 ≤ 𝑚, 0≤ 𝑡 ≤ 𝑇}.

(67)

Endowed with the norm
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝐸𝑚
𝑠
(0,𝑇,R3

𝑝
)
= max
0≤|𝛽|≤𝑚

sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩󵄩󵄩
(1 + 󰜚)

𝑠+|𝛽|

𝜕
𝛽

𝑝
𝑦 (𝑡, ⋅)

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(R3
𝑝
)

,

(68)

𝐸
𝑚

𝑠
(0, 𝑇,R3) is a Banach space.
𝐻
𝑚

𝑠
(0, 𝑇,R3

𝑝
) will be the completion of 𝐸𝑚

𝑠
(0, 𝑇,R3

𝑝
) for

the norm |‖ ⋅ ‖|
𝐸
𝑚

𝑠
(0,𝑇,R3

𝑝
)
.

For 𝑟 > 0 to be given, we define

𝐸
𝑚

𝑠,𝑟
= {𝑦 ∈ 𝐸

𝑚

𝑠
(0, 𝑇,R

3

) , 𝑦 ≥ 0 a.e, 󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝐸𝑚
𝑠
(0,𝑇,R3

𝑝
)
≤ 𝑟} .

(69)

Endowed with the induced distance by the norm
|‖ ⋅ ‖|

𝐸
𝑚

𝑠
(0,𝑇,R3

𝑝
)
, 𝐸

𝑚

𝑠,𝑟
is a complete metric subspace of

𝐸
𝑚

𝑠
(0, 𝑇,R3

𝑝
).

Remark 3. If𝑚 = 0, then 𝑦 ∈ 𝐸𝑚
𝑠
(R3) ⇔ (1 + 󰜚)

𝑠

𝑦 ∈ 𝐿
2

(R3),
so 𝐸0s (R

3

) will be denoted by 𝐿2
𝑠
(R3).

Remark 4. The reasons for the choice of the function space
𝐻
𝑚

𝑠
(0, 𝑇,R3

𝑝
) for𝑚 = 3 and 𝑑 > 5/2.

With the objective of the present work being the existence
of solution to the Maxwell-Boltzmann-Euler system, and
particularly the Boltzmann equation (40), we are searching
a function 𝑓 = 𝑓(𝑡, 𝑝) which is continuously differentiable;
in particular we can search 𝑓 = 𝑓(𝑡, ⋅) belonging to the space
C1
𝑏
(R3
𝑝
).

We want to use the Faedo-Galerkin method which is
applied for separable Hilbert spaces. That is the case for the
Sobolev spaces𝐻𝑚

𝑠
(0, 𝑇,R3

𝑝
),𝑚 ∈ N.

We need then to find an integer𝑚 such that

𝐻
𝑚

(R
3

𝑝
) 󳨅→ C

1

𝑏
(R
3

𝑝
) . (70)

But we know by the Sobolev theorems that

𝑊
𝑚

𝑝
(R
𝑛

) 󳨅→ E
𝑘

(R
𝑛

) , 𝑚 > 𝑘 +
𝑛

𝑝
. (71)

Since in our case we have 𝑛 = 3, 𝑝 = 2, and 𝑘 = 1 (𝑊𝑚
2
=

𝐻
𝑚

), we must choose𝑚 such that

𝑚 > 1 +
3

2
=
5

2
. (72)

The smallest integer 𝑚 satisfying 𝑚 > 5/2 is naturally
𝑚 = 3.

Consequently we have

𝐻
3

𝑑
(R
3

𝑝
) 󳨅→ 𝐻

3

(R
3

) 󳨅→ C
1

𝑏
(R
3

𝑝
) . (73)

Furthermore if

𝑑 >
5

2
, (74)

then

𝐻
𝑚

𝑑
(R
3

𝑝
) 󳨅→ 𝐿

2

𝑑
(R
3

𝑝
) 󳨅→ 𝐿

1

2
(R
3

𝑝
) , (75)

where 𝐿1
2
(R3
𝑝
) is defined in [1].

It then results that

𝐻
𝑚

𝑑
(R
3

𝑝
) ∩ 𝐿

1

2
(R
3

𝑝
) = 𝐻

𝑚

𝑑
(R
3

𝑝
) . (76)

We can now state the following results which will be
fundamental.

Lemma 5. There exists a real number 𝑇 > 0 such that

(𝑒)
2

− [Ω ⋅ (𝑝 + 𝑞)]
2

> 2. (77)

Furthermore, one has

(𝑒)
2

− [Ω ⋅ (𝑝 + 𝑞)]
2

≥ (1 −∑

𝑖,𝑗

𝑔
𝑖𝑗
)(𝑝

0

)
2

(𝑒)
2

− [Ω ⋅ (𝑝 + 𝑞)]
2

≥ (1 −∑

𝑖,𝑗

𝑔
𝑖𝑗
)(𝑞

0

)
2

(𝑒)
2

− [Ω ⋅ (𝑝 + 𝑞)]
2

≥ (1 −∑

𝑖,𝑗

𝑔
𝑖𝑗
)𝑝

0

𝑞
0

,

(78)

and the function (𝑝, 𝑞, Ω) 󳨃→ 𝐷
𝛽

𝑝
𝑐 (𝑝, 𝑞, Ω), 1 ≤ |𝛽| ≤ 3 is

bounded.

Proof. See [2].
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Proposition 6. Let 𝑑 > 5/2, ‖𝜎‖
𝐿
1
(R3×𝑆2) ∈ 𝐿

∞

(R3) and
(𝜕
𝛽

𝜎)(1 + |𝑝|)
|𝛽|−1

∈ 𝐿
∞

(R3 ×R3 × 𝑆2), |𝛽| ≤ 3 be given.
If 𝑓, 𝑔 ∈ 𝐻3

𝑑
(R3), then (1/𝑝0) 𝑄 (𝑓, 𝑔) ∈ 𝐻3

𝑑
(R3), and one

has

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑝0
𝑄 (𝑓, 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

, (79)

where 𝐶 = 𝐶 (𝑇) > 0.
Moreover

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑝0
𝑄 (𝑓, 𝑓) −

1

𝑝0
𝑄 (𝑔, 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

≤ 𝐶(
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

+
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

)
󵄩󵄩󵄩󵄩𝑓 − 𝑔

󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

.

(80)

Proof. We simply use Lemma 5. For the details, see [2].

Proposition 7. Let 𝑑 > 5/2, 𝑓 ∈ 𝐻
0

𝑑
(R3) be given.Then |𝐽𝑖| ≤

𝐶 (det𝑔)1/2‖𝑓‖
𝐻
0

𝑑
(R3), 𝑖 = 1, 1, 3.

Proof. See [2].

Remark 8. The hypothesis of Proposition 6 concerning the
collision kernel 𝜎 is a supplementary hypothesis for the
investigation of the solution to the Boltzmann equation.

In what is to follow, we are searching the local existence
and the uniqueness of the solution to the Cauchy problem
(59)-(60)-(61)-(62) in a function space which we will precise,
applying the standard theory of first-order differential sys-
tems.

The framework we will refer to for 𝑓 is𝐻3
𝑑
(0, 𝑇,R3

𝑝
).

The framework we will refer to for 𝐸 is R3, whose norm
is denoted by ‖ ⋅ ‖ or ‖ ⋅ ‖R3 :

C ([[0, 𝑇] ; R
3

])

= {ℎ : [0, 𝑇] 󳨀→ R
3 continuous and bounded} .

(81)

C([[0, 𝑇];R3]) is a Banach space for the norm:

|‖ℎ‖| = sup {‖ℎ (𝑡)‖ , 𝑡 ∈ [0, 𝑇]} . (82)

The framework we will refer to for Φ and 𝑈 is R, whose
norm is denoted by | ⋅ | (or ‖ ⋅ ‖R):

C ([[0, 𝑇] ; R])

= {ℎ : [0, 𝑇] 󳨀→ R continuous and bounded} .
(83)

C([[0, 𝑇];R]) is a Banach space for the norm:

|‖ℎ‖| = sup {|ℎ (𝑡)| , 𝑡 ∈ [0, 𝑇]} . (84)

(i) We consider onR3 ×𝐻𝑚
𝑑
(0, 𝑇,R3

𝑝
) ×R ×R the norm

󵄩󵄩󵄩󵄩󵄩
(E, 𝑓, Φ,𝑈)󵄩󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝐸
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 + |Φ| + |𝑈| . (85)

(ii) We consider on C([[0, 𝑇];R3]) × 𝐻
3

𝑑
(0, 𝑇,R3

𝑝
) ×

C([[0, 𝑇];R]) ×C([[0, 𝑇];R]) the norm:

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(E, 𝑓, Φ,𝑈)󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
=
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝐸
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 + |‖Φ‖| + |‖𝑈‖| . (86)

(iii) We will consider the Cauchy problem (59)-(60)-(61)-
(62) for the initial data:

𝐸
𝑖

(0) = 𝐸
𝑖

0
, 𝐹

𝑖𝑗
(0) = 𝜑

𝑖𝑗
, 𝑓 (0, 𝑝) = 𝑓

0
(𝑝) ,

𝑝 ∈ R
3

; Φ (0) = Φ
0
; 𝑈 (0) = 𝑈

0
,

(87)

where 𝑓
0
is given in 𝐻3

𝑑,𝑟
(0, 𝑇,R3

𝑝
), 𝐸𝑖

0
, 𝜑
𝑖𝑗
, Φ
0
∈ R,

𝑖, 𝑗 = 1, 2, 3, and 𝑈
0
∈ R+.

5. The Local Existence of Solution

Theorem 9. Let 𝑓 ∈ 𝐻
3

𝑑,𝑟
(0, 𝑇,R3

𝑝
) be given, and let ̃𝐸 =

(
̃
𝐸𝑖) ∈ R3 be fixed. Then the linearized partial differential
equation

𝜕𝑓

𝜕𝑡
+ [−2Γ

𝑖

0𝑗
𝑝
𝑗

+ (−
̃
𝐸𝑖 +

𝑝
𝑘

𝑝0
𝑔
𝑖𝑗

𝜑
𝑘𝑗
)

×∫
R3
𝑓 (𝑡, 𝑝) (det𝑔)1/2𝑑𝑝]

𝜕𝑓

𝜕𝑝𝑖
=

1

𝑝0
𝑄(𝑓, 𝑓)

(88)

whose unknown is 𝑓, with 𝑓(0, 𝑝) = 𝑓
0
, has in𝐻3

𝑑
(0, 𝑇,R3

𝑝
) a

local unique and bounded ⋆-weak solution.

Proof. We use the Faedo-Galerkin method in the function
space𝐻3

𝑑
(0, 𝑇,R3

𝑝
). For the other details, see [1].

Theorem 10. Let ̃𝐸 = (
̃
𝐸𝑖) ∈ R3, 𝑖 = 1, 2, 3, be fixed. Then the

Boltzmann equation,

𝜕𝑓

𝜕𝑡
+ [−2Γ

𝑖

0𝑗
𝑝
𝑗

+ (−
̃
𝐸𝑖 +

𝑝
𝑘

𝑝0
𝑔
𝑖𝑗

𝜑
𝑘𝑗
)

×∫
R3
𝑓 (𝑡, 𝑝) (det𝑔)1/2𝑑𝑝]

𝜕𝑓

𝜕𝑝𝑖
=

1

𝑝0
𝑄 (𝑓, 𝑓) ,

(89)

has in𝐻3
𝑑
(0, 𝑇,R3

𝑝
) a local unique ⋆-weak solution𝑓 such that

𝑓(0) = 𝑓
0
.
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Proof. We use the Banach fixed point theorem in
𝐻
3

𝑑
(0, 𝑇,R3

𝑝
) for the map:

𝑓 ∈ 𝐻
3

𝑑,𝑟
(0, 𝑇,R

3

𝑝
) 󳨃󳨀→ Ξ (𝑓) = 𝑓, (90)

where 𝑓 satisfies (88).

(i) We firstly prove, using a sequence of approximations
(𝑓
𝑁

) of 𝑓, the Banach-Alaoglu theorem and the fact
that𝐻3

𝑑
(0, 𝑇,R3

𝑝
) is a reflexive space (see [1]) that we

can choose ‖𝑓
0
‖
𝐻
3

𝑑,𝑟
(0,𝑇,R3

𝑝
)
and 𝑇 > 0 such that

𝑓 ∈ 𝐻
3

𝑑,𝑟
(0, 𝑇,R

3

𝑝
) 󳨐⇒ Ξ(𝑓) = 𝑓 ∈ 𝐻

3

𝑑,𝑟
(0, 𝑇,R

3

𝑝
) . (91)

(ii) Let now𝑓
1
, 𝑓
2
∈ 𝐻

3

𝑑,𝑟
(0, 𝑇,R3

𝑝
) be given, and let 𝑓

1
, 𝑓
2

be two solutions of (88). Then

𝜕𝑓
1

𝜕𝑡
+ [−2Γ

𝑖

0𝑗
𝑝
𝑗

+ (−
̃
𝐸𝑖 +

𝑝
𝑘

𝑝0
𝑔
𝑖𝑗

𝜑
𝑘𝑗
)

×∫
R3
𝑓
1
(𝑡, 𝑝) (det𝑔)1/2𝑑𝑝]

𝜕𝑓
1

𝜕𝑝𝑖
=

1

𝑝0
𝑄(𝑓

1
, 𝑓
1
)

𝜕𝑓
2

𝜕𝑡
+ [−2Γ

𝑖

0𝑗
𝑝
𝑗

+ (−
̃
𝐸𝑖 +

𝑝
𝑘

𝑝0
𝑔
𝑖𝑗

𝜑
𝑘𝑗
)

×∫
R3
𝑓
2
(𝑡, 𝑝) (det𝑔)1/2𝑑𝑝]

𝜕𝑓
2

𝜕𝑝𝑖
=

1

𝑝0
𝑄(𝑓

2
, 𝑓
2
) .

(92)

Let 𝐺 = 𝑓
1
− 𝑓
2
and 𝐺 = 𝑓

1
− 𝑓
2
.

Then we get

𝜕𝐺

𝜕𝑡
+

𝑃̃
𝑖

(𝐺,
̃
𝐸)

𝑝0

𝜕𝐺

𝜕𝑝𝑖
=

1

𝑝0
𝑄(𝑓

1
, 𝐺) −

1

𝑝0
𝑄(𝐺, 𝑓

2
) .

(93)

Conveniently using energy inequalities established in [1],
the system (92), and remembering that𝐺 (0, 𝑝) = 0, we obtain

󵄩󵄩󵄩󵄩󵄩󵄩
(1 +

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨)
𝑑+|𝛽|

𝜕
𝛽

𝑝
𝐺 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
2
∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 +
󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨)
𝑑+|𝛽|

𝜕
𝛽

𝑝

×(
1

𝑝0
𝑄(𝑓

1
, 𝐺) −

1

𝑝0
𝑄(𝐺, 𝑓

2
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2
(𝜏) 𝑑𝜏,

(94)

where 𝐶
2
= 𝐶 (𝑔

0

𝑖𝑗
, 𝑟, 𝑇, |𝐸

𝑖

0
|, |𝜑

𝑖𝑗
|) is a positive constant.

Then taking the sup in (94), for 𝑡 ∈ [0, 𝑇] and |𝛽| ≤ 3, we
get

‖𝐺‖
𝐻
3

𝑑
(0,𝑇,R3

𝑝
)

≤ 𝐶∫

𝑇

0

sup
𝑡∈[0,𝑇],|𝛽|≤3

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 +
󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨)
𝑑+|𝛽|

𝜕
𝛽

𝑝

× (
1

𝑝0
𝑄(𝑓

1
, 𝐺)

−
1

𝑝0
𝑄(𝐺, 𝑓

2
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2
) (𝜏) 𝑑𝜏

(95)

which implies

‖𝐺‖
𝐻
3

𝑑
(0,𝑇,R3

𝑝
)
≤ 𝐶𝑇

󵄩󵄩󵄩󵄩󵄩
𝐺
󵄩󵄩󵄩󵄩󵄩𝐻3
𝑑
(0,𝑇,R3

𝑝
)

. (96)

The relations (91), (96) show clearly that𝐻3
𝑑
(0, 𝑇,R3

𝑝
) →

𝐻
3

𝑑
(0, 𝑇,R3

𝑝
), 𝑓 󳨃→ Ξ(𝑓) = 𝑓 is a contracting map, so by the

Banach theorem Ξ has a unique fixed point 𝑓 = 𝑓 and the
proof of Theorem 10 is complete.

Next, let us introduce the subgroup 𝐺 of O
3
defined by

𝐺 =

{

{

{

𝑁
𝜀,𝜃
∈ O

3
,

𝑁
𝜀,𝜃
= (

𝜀 0 0

0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

) , 𝜀, 𝜃 ∈ R, 𝜀
2

= 1

}}

}}

}

.

(97)

A function 𝑔 on R3 is said to be invariant under 𝐺 if

𝑔 (𝑁𝑝) = 𝑔 (𝑝) ; ∀𝑁 ∈ 𝐺, ∀𝑝 ∈ R
3

. (98)

Using the observation that 𝑝0 is invariant under 𝐺, it
is proved in [6] that if 𝑓

0
is invariant under 𝐺, then so

will be the solution 𝑓 of the Boltzmann equation satisfying
𝑓
0
(𝑝) = 𝑓(0, 𝑝). It is also proved in [7] that 𝐽

𝑖

=

∫
R3
(𝑝
𝑖

𝑓(𝑡, 𝑝)(det𝑔)1/2/𝑝0) 𝑑𝑝 = 0, 𝑖 = 1, 2, 3 if and only if
𝑓
0
is invariant under 𝐺.
One requires in all what follows that the initial datum 𝑓

0
=

𝑓(0; ⋅) of the distribution function 𝑓 is not invariant under 𝐺.
The immediate consequence is that

𝐽
𝑖

= ∫
R3

𝑝
𝑖

𝑓 (𝑡, 𝑝) (det𝑔)1/2

𝑝0
𝑑𝑝 ̸= 0, 𝑖 = 1, 2, 3. (99)

Now, computing the determinant of the system (64),
we conclude that, under our requirement, the problem of
constraints (64) admits on [0, 𝑇] a nontrivial solution:

𝑓 ̸= 0; 𝜑
12
= 𝜑
13
= 𝜑
23
= 0, (100)

where 𝑓 is the unique solution to the Boltzmann equation
(60) on [0, 𝑇] in which ̃𝐸 is given.
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Let us now state the following result which shows helpful
in what is to follow.

Proposition 11. The Cauchy problem (59)-(60)-(61)-(62) is
equivalent to the following problem, for 𝑖 = 1, 2, 3:

(𝑆)

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑑𝐸
𝑖

𝑑𝑡
= 𝐻𝐸

𝑖

+ ∫
R3

𝑞
𝑖

𝑓(det𝑔)1/2

𝑞0
𝑑𝑞 (𝐸

1
)

𝑑𝑝
𝑖

𝑑𝑡
= −2Γ

𝑖

0𝑗
𝑝
𝑗

+[−𝐸
𝑖

+𝑔
𝑖𝑗

𝑝
𝑘

𝜑
𝑘𝑗

𝑝0
]∫

R3
𝑓(det𝑔)1/2𝑑𝑞 (𝐸

2
)

𝑑𝑓

𝑑𝑡
=

1

𝑝0 (𝑝)
𝑄 (𝑓, 𝑓) (𝐸

3
)

𝑑Φ

𝑑𝑡
= −√2𝑈 (𝐸

4
)

𝑑𝑈

𝑑𝑡
= 2𝐻𝑈 + 𝑚

2

0
Φ√2𝑈

+𝑔
𝑖𝑗
𝐸
𝑗

∫
R3

𝑞
𝑖

𝑓(det𝑔)1/2

𝑞0
𝑑𝑞 (𝐸

5
)

𝐸
𝑖

(0) = 𝐸
𝑖

0
; 𝐹

𝑖𝑗
(0) = 𝜑

𝑖𝑗
, 𝑝 (0) = 𝑝

0
,

𝑓 (0, 𝑝) = 𝑓
0
(𝑝) , 𝑝 ∈ R3; Φ (0) = Φ

0
;

𝑈 (0) = 𝑈
0
.

(101)

Proof. See [1].

The framework we will refer to for 𝑝 is R3, whose norm
is denoted by ‖ ⋅ ‖ or ‖ ⋅ ‖R3 .

Let 𝐼 = (𝐼
1
, 𝐼
2
, 𝐼
3
, 𝐼
4
, 𝐼
5
) denote the r.h.s. of (𝐸

1
)-(𝐸

2
)-

(𝐸
3
)-(𝐸

4
)-(𝐸

5
), that is,

𝐼
1
(𝑡, 𝐸,𝑝, 𝑓,Φ,𝑈) = (𝐻𝐸

𝑖

+ ∫
R3

𝑞
𝑖

𝑓(det𝑔)1/2

𝑞0
𝑑𝑞)

𝐼
2
(𝑡, 𝐸,𝑝, 𝑓,Φ,𝑈)

= (−2Γ
𝑖

0𝑗
𝑝
𝑗

+ [−𝐸
𝑖

+ 𝑔
𝑖𝑗
𝑝
𝑘

𝜑
𝑘𝑗

𝑝0
]∫

R3
𝑓(det𝑔)1/2𝑑𝑞)

𝐼
3
(𝑡, 𝐸,𝑝, 𝑓,Φ,𝑈) =

1

𝑝0 (𝑝)
𝑄 (𝑓, 𝑓, 𝑝)

𝐼
4
(𝑡, 𝐸,𝑝, 𝑓,Φ,𝑈) = √2𝑈

𝐼
5
(𝑡, 𝐸,𝑝, 𝑓,Φ,𝑈) = 2𝐻𝑈 + 𝑚

2

0
Φ√2𝑈

+ 𝑔
𝑖𝑗
𝐸
𝑗

∫
R3

𝑞
𝑖

𝑓(det𝑔)1/2

𝑞0
𝑑𝑞,

𝑖 = 1, 2, 3.

(102)

It then appears that, on the contrary to the uncharged case
studied in [6, 8], the momentum 𝑝 = (𝑝

0

, 𝑝) also becomes
an unknown in the charged case. Note that 𝑓 and 𝑝 are now
independent variables for the system (𝐸

1
)-(𝐸

2
)-(𝐸

3
)-(𝐸

4
)-

(𝐸
5
). In this context, the collision operator 𝑄 defined by (31)

will depend on 𝑝 only through the collision kernel 𝜎, and we
show it bywriting now𝑄 (𝑓, 𝑓, 𝑝) instead of 𝑄 (𝑓, 𝑓) (𝑝). One
must from now be careful in order to avoid any confusion
between the unknown 𝑝 of the system (𝐸

1
)-(𝐸

2
)-(𝐸

3
)-(𝐸

4
)-

(𝐸
5
) and the variable 𝑝 in (26), (27), (57), and (62), for

example. For this reason, we denoted the variable in the
integrals in (𝐸

1
), (𝐸

2
), and (𝐸

5
) by 𝑞 instead of 𝑝.

Proposition 12. Let 𝑝 = (𝑝
𝑖

), 𝑝
𝑗
= (𝑝

𝑖

𝑗
) ∈ R3, 𝑗 = 1, 2,

𝑓 ∈ 𝐻
3

𝑑
(R3) be given. Then

𝑝
0

≥ √𝑔
𝑖𝑖

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑖
󵄨󵄨󵄨󵄨󵄨
, 𝑖 = 1, 2, 3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘

1

𝑝
0

1

−
𝑝
𝑘

2

𝑝
0

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐵
1

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑝
0

1

−
1

𝑝
0

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐵
2

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩

𝑝
0

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑝
0

𝑗

𝑄 (𝑓, 𝑓, 𝑝
1
) −

1

𝑝
0

𝑗

𝑄 (𝑓, 𝑓, 𝑝
2
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐵
3

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩 ,

(103)
where

𝐵
1
= 2∑

𝑖

√𝑔
𝑖𝑖
∑

𝑗

1

√𝑔𝑗𝑗

+ 2∑

𝑖,𝑗

𝑔
𝑖𝑗
(∑

𝑘

1

√𝑔𝑘𝑘

)

2

+ 1,

𝐵
2
= 2∑

𝑖

√𝑔
𝑖𝑖
+ 2∑

𝑖,𝑗

𝑔
𝑖𝑗
∑

𝑘

1

√𝑔𝑘𝑘

, 𝐵
3
= 𝐵

3
(𝑇; 𝑔

0

𝑖𝑗
) .

(104)

Proof. See [7].

We prove the following.

Proposition 13. Let 𝐸
1
, 𝐸
2
, 𝑝
1
, 𝑝
2
∈ R3, Φ

1
, Φ
2
, 𝑈
1
, 𝑈
2
∈ R,

𝑓
1
, 𝑓
2
∈ 𝐻

3

𝑑
(0, 𝑇,R3

𝑝
) be given. Then

󵄩󵄩󵄩󵄩󵄩
𝐼
1
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

1
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩R3

≤ 𝐶
3
(
󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩𝐻3
𝑑
(0,𝑇,R3

𝑝
)
)

(105)
󵄩󵄩󵄩󵄩󵄩
𝐼
2
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

2
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩R3

≤ 𝐶
4
(
󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩𝑝1 − 𝑝2

󵄩󵄩󵄩󵄩R3

+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩𝐻3
𝑑
(0,𝑇,R3

𝑝
)
)

(106)
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󵄩󵄩󵄩󵄩󵄩
𝐼
3
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

3
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩𝐻3
𝑑
(0,𝑇,R3

𝑝
)

≤ 𝐶
5
(
󵄩󵄩󵄩󵄩𝑝1 − 𝑝2

󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩𝐻3
𝑑
(0,𝑇,R3

𝑝
)
)

(107)
󵄩󵄩󵄩󵄩󵄩
𝐼
4
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

4
(𝑡, E

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩R

≤ 𝐶
6

󵄩󵄩󵄩󵄩𝑈1 − 𝑈2
󵄩󵄩󵄩󵄩R

(108)
󵄩󵄩󵄩󵄩󵄩
𝐼
5
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

5
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩R

≤ 𝐶
7
(
󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩𝐻3
𝑑
(0,𝑇,R3

𝑝
)

+
󵄩󵄩󵄩󵄩Φ1 − Φ2

󵄩󵄩󵄩󵄩R
+
󵄩󵄩󵄩󵄩𝑈1 − 𝑈2

󵄩󵄩󵄩󵄩R
) ,

(109)

where

𝐶
3
= 𝐶(|𝐻| + (det𝑔)1/2) ,

𝐶
4
= 𝐶(∑

𝑖,𝑗

𝑔
𝑖𝑗

)

2

+ 𝐶 (det𝑔)1/2 (󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩
𝐸
2

󵄩󵄩󵄩󵄩󵄩
)

+ 𝐶 (det𝑔)1/2∑
𝑖,𝑗

𝑔
𝑖𝑗
∑

𝑘,𝑗

󵄨󵄨󵄨󵄨󵄨
𝜑
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
(𝐵
1
+∑

𝑘

1

√𝑔𝑘𝑘

) ,

𝐶
5
= 𝐵

3
+ 𝐶 (𝑇, 𝑔

0

𝑖𝑗
) (det𝑔)1/2 (󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓2

󵄩󵄩󵄩󵄩) + 𝐶𝐵2,

𝐶
6
=

√2

√𝑈
1
+ √𝑈

2

,

𝐶
7
= 𝐶 |𝐻| +

𝑚
2

0

󵄨󵄨󵄨󵄨Φ2
󵄨󵄨󵄨󵄨
√2

√𝑈
1
+ √𝑈

2

+ 𝑚
2

0
√2𝑈

1

+ 𝐶 (det𝑔)1/2∑
i,𝑗
𝑔
𝑖𝑗
(
󵄩󵄩󵄩󵄩󵄩
𝐸
2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩) .

(110)

Proof. (a) We have, using (102),

𝐼
1
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

1
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)

= (𝐻(𝐸
𝑖

1
− 𝐸
𝑖

2
)

+∫
R3

𝑞
𝑖

(𝑓
1
(𝑡, 𝑝) − 𝑓

2
(𝑡, 𝑝)) (det𝑔)1/2

𝑞0
𝑑𝑞) .

(111)

So by (5) and Proposition 7,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻 (𝐸
𝑖

1
− 𝐸
𝑖

2
) + ∫

R3

𝑞
𝑖

(𝑓
1
(𝑡, 𝑝) − 𝑓

2
(𝑡, 𝑝)) (det𝑔)1/2

𝑞0
𝑑𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ |𝐻|
󵄨󵄨󵄨󵄨󵄨
𝐸
𝑖

1
− 𝐸
𝑖

2

󵄨󵄨󵄨󵄨󵄨
+
𝐶 (det𝑔)1/2

√𝑔𝑖𝑖

󵄩󵄩󵄩󵄩𝑓1 − 𝑓2
󵄩󵄩󵄩󵄩𝐿2
𝑑
(R3)

.

(112)

It follows by (6) that
󵄩󵄩󵄩󵄩󵄩
𝐼
1
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

1
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩R3

≤ 𝐶(|𝐻| + (det𝑔)1/2)

× (
󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

) .

(113)

(b) We still have, by (102),

𝐼
2
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

2
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)

= (2Γ
𝑖

0𝑗
(𝑝
𝑗

2
− 𝑝
𝑗

1
))

+ ((det𝑔)1/2𝑔𝑖𝑗𝜑
𝑘𝑗
[
𝑝
𝑘

2

𝑝
0

2

∫
R3
𝑓
2
𝑑𝑞 −

𝑝
𝑘

1

𝑝
0

1

∫
R3
𝑓
1
𝑑𝑞]

+(det𝑔)1/2 [𝐸𝑖
2
∫
R3
𝑓
2
𝑑𝑞 − 𝐸

𝑖

1
∫
R3
𝑓
1
𝑑𝑞]) .

(114)

But (5) gives

󵄨󵄨󵄨󵄨󵄨
2Γ
𝑖

0𝑗
(𝑝
𝑗

2
− 𝑝
𝑗

1
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶(∑

𝑖,𝑗

𝑔
𝑖𝑗

)

2

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩R3

. (115)

Invoking Proposition 12, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(det𝑔)1/2𝑔𝑖𝑗𝜑
𝑘𝑗
[
𝑝
𝑘

2

𝑝
0

2

∫
R3
𝑓
2
𝑑𝑞 −

𝑝
𝑘

1

𝑝
0

1

∫
R3
𝑓
1
𝑑𝑞]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 (det𝑔)1/2 (󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩
𝐸
2

󵄩󵄩󵄩󵄩󵄩
) (
󵄩󵄩󵄩󵄩𝑝1 − 𝑝2

󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(det𝑔)1/2 [𝐸𝑖

2
∫
R3
𝑓
2
𝑑𝑞 − 𝐸

𝑖

1
∫
R3
𝑓
1
𝑑𝑞]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (det𝑔)1/2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑖𝑗

𝜑
𝑘𝑗
(
𝑝
𝑘

2

𝑝
0

2

−
𝑝
𝑘

1

𝑝
0

1

)∫
R3
𝑓
2
𝑑𝑞

+
𝑝
𝑘

1

𝑝
0

1

∫
R3
(𝑓
2
− 𝑓
1
) 𝑑𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (det𝑔)1/2∑
𝑖,𝑗

𝑔
𝑖𝑗
∑

𝑘,𝑗

󵄨󵄨󵄨󵄨󵄨
𝜑
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨

× (𝐶𝐵
1

󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩R3

+∑

𝑘

𝐶

√𝑔𝑘𝑘

󵄩󵄩󵄩󵄩𝑓1 − 𝑓2
󵄩󵄩󵄩󵄩) .

(116)

So by addition, we conclude that (106) holds.
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(c) We also have, using (102),

𝐼
3
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

3
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)

=
1

𝑝
0

1

𝑄 (𝑓
1
, 𝑓
1
, 𝑝
1
) −

1

𝑝
0

2

𝑄 (𝑓
2
, 𝑓
2
, 𝑝
2
)

=
1

𝑝
0

1

(𝑄 (𝑓
1
, 𝑓
1
, 𝑝
1
) − 𝑄 (𝑓

2
, 𝑓
2
, 𝑝
1
))

+
1

𝑝
0

1

(𝑄 (𝑓
2
, 𝑓
2
, 𝑝
1
) − 𝑄 (𝑓

2
, 𝑓
2
, 𝑝
2
))

+ (
1

𝑝
0

1

−
1

𝑝
0

2

)𝑄 (𝑓
2
, 𝑓
2
, 𝑝
2
) .

(117)

By Proposition 6, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑝
0

1

(𝑄 (𝑓
1
, 𝑓
1
, 𝑝
1
) − 𝑄 (𝑓

2
, 𝑓
2
, 𝑝
1
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻3
𝑑
(0,𝑇,R3

𝑝
)

≤ 𝐶 (𝑇, 𝑔
0

𝑖𝑗
) (
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓2

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩 .

(118)

Using also Proposition 6, we find

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑝
0

1

(𝑄 (𝑓
2
, 𝑓
2
, 𝑝
1
) − 𝑄 (𝑓

2
, 𝑓
2
, 𝑝
2
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻3
𝑑
(0,𝑇,R3

𝑝
)

≤ 𝐵
1

󵄩󵄩󵄩󵄩𝑓2
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩R3

.

(119)

Still using Proposition 6 and invoking Proposition 12, we
find

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1

𝑝
0

1

−
1

𝑝
0

2

)𝑄 (𝑓
2
, 𝑓
2
, 𝑝
2
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻3
𝑑
(0,𝑇,R3

𝑝
)

≤ 𝐶𝐵
2

󵄩󵄩󵄩󵄩𝑓2
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩R3

.

(120)

Adding the last three inequalities, we obtain (107).
(d) Similarly, by (102),

𝐼
4
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

4
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)

= √2𝑈
1
− √2𝑈

2
=

√2

√𝑈
1
+ √𝑈

2

(𝑈
1
− 𝑈

2
) .

(121)

So

󵄨󵄨󵄨󵄨󵄨
𝐼
4
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

4
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄨󵄨󵄨󵄨󵄨

≤
√2

√𝑈
1
+ √𝑈

2

󵄨󵄨󵄨󵄨𝑈1 − 𝑈2
󵄨󵄨󵄨󵄨 .

(122)

(e) Finally by (102) we have

𝐼
5
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

5
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)

= 2𝐻 (𝑈
1
− 𝑈

2
) + 𝑚

2

0
(Φ
1
√2𝑈

1
− Φ

2
√2𝑈

2
)

+ (𝑔
𝑖𝑗
(det𝑔)1/2 (𝐸𝑗

1
∫
R3

𝑞
𝑖

𝑓
1
(𝑡, 𝑝)

𝑞0
𝑑𝑞

−𝐸
𝑗

2
∫
R3

𝑞
𝑖

𝑓
2
(𝑡, 𝑝)

𝑞0
𝑑𝑞))

= 2𝐻 (𝑈
1
− 𝑈

2
) + 𝑚

2

0
Φ
1
(√2𝑈

1
− √2𝑈

2
)

+ 𝑚
2

0
√2𝑈

2
(Φ
1
− Φ

2
)

+ 𝑔
𝑖𝑗
(det𝑔)1/2 ∫

R3

𝑞
𝑖

𝑓
1
(𝑡, 𝑝)

𝑞0
𝑑𝑞 (𝐸

𝑗

1
− 𝐸
𝑗

2
)

+𝑔
𝑖𝑗
𝐸
𝑗

(∫
R3

𝑞
𝑖

(𝑓
1
(𝑡, 𝑝) − 𝑓

2
(𝑡, 𝑝))

𝑞0
𝑑𝑞) .

(123)

So by Propositions 6 and 7, using (2) and the inequalities
obtained for 𝐼

1
, 𝐼
2
, 𝐼
4
,

󵄨󵄨󵄨󵄨󵄨
𝐼
5
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

5
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
7
(
󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩Φ1 − Φ2

󵄩󵄩󵄩󵄩R
+
󵄩󵄩󵄩󵄩𝑈1 − 𝑈2

󵄩󵄩󵄩󵄩R
) ,

(124)

where

𝐶
7
= 𝐶 |𝐻| +

𝑚
2

0

󵄨󵄨󵄨󵄨Φ2
󵄨󵄨󵄨󵄨
√2

√𝑈
1
+ √𝑈

2

+ 𝑚
2

0
√2𝑈

1

+ 𝐶(det𝑔)1/2∑
𝑖,𝑗

𝑔
𝑖𝑗
(
󵄩󵄩󵄩󵄩󵄩
𝐸
2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩) .

(125)

This completes the proof of Proposition 13.

One requires in what follows that, for any real number 𝑇 >

0,

𝑈 (𝑡) >
𝑈
0

2
, ∀𝑡 ∈ [0, 𝑇] . (126)

Theorem 14. Let 𝑡
0
≥ 0, (𝐸

𝑡0
, 𝑝
𝑡0
, 𝑓
𝑡0
, Φ
𝑡0
, 𝑈
𝑡0
) ∈ R3 × R3 ×

𝐻
3

𝑑
(0, 𝑇,R3

𝑝
) ×R ×R be given. Then the following holds.

There exists a real number 𝛿 > 0 such that the Cauchy
problem (𝑆) has a unique solution:

(𝐸, 𝑝, 𝑓,Φ,𝑈) ∈ (C ([[𝑡
0
, 𝑡
0
+ 𝛿] ; R

3

]))
2

× 𝐻
3

𝑑
(𝑡
0
, 𝑡
0
+ 𝛿,R

3

𝑝
)

× (C ([[𝑡
0
, 𝑡
0
+ 𝛿] ; R]))

2

(127)
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satisfying (𝐸, 𝑝, 𝑓,Φ,𝑈) (𝑡
0
) = (𝐸

𝑡0
, 𝑝
𝑡0
, 𝑓
𝑡0
, Φ
𝑡0
, 𝑈
𝑡0
). More-

over, 𝑓 satisfies the relation:

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 = sup {󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩 , 𝑡 ∈ [𝑡0, 𝑡0 + 𝛿]} ≤

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑡0

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
. (128)

Proof. We apply the standard theory on the first-order differ-
ential systems to (𝐸

1
)-(𝐸

2
)-(𝐸

3
)-(𝐸

4
)-(𝐸

5
).

Since 𝑔
𝑖𝑗
, 𝜕
0
𝑔
𝑖𝑗
, 1/𝑔

𝑖𝑗
, 𝜎 are continuous functions of 𝑡, so

is the function

𝐼 (𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) = (𝐼
1
, 𝐼
2
, 𝐼
3
, 𝐼
4
, 𝐼
5
) . (129)

By continuity of the functions 𝑧 = 𝑔
𝑖𝑗
, 1/𝑔

𝑖𝑗
at 𝑡 = 𝑡

0
, there

exists a real number 𝛿
0
> 0 such that

𝑡 ∈ ]𝑡
0
− 𝛿
0
, 𝑡
0
+ 𝛿
0
[ 󳨐⇒ |𝑧 (𝑡)| ≤

󵄨󵄨󵄨󵄨𝑧 (𝑡0)
󵄨󵄨󵄨󵄨 + 1. (130)

The previous relation implies, using (5) and (6) to bound
𝑧 = 𝑔

𝑖𝑗
, 𝜕
0
𝑔
𝑖𝑗
, 1/𝑔

𝑖𝑗
, that

𝑡 ∈ ]𝑡
0
− 𝛿
0
, 𝑡
0
+ 𝛿
0
[ 󳨐⇒ |𝑧 (𝑡)| ≤ (∑

𝑖,𝑗

𝑔
0

𝑖𝑗
+∑

𝑖,𝑗

1

𝑔
0

𝑖𝑗

)𝑒
𝐶𝑡0 + 1.

(131)

Next, set

𝐵 (𝐸
𝑡0
, 1) = {𝐸 ∈ R

3

,
󵄩󵄩󵄩󵄩󵄩
𝐸 − 𝐸

𝑡0

󵄩󵄩󵄩󵄩󵄩
< 1} ,

𝐵 (𝑓
𝑡0
, 1) = {𝑓 ∈ 𝐻

3

𝑑
(0, 𝑇,R

3

𝑝
) ,

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

𝑡0

󵄩󵄩󵄩󵄩󵄩
< 1} .

(132)

Then

𝑓 ∈ 𝐵 (𝑓
𝑡0
, 1) 󳨐⇒

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑡0

󵄩󵄩󵄩󵄩󵄩
+ 1,

𝐸 ∈ 𝐵 (𝐸
𝑡0
, 1) 󳨐⇒

󵄩󵄩󵄩󵄩󵄩
𝐸
󵄩󵄩󵄩󵄩󵄩
<
󵄩󵄩󵄩󵄩󵄩
𝐸
𝑡0

󵄩󵄩󵄩󵄩󵄩
+ 1.

(133)

Now consider the neighborhood 𝑉
𝑡0
= ]𝑡

0
− 𝛿

0
, 𝑡
0
+

𝛿
0
[×𝐵 (𝐸

𝑡0
, 1) ×R3 × 𝐵(𝑓

𝑡0
, 1)×] − Φ

𝑡0
+ 1,Φ

𝑡0
+ 1[×] − 𝑈

𝑡0
+

1, 𝑈
𝑡0
+ 1[ of (𝑡

0
, 𝐸
𝑡0
, 𝑝
𝑡0
, 𝑓
𝑡0
, Φ
𝑡0
, 𝑈
𝑡0
) in the Banach space

R ×R3 ×R3 × 𝐻3
𝑑
(0, 𝑇,R3

𝑝
) ×R ×R and take

(𝑡, 𝐸
1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) , (𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
) ∈ 𝑉

𝑡0
. (134)

We deduce from the inequalities (105), (106), (107),
(108), and (109) the definitions of 𝐶

3
, 𝐶
4
, 𝐶
5
, 𝐶
6
, 𝐶
7
, the

implications

𝑡 ∈ ]𝑡
0
− 𝛿
0
, 𝑡
0
+ 𝛿
0
[

󳨐⇒ |𝑧 (𝑡)| ≤ (∑

𝑖,𝑗

𝑔
0

𝑖𝑗
+ ∑

𝑖,𝑗

1

𝑔
0

𝑖𝑗

)𝑒
𝐶𝑡0 + 1,

𝐸 ∈ 𝐵 (𝐸
𝑡0
, 1) 󳨐⇒

󵄩󵄩󵄩󵄩󵄩
𝐸
󵄩󵄩󵄩󵄩󵄩
<
󵄩󵄩󵄩󵄩󵄩
𝐸
𝑡0

󵄩󵄩󵄩󵄩󵄩
+ 1,

𝑓 ∈ 𝐵 (𝑓
𝑡0
, 1) 󳨐⇒

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑡0

󵄩󵄩󵄩󵄩󵄩
+ 1,

Φ ∈ ]−Φ
𝑡0
+ 1,Φ

𝑡0
+ 1[ 󳨐⇒ |Φ| <

󵄨󵄨󵄨󵄨󵄨
Φ
𝑡0

󵄨󵄨󵄨󵄨󵄨
+ 1,

𝑈 ∈ ]−𝑈
𝑡0
+ 1, 𝑈

𝑡0
+ 1[ 󳨐⇒ 𝑈 < 𝑈

𝑡0
+ 1,

(135)

and the relation (126) that there exists a constant

𝐶
8
= 𝐶

8
(𝑡
0
, 𝑔
0

𝑖𝑗
, 𝑓
𝑡0
,
󵄨󵄨󵄨󵄨󵄨
𝐸
𝑖

𝑡0

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝜑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
Φ
𝑡0

󵄨󵄨󵄨󵄨󵄨
, 𝑈
𝑡0
) (136)

such that
󵄩󵄩󵄩󵄩󵄩
𝐼 (𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) ,

−𝐼 (𝑡, 𝐸
2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩R3×R3×𝐻3

𝑑
(0,𝑇,R3

𝑝
)×R×R

≤ 𝐶
8
(
󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩𝑝1 − 𝑝2

󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩𝐻3
𝑑
(0,𝑇,R3

𝑝
)

+
󵄩󵄩󵄩󵄩Φ1 − Φ2

󵄩󵄩󵄩󵄩R
+
󵄩󵄩󵄩󵄩𝑈1 − 𝑈2

󵄩󵄩󵄩󵄩R
)

(137)

which shows that 𝐼 = (𝐼
1
, 𝐼
2
, 𝐼
3
, 𝐼
4
, 𝐼
5
) is locally Lipschitzian

in (𝐸, 𝑝, 𝑓,Φ,𝑈)with respect to the normof the Banach space
R3 × R3 × 𝐻

3

𝑑
(0, 𝑇,R3

𝑝
) × R × R. The existence of a unique

solution (𝐸, 𝑝, 𝑓,Φ,𝑈) of the differential system (𝐸
1
)-(𝐸

2
)-

(𝐸
3
)-(𝐸

4
)-(𝐸

5
) on an interval [𝑡

0
, 𝑡
0
+ 𝛿], 𝛿 > 0, such that

(𝐸, 𝑝, 𝑓,Φ,𝑈)(𝑡
0
) = (𝐸

𝑡0
, 𝑝
𝑡0
, 𝑓
𝑡0
, Φ
𝑡0
, 𝑈
𝑡0
), is guaranteed by

the standard theory on the first-order differential systems.
The relation |‖𝑓‖| = sup{‖𝑓(𝑡)‖, 𝑡 ∈ [0, 𝛿]} ≤ |‖𝑓

𝑡0
‖| is

established in [8].
As a direct consequence, we can deduce that there exists

a real number 𝛿 > 0 such that the Maxwell-Boltzmann-
Euler system (20)-(21)-(40)-(52) in all Bianchi types 1 to 8
spacetimes has a unique solution (𝐹, 𝑓,Φ) on [0, 𝛿] satisfying

𝐹
0𝑖

(0) = 𝐸
𝑖

0
; 𝐹

𝑖𝑗
(0) = 𝜑

𝑖𝑗
; 𝑓 (0) = 𝑓

0
,

Φ (0) = Φ
0
.

(138)

6. The Global Existence

6.1. The Method. Let [0, 𝑇[ be the maximal existence domain
of solution, denoted here by (

̃
𝐸,
̃
𝑝, 𝑓, Φ̃, 𝑈̃) and given by

Theorem 14, of the system (𝐸
1
)-(𝐸

2
)-(𝐸

3
)-(𝐸

4
)-(𝐸

5
), with the

initial data (𝐸
0
, 𝑝
0
, 𝑓
0
, Φ
0
, 𝑈
0
) ∈ R3×R3×𝐻3

𝑑
(0, 𝑇,R3

𝑝
)×R×

R. We intend to prove that 𝑇 = +∞.

(a) If we already have 𝑇 = +∞, then the problem of
global existence is solved.

(b) We are going to show that if we suppose𝑇 < +∞, then
the solution (̃𝐸, ̃𝑝, 𝑓, Φ̃, 𝑈̃) can be extended beyond𝑇,
which contradicts the maximality of 𝑇.

(c) Themethod is as follows: suppose 0 < 𝑇 < +∞ and let
𝑡
0
∈ [0, 𝑇[. We want to show that there exists a strictly

positive number 𝛿 > 0 independent of 𝑡
0
such that

the system (𝐸
1
)-(𝐸

2
)-(𝐸

3
)-(𝐸

4
)-(𝐸

5
) on [𝑡

0
, 𝑡
0
+ 𝛿],

with the initial data (̃𝐸(𝑡
0
),
̃
𝑝(𝑡
0
), 𝑓(𝑡

0
), Φ̃(𝑡

0
), 𝑈̃(𝑡

0
))

at 𝑡 = 𝑡
0
, admits a unique solution (𝐸, 𝑝, 𝑓,Φ,𝑈) on

[𝑡
0
, 𝑡
0
+ 𝛿]. Then, by taking 𝑡

0
sufficiently close to 𝑇,

for example, 𝑡
0
such that 0 < 𝑇 − 𝑡

0
< (𝛿/2), and

hence 𝑇 < 𝑡
0
+ (𝛿/2), we can extend the solution
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(
̃
𝐸,
̃
𝑝, 𝑓, Φ̃, 𝑈̃) to [0, 𝑡

0
+(𝛿/2)], which strictly contains

[0, 𝑇[, and this contradicts the maximality of 𝑇. For
the need to simplify the notations, it will be enough if
we could look for a number 𝛿 such that 0 < 𝛿 < 1.

(d) In what follows we fix a number 𝑟 > 0 and we take 𝑓
0

such that ‖𝑓
0
‖ ≤ 𝑟.

By (128) we can write

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑡0

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩 . (139)

We also have from (139) using (128) that any solution𝑓 of
the Boltzmann equation on [𝑡

0
, 𝑡
0
+𝛿] such that𝑓(𝑡

0
) = 𝑓(𝑡

0
),

satisfies the inequality:

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑟, 𝑡 ∈ [𝑡

0
, 𝑡
0
+ 𝛿] . (140)

Also notice that (140) shows that a solution
(𝐸, 𝑝, 𝑓,Φ,𝑈) of the system (𝐸

1
)-(𝐸

2
)-(𝐸

3
)-(𝐸

4
)-(𝐸

5
) on

[𝑡
0
, 𝑡
0
+ 𝛿], 𝛿 > 0, such that (𝐸, 𝑝, 𝑓,Φ,𝑈) (𝑡

0
) = (

̃
𝐸(𝑡
0
),

̃
𝑝(𝑡
0
), 𝑓(𝑡

0
), Φ̃(𝑡

0
), 𝑈̃(𝑡

0
)), satisfies

(𝐸, 𝑝, 𝑓,Φ,𝑈) ∈ (C ([𝑡
0
, 𝑡
0
+ 𝛿] ;R3))

2

× 𝐻
3

𝑑,𝑟
(𝑡
0
, 𝑡
0
+ 𝛿,R

3

)

× (C ([𝑡
0
, 𝑡
0
+ 𝛿] ;R))

2

.

(141)

In what follows, [0, 𝑇[, 𝑇 > 0 is the maximal existence
domain of solution (

̃
𝐸,
̃
𝑝, 𝑓, Φ̃, 𝑈̃) of (𝐸

1
)-(𝐸

2
)-(𝐸

3
)-(𝐸

4
)-

(𝐸
5
) such that

(
̃
𝐸,
̃
𝑝, 𝑓, Φ̃, 𝑈̃) (0)

= (
̃
𝐸
0
,
̃
𝑝
0
, 𝑓
0
, Φ̃
0
, 𝑈
0
) ∈ R

3

×R
3

× 𝐻
3

𝑑,𝑟
(0, 𝑇,R

3

𝑝
) ×R ×R.

(142)

The following result shows helpful in what is to follow.

Lemma 15. 𝑡 󳨃→ ̃
𝐸(𝑡), 𝑡 󳨃→ ̃

𝑝(𝑡), 𝑡 󳨃→ 𝑈̃(𝑡), and 𝑡 󳨃→ Φ̃(𝑡) are
uniformly bounded over [0, 𝑇[.

Proof. See [1].

6.2. Global Existence of Solutions. First of all, we consider, for
𝑡
0
∈ [0, 𝑇[ and 𝛿 > 0,

(𝐸, 𝑝, 𝑓) ∈ (C ([𝑡
0
, 𝑡
0
+ 𝛿] ;R

3

))
2

× 𝐻
3

𝑑,𝑟
(𝑡
0
, 𝑡
0
+ 𝛿,R

3

) .

(143)

Then, we built from system (𝐸
1
)-(𝐸

2
)-(𝐸

3
)-(𝐸

4
)-(𝐸

5
) by

setting in its r.h.s. 𝐼 = (𝐼
1
, 𝐼
2
, 𝐼
3
, 𝐼
4
, 𝐼
5
)which is given by (102)

𝑓 = 𝑓 in 𝐼
1
, 𝐸 = 𝐸, 𝑓 = 𝑓 in 𝐼

2
, 𝑝 = 𝑝 in 𝐼

3
, and 𝑓 = 𝑓,

𝐸 = 𝐸, in 𝐼
5
, the following useful differential system:

𝑑𝐸
𝑖

𝑑𝑡
= 𝐼
1
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) , (144)

𝑑𝑝
𝑖

𝑑𝑡
= 𝐼
2
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) , (145)

𝑑𝑓

𝑑𝑡
= 𝐼
3
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) , (146)

𝑑Φ

𝑑𝑡
= 𝐼
4
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) , (147)

𝑑𝑈

𝑑𝑡
= 𝐼
5
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) , (148)

where

𝐼
1
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) = (𝐻𝐸

𝑖

+ ∫
R3

𝑞
𝑖

𝑓(det𝑔)1/2

𝑞0
𝑑𝑞)

𝐼
2
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈)

= (−2Γ
𝑖

0𝑗
𝑝
𝑗

+ [−𝐸𝑖 + 𝑔
𝑖𝑗
𝑝
𝑘

𝜑
𝑘𝑗

𝑝0
]∫

R3
𝑓(det𝑔)1/2𝑑𝑞)

𝐼
3
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) =

1

𝑝0 (𝑝)

𝑄 (𝑓, 𝑓, 𝑝)

𝐼
4
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) = −√2𝑈

𝐼
5
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) = 2𝐻𝑈 + 𝑚

2

0
Φ√2𝑈

+ 𝑔
𝑖𝑗
𝐸𝑗 ∫

R3

𝑞
𝑖

𝑓(det𝑔)1/2

𝑞0
𝑑𝑞,

𝑖 = 1, 2, 3.

(149)

We prove the following.

Proposition 16. Let 𝑡
0
∈ [0, 𝑇[, 𝛿 ∈]0, 1[, and (𝐸, 𝑝, 𝑓) ∈

(C([𝑡
0
, 𝑡
0
+ 𝛿];R3))

2

× 𝐻
3

𝑑,𝑟
(𝑡
0
, 𝑡
0
+ 𝛿,R3) be given. Then, the

differential system (144)-(145)-(146)-(147)-(148) has a unique
solution (𝐸, 𝑝, 𝑓,Φ,𝑈) ∈ (C([𝑡

0
, 𝑡
0
+ 𝛿];R3))

2

× 𝐻
3

𝑑,𝑟
(𝑡
0
, 𝑡
0
+

𝛿,R3) × (C([𝑡
0
, 𝑡
0
+ 𝛿];R))

2 such that (𝐸, 𝑝, 𝑓,Φ,𝑈)(𝑡
0
) =

(
̃
𝐸
𝑡0
,
̃
𝑝
𝑡0
, 𝑓
𝑡0
, Φ̃
𝑡0
, 𝑈
𝑡0
).

Proof. (a) We consider (144) in 𝐸, with 𝐼
1
defined by (149)

in which 𝑓 is fixed. Since 𝑔
𝑖𝑗
, 1/𝑔

𝑖𝑗
, 𝜕
0
𝑔
𝑖𝑗
, 𝑓 are continuous

functions of 𝑡, so is 𝐼
1
. Next, we deduce from (105) in which

we set 𝑓
1
= 𝑓
2
= 𝑓 that

󵄩󵄩󵄩󵄩󵄩
𝐼
1
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓, Φ

1
, 𝑈
1
) − 𝐼

1
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓, Φ

2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩R3

≤ 𝐶
3

󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩
,

(150)

where 𝐶
3
= 𝐶 (|𝐻| + (det𝑔)1/2).
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Now we can use (5) and (6) to bound 𝑧 = 𝑔
𝑖𝑗
, 1/𝑔

𝑖𝑗
, 𝜕
0
𝑔
𝑖𝑗

and we obtain, for 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝛿], then 𝑡 ≤ 𝑡

0
+ 𝛿 ≤ 𝑇 + 1,

|𝑧 (𝑡)| ≤ (𝐶 +∑

𝑖,𝑗

𝑔
0

𝑖𝑗
)𝑒
𝐶(𝑇+1)

+ 1,

𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝛿] , 𝑧 = 𝑔

𝑖𝑗
, 𝜕
0
𝑔
𝑖𝑗
.

(151)

We then deduce from (151) that

𝐶
3
≤ 𝐶

󸀠

3
, where 𝐶󸀠

3
= 𝐶

󸀠

3
(𝑔
0

𝑖𝑗
, 𝑇) . (152)

By (150) and (152), 𝐼
1
is (globally) Lipschitzian with

respect to theR3-norm and the local existence of a solution 𝐸
of (144) such that 𝐸(𝑡

0
) =

̃
𝐸(𝑡
0
) is guaranteed by the standard

theory of first-order differential systems.
Now, since 𝐸 satisfies (144) in which 𝐼

1
is given by

(149), following the same way as in the proof of Lemma 15,
substituting 𝐸 to ̃

𝐸, 𝑓 to 𝑓, and integrating this time over
[𝑡
0
, 𝑡
0
+ 𝑡], 𝑡 ∈ [0, 𝛿[, lead to

󵄨󵄨󵄨󵄨󵄨
𝐸
𝑖

(𝑡
0
+ 𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ (

󵄨󵄨󵄨󵄨󵄨󵄨

̃
𝐸𝑖 (𝑡

0
)
󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝐶

𝑖

9
𝑇) + 𝐶∫

𝑡0+𝑡

𝑡0

󵄨󵄨󵄨󵄨󵄨
𝐸
𝑖
󵄨󵄨󵄨󵄨󵄨
(𝑠) 𝑑𝑠,

𝑡 ∈ [0, 𝛿[ , 𝑖 = 1, 2, 3,

(153)

where 𝐶𝑖
9
= 𝐶

𝑖

9
(𝑔
0

𝑖𝑗
, 𝑇, 𝑟, |𝐸

𝑖

0
|). However, by Lemma 15, we

have, since 𝑡
0
[0, 𝑇[: |̃𝐸𝑖(𝑡

0
)| ≤ (|𝐸

𝑖

0
| + 𝐶

𝑖

9
𝑇)𝑒
𝐶𝑇. Then, by

Gronwall inequality,
󵄨󵄨󵄨󵄨󵄨
𝐸
𝑖

(𝑡
0
+ 𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ ((

󵄨󵄨󵄨󵄨󵄨
𝐸
𝑖

0

󵄨󵄨󵄨󵄨󵄨
+ 𝐶

𝑖

9
𝑇) 𝑒

𝐶𝑇

+ 𝐶
𝑖

11
𝑇) 𝑒

𝐶(𝑇+1)

,

𝑡 ∈ [0, 𝛿[ , 𝑖 = 1, 2, 3,

(154)

where (see [1]) 𝐶𝑖
10
, 𝐶𝑖
11

are two constants appearing in
Lemma 15 when we bound 𝑡 󳨃→ ̃

𝑝(𝑡), which shows that every
solution 𝐸 of (144) is uniformly bounded. By the standard
theory of first-order differential systems, the solution 𝐸 is
defined all over [𝑡

0
, 𝑡
0
+ 𝛿[ and 𝐸 ∈ C([𝑡

0
, 𝑡
0
+ 𝛿[;R3).

(b)We also consider (145) in 𝑝, with 𝐼
2
defined by (149) in

which𝐸,𝑓 are fixed. Since𝑔
𝑖𝑗
, 1/𝑔

𝑖𝑗
, 𝜕
0
𝑔
𝑖𝑗
,𝐸,𝑓 are continuous

functions of 𝑡, so is 𝐼
2
. Next, we deduce from (106) in which

we set 𝐸
1
= 𝐸

2
= 𝐸, 𝑓

1
= 𝑓
2
= 𝑓 that

󵄩󵄩󵄩󵄩󵄩󵄩
𝐼
2
(𝑡, 𝐸, 𝑝

1
, 𝑓, Φ

1
, 𝑈
1
) − 𝐼

2
(𝑡, 𝐸, 𝑝

2
, 𝑓, Φ

2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩󵄩R3

≤ 𝐶
4

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩 ,

(155)

where

𝐶
4
= 𝐶(∑

𝑖,𝑗

𝑔
𝑖𝑗

)

2

+ 𝐶 (det𝑔)1/2 (󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩
𝐸
2

󵄩󵄩󵄩󵄩󵄩
)

+ 𝐶 (det𝑔)1/2∑
𝑖,𝑗

𝑔
𝑖𝑗
∑

𝑘,𝑗

󵄨󵄨󵄨󵄨󵄨
𝜑
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
(𝐵
1
+∑

𝑘

1

√𝑔𝑘𝑘

) .

(156)

Now we can use (5) and (6) to bound 𝑧 = 𝑔
𝑖𝑗
, 1/𝑔

𝑖𝑗
and

we obtain, for 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝛿], then 𝑡 ≤ 𝑡

0
+ 𝛿 ≤ 𝑇 + 1,

|𝑧 (𝑡)| ≤ (∑

𝑖,𝑗

𝑔
0

𝑖𝑗
+∑

𝑖,𝑗

1

𝑔
0

𝑖𝑗

)𝑒
𝐶(𝑇+1)

+ 1,

𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝛿] , 𝑧 = 𝑔

𝑖𝑗
,
1

𝑔
𝑖𝑗

.

(157)

We then deduce from (157), using
󵄨󵄨󵄨󵄨󵄨󵄨
𝐸𝑖 (𝑡

0
+ 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨
≤ ((

󵄨󵄨󵄨󵄨󵄨
𝐸
𝑖

0

󵄨󵄨󵄨󵄨󵄨
+ 𝐶

𝑖

9
𝑇) 𝑒

𝐶𝑇

+ 𝐶
𝑖

11
𝑇) 𝑒

𝐶(𝑇+1)

,

𝑡 ∈ [0, 𝛿[ , 𝑖 = 1, 2, 3,

(158)

since 𝐸 = 𝐸
1
= 𝐸

2
is uniformly bounded, and ‖𝑓‖ ≤ ‖|𝑓|‖ ≤

𝑟, since 𝑓 ∈ 𝐻
3

𝑑,𝑟
(𝑡
0
, 𝑡
0
+ 𝛿,R3) that

𝐶
4
≤ 𝐶

󸀠

4
, where 𝐶󸀠

4
= 𝐶

󸀠

4
(𝑔
0

𝑖𝑗
,
󵄨󵄨󵄨󵄨󵄨
𝐸
𝑖

0

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝜑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
, 𝑇, 𝑟) . (159)

By (155) and (159), 𝐼
2
is (globally) Lipschitzian with

respect to theR3-norm and the local existence of a solution 𝑝
of (145) such that 𝑝(𝑡

0
) =

̃
𝑝(𝑡
0
) is guaranteed by the standard

theory of first-order differential systems.
Now, since 𝑝 satisfies (152) in which 𝐼

2
is given by

(149), following the same way as in the proof of Lemma 15,
substituting 𝐸 to ̃

𝐸, 𝑝 to ̃𝑝, and 𝑓 to 𝑓, and integrating this
time over [𝑡

0
, 𝑡
0
+ 𝑡], 𝑡 ∈ [0, 𝛿[, lead to

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑖

(𝑡
0
+ 𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ (

󵄨󵄨󵄨󵄨󵄨󵄨

̃
𝑝𝑖 (𝑡

0
)
󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝐶

𝑖

12
𝑇)

+ 𝐶∫

𝑡0+𝑡

𝑡0

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑖
󵄨󵄨󵄨󵄨󵄨
(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝛿[ , 𝑖 = 1, 2, 3,

(160)

where 𝐶𝑖
12
= 𝐶

𝑖

12
(𝑔
0

𝑖𝑗
, |𝐸
𝑖

0
|, |𝜑

𝑖𝑗
|, 𝑇, 𝑟). However, by Lemma 15,

we have, since 𝑡
0
[0, 𝑇[: |

̃
𝑝𝑖(𝑡

0
)| ≤ (|𝑝

𝑖

0
| + 𝐶

𝑖

8
𝑇)𝑒
𝐶𝑇. Then, by

Gronwall inequality,
󵄨󵄨󵄨󵄨󵄨
𝑝
𝑖

(𝑡
0
+ 𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ ((

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑖

0

󵄨󵄨󵄨󵄨󵄨
+ 𝐶

𝑖

10
𝑇) 𝑒

𝐶𝑇

+ 𝐶
𝑖

12
𝑇) 𝑒

𝐶(𝑇+1)

,

𝑡 ∈ [0, 𝛿[ , 𝑖 = 1, 2, 3,

(161)

which shows that every solution 𝑝 of (152) is uniformly
bounded. By the standard theory of first-order differential
systems, the solution 𝑝 is defined all over [𝑡

0
, 𝑡
0
+ 𝛿[ and

𝑝 ∈ C([𝑡
0
, 𝑡
0
+ 𝛿[;R3).

(c) Next, we have proved in Theorem 10 that the single
equation (146) in 𝑓 has a unique solution 𝑓 ∈ 𝐻

3

𝑑,𝑟
(𝑡
0
, 𝑡
0
+

𝛿,R3), substituting 𝑡
0
to 0, 𝑡

0
+𝛿 to𝑇, such that𝑓(𝑡

0
) = 𝑓(𝑡

0
).

(d) For (147) in Φ, we have by (108)
󵄩󵄩󵄩󵄩󵄩
𝐼
4
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

4
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩R

≤ 𝐶
󸀠

6

󵄩󵄩󵄩󵄩𝑈1 − 𝑈2
󵄩󵄩󵄩󵄩R
,

(162)

where
𝐶
󸀠

6
=

√2

√𝑈
0

. (163)

Equations (162) and (163) show that 𝐼
4
is (globally) Lips-

chitzian with respect to theR-norm and the local existence of
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a solution Φ of (147) such that Φ(𝑡
0
) = Φ̃(𝑡

0
) is guaranteed

by the standard theory on first-order differential systems.
Since Φ satisfies (147) in which 𝐼

4
is given by (149),

substituting 𝑈 to 𝑈̃ in Lemma 15, we find

󵄨󵄨󵄨󵄨󵄨
Φ̇ (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ √2((𝑈

0
+ 𝐶(

󵄨󵄨󵄨󵄨󵄨󵄨

̃
𝐸
0

󵄨󵄨󵄨󵄨󵄨󵄨
+

3

∑

𝑖=1

𝐶
𝑖

9
𝑇) 𝑒𝐶𝑇𝑟𝑇) + 𝑚

2

0
𝑇max {Φ2

0
, Φ2 (𝑇)}) 𝑒𝐶𝑇, 𝑡 ∈ [0, 𝛿] . (164)

Applying theGronwall inequality this time over [𝑡
0
, 𝑡
0
+𝑡],

𝑡 ∈ [0, 𝛿[, we find

|Φ (𝑡)| ≤
󵄨󵄨󵄨󵄨Φ0

󵄨󵄨󵄨󵄨 + (1 + 𝑇)
√2(((𝑈

0
+ 𝐶(

󵄨󵄨󵄨󵄨󵄨󵄨

̃
𝐸
0

󵄨󵄨󵄨󵄨󵄨󵄨
+

3

∑

𝑖=1

𝐶
𝑖

9
𝑇) 𝑒𝐶𝑇𝑟𝑇) + 𝑚

2

0
𝑇max {Φ2

0
, Φ2 (𝑇)}) 𝑒𝐶𝑇) (165)

and conclude that every solution Φ of (147) is uniformly
bounded. By the standard theory of first-order differential
systems, the solution Φ is defined all over [𝑡

0
, 𝑡
0
+ 𝛿[ and

Φ ∈ C([𝑡
0
, 𝑡
0
+ 𝛿[;R).

(e) In the end, for (148) in 𝑈, with 𝐼
5
still defined by

(149) in which 𝐸, 𝑓 are fixed. Since 𝑔
𝑖𝑗
, 1/𝑔

𝑖𝑗
, 𝜕
0
𝑔
𝑖𝑗
, 𝐸, 𝑓 are

continuous functions of 𝑡, so is 𝐼
5
. We deduce from (109) in

which we set 𝐸
1
= 𝐸

2
= 𝐸, 𝑓

1
= 𝑓
2
= 𝑓 that

󵄩󵄩󵄩󵄩󵄩󵄩
𝐼
5
(𝑡, 𝐸, 𝑝

1
, 𝑓, Φ

1
, 𝑈
1
) − 𝐼

5
(𝑡, 𝐸, 𝑝

2
, 𝑓, Φ

2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩󵄩R

≤ 𝐶
7
(
󵄩󵄩󵄩󵄩Φ1 − Φ2

󵄩󵄩󵄩󵄩R
+
󵄩󵄩󵄩󵄩𝑈1 − 𝑈2

󵄩󵄩󵄩󵄩R
) ,

(166)

where

𝐶
7
= 𝐶

7
= 𝐶 |𝐻| +

𝑚
2

0

󵄨󵄨󵄨󵄨Φ2
󵄨󵄨󵄨󵄨
√2

√𝑈
1
+ √𝑈

2

+ 𝑚
2

0
√2𝑈

1

+ 𝐶(det𝑔)1/2∑
𝑖,𝑗

𝑔
𝑖𝑗
(
󵄩󵄩󵄩󵄩󵄩
𝐸
2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩) .

(167)

Invoking (157) and using |𝐸𝑖(𝑡
0
+ 𝑡)| ≤ ((|𝐸

𝑖

0
| +𝐶

𝑖

9
𝑇) 𝑒

𝐶𝑇

+

𝐶
𝑖

11
𝑇) 𝑒

𝐶(𝑇+1), 𝑡 ∈ [0, 𝛿[, 𝑖 = 1, 2, 3, since 𝐸 = 𝐸
1
= 𝐸

2
is

uniformly bounded, ‖𝑓‖ ≤ ‖|𝑓|‖ ≤ 𝑟, since 𝑓 ∈ 𝐻
3

𝑑,𝑟
(𝑡
0
, 𝑡
0
+

𝛿,R3), using

|Φ (𝑡)| ≤
󵄨󵄨󵄨󵄨Φ0

󵄨󵄨󵄨󵄨 + (1 + 𝑇)
√2(((𝑈

0
+ 𝐶(

󵄨󵄨󵄨󵄨󵄨󵄨

̃
𝐸
0

󵄨󵄨󵄨󵄨󵄨󵄨
+

3

∑

𝑖=1

𝐶
𝑖

9
𝑇) 𝑒𝐶𝑇𝑟𝑇) + 𝑚

2

0
𝑇max {Φ2

0
, Φ2 (𝑇)}) 𝑒𝐶𝑇) (168)

and Lemma 15, we find

𝐶
7
≤ 𝐶

󸀠

7
, where 𝐶󸀠

7
= 𝐶

󸀠

7
(𝑔
0

𝑖𝑗
, 𝑇,𝑚

0
,
󵄨󵄨󵄨󵄨󵄨
𝐸
0

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨Φ0

󵄨󵄨󵄨󵄨 , 𝑈0, 𝑟) .

(169)

We conclude by (166), (169) that 𝐼
5
is (globally) Lips-

chitzian with respect to the R-norm and the local existence
of a solution 𝑈 of (148) such that 𝑈(𝑡

0
) = 𝑈̃(𝑡

0
) is then

guaranteed by the standard theory on first-order differential
systems.

We similarly show that every solution 𝑈 of (148) is
uniformly bounded and by the standard theory of first-order
differential systems, 𝑈 is defined all over [𝑡

0
, 𝑡
0
+ 𝛿[ and 𝑈 ∈

C([𝑡
0
, 𝑡
0
+ 𝛿[;R).

This ends the proof of Proposition 16.

We now set

𝑋
𝑡0

𝛿
= (C ([𝑡

0
, 𝑡
0
+ 𝛿] ;R

3

))
2

× 𝐻
3

𝑑,𝑟
(𝑡
0
, 𝑡
0
+ 𝛿,R

3

) (170)

𝑌
𝑡0

𝛿
= (C ([𝑡

0
, 𝑡
0
+ 𝛿] ;R

3

))
2

× 𝐻
3

𝑑,𝑟
(𝑡
0
, 𝑡
0
+ 𝛿,R

3

)

×(C ([𝑡
0
, 𝑡
0
+ 𝛿] ;R))

2

.

(171)

𝑋
𝑡0

𝛿
is a complete metric subspace of the Banach space

(C([𝑡
0
, 𝑡
0
+ 𝛿];R3))

2

×𝐻
3

𝑑
(𝑡
0
, 𝑡
0
+𝛿,R3) and𝑌𝑡0

𝛿
is a complete

metric subspace of the Banach space (C([𝑡
0
, 𝑡
0
+ 𝛿];R3))

2

×

𝐻
3

𝑑
(𝑡
0
, 𝑡
0
+ 𝛿,R3) × (C([𝑡

0
, 𝑡
0
+ 𝛿];R))

2.
With Proposition 16 we define the map:

𝑔 : 𝑋
𝑡0

𝛿
󳨀→ 𝑌

𝑡0

𝛿
, (𝐸, 𝑝, 𝑓) 󳨃󳨀→ (𝐸, 𝑝, 𝑓,Φ,𝑈) . (172)

We claim the following.



16 Advances in Mathematical Physics

Proposition 17. Let 𝑡
0
[0, 𝑇[. There exists a number 𝛿 ∈]0, 1[,

independent of 𝑡
0
, such that the system (𝐸

1
)-(𝐸

2
)-(𝐸

3
)-(𝐸

4
)-

(𝐸
5
) has a unique solution (𝐸, 𝑝, 𝑓,Φ,𝑈) ∈ 𝑌

𝑡0

𝛿
such that

(𝐸, 𝑝, 𝑓,Φ,𝑈)(𝑡
0
) = (̃𝐸(𝑡

0
),
̃
𝑝(𝑡
0
), 𝑓(𝑡

0
), Φ̃(𝑡

0
), 𝑈̃(𝑡

0
)).

Proof. We will prove that there exists a number 𝛿 ∈]0, 1[,
independent of 𝑡

0
, such that the map 𝑔, defined by (172),

induces a contraction of the complete metric space 𝑋
𝑡0

𝛿

defined by (170), which will then have a fixed point (𝐸, 𝑝, 𝑓)
solution of the system (𝐸

1
)-(𝐸

2
)-(𝐸

3
).

With the initial data (̃𝐸(𝑡
0
),
̃
𝑝(𝑡
0
), 𝑓(𝑡

0
), Φ̃(𝑡

0
), 𝑈̃(𝑡

0
)) at

𝑡 = 𝑡
0
, the differential system (144)-(145)-(146)-(147)-(148)

is equivalent for 𝑖 = 1, 2, 3, and using notations (149) to the
integral system

𝐸
𝑖

(𝑡
0
+ 𝑡) =

̃
𝐸 (𝑡

0
) + ∫

𝑡0+𝑡

𝑡0

𝐼
1
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) (𝜏) 𝑑𝜏,

(173)

𝑝
𝑖

(𝑡
0
+ 𝑡) =

̃
𝑝𝑖 (𝑡

0
) + ∫

𝑡0+𝑡

𝑡0

𝐼
2
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) (𝜏) 𝑑𝜏,

(174)

𝑓 (𝑡
0
+ 𝑡) = 𝑓 (𝑡

0
) + ∫

𝑡0+𝑡

𝑡0

𝐼
3
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) (𝜏) 𝑑𝜏,

(175)

Φ(𝑡
0
+ 𝑡) = Φ̃ (𝑡

0
) + ∫

𝑡0+𝑡

𝑡0

𝐼
4
(𝑡, 𝐸, 𝑝, 𝑓,Φ,𝑈) (𝜏) 𝑑𝜏,

(176)

𝑈(𝑡
0
+ 𝑡) = 𝑈̃ (𝑡

0
) + ∫

𝑡0+𝑡

𝑡0

𝐼
5
(𝑡, 𝐸, 𝑝

1
, 𝑓, Φ

1
, 𝑈
1
) (𝜏) 𝑑𝜏,

𝑡 ∈ [0, 𝛿[ .

(177)

To (𝐸
𝑗
, 𝑝
𝑗
, 𝑓
𝑗
) ∈ 𝑋

𝑡0

𝛿
, 𝑗 = 1, 2, correspond the solutions

(𝐸
𝑗
, 𝑝
𝑗
, 𝑓
𝑗
, Φ
𝑗
, 𝑈
𝑗
) ∈ 𝑌

𝑡0

𝛿
, 𝑗 = 1, 2, whose existence is proved

in Proposition 16. We now write the integral system (173)-
(174)-(175)-(176)-(177) for 𝑗 = 1 and 𝑗 = 2, and taking the
differences, we obtain the following, with 𝑖 = 1, 2, 3:

(𝐸
𝑖

1
− 𝐸
𝑖

2
) (𝑡
0
+ 𝑡)

= ∫

𝑡0+𝑡

𝑡0

[𝐼
1
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
)

−𝐼
1
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)] (𝜏) 𝑑𝜏,

(𝑝
𝑖

1
− 𝑝
𝑖

2
) (𝑡
0
+ 𝑡)

= ∫

𝑡0+𝑡

𝑡0

[𝐼
2
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
)

−𝐼
2
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)] (𝜏) 𝑑𝜏

(𝑓
1
− 𝑓
2
) (𝑡
0
+ 𝑡)

= ∫

𝑡0+𝑡

𝑡0

[𝐼
3
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
)

−𝐼
3
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)] (𝜏) 𝑑𝜏,

(Φ
1
− Φ

2
) (𝑡
0
+ 𝑡)

= ∫

𝑡0+𝑡

𝑡0

[𝐼
4
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
)

−𝐼
4
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)] (𝜏) 𝑑𝜏,

(𝑈
1
− 𝑈

2
) (𝑡
0
+ 𝑡)

= ∫

𝑡0+𝑡

𝑡0

[𝐼
5
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
)

−𝐼
5
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)] (𝜏) 𝑑𝜏.

(178)

(a) Now we can deduce, from (106) in which we set 𝑓
1
=

𝑓
1
, 𝑓
2
= 𝑓
2
,

󵄩󵄩󵄩󵄩󵄩
𝐼
1
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

1
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩R3

≤ 𝐶
󸀠

3
(
󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩󵄩
𝑓
1
− 𝑓
2

󵄩󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

) (𝜏) ,

(179)

where 𝐶󸀠
3
= 𝐶

󸀠

3
(𝑔
0

𝑖𝑗
, 𝑇) is still given by (152).

(b) Next, since (𝐸
𝑗
, 𝑝
𝑗
, 𝑓
𝑗
) ∈ 𝑋

𝑡0

𝛿
, we deduce from (107) in

which we set 𝐸
1
= 𝐸

1
, 𝐸
2
= 𝐸

2
, 𝑓
1
= 𝑓
1
, 𝑓
2
= 𝑓
2

󵄩󵄩󵄩󵄩󵄩󵄩
𝐼
2
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

2
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩󵄩R3

≤ 𝐶
󸀠

4
(
󵄩󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩𝑝1 − 𝑝2

󵄩󵄩󵄩󵄩R3

+
󵄩󵄩󵄩󵄩󵄩
𝑓
1
− 𝑓
2

󵄩󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

) (𝜏) ,

(180)

where 𝐶󸀠
4
= 𝐶

󸀠

4
(𝑔
0

𝑖𝑗
, |𝐸
𝑖

0
|, |𝜑

𝑖𝑗
|, 𝑇, 𝑟) is given by (159).

(c) We have by (108) in which we set 𝑝
1
= 𝑝

1
, 𝑝
2
=

𝑝
2
, since (𝐸

𝑗
, 𝑝
𝑗
, 𝑓
𝑗
) ∈ 𝑋

𝑡0

𝛿
, and using 𝐶

5
= 𝐵

3
+

𝐶 (𝑇, 𝑔
0

𝑖𝑗
) (det𝑔)1/2 (‖𝑓

1
‖ + ‖𝑓

2
‖) + 𝐶𝐵

2
is still given

by (108):
󵄩󵄩󵄩󵄩󵄩󵄩
𝐼
3
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

3
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

≤ 𝐶
󸀠

5
(
󵄩󵄩󵄩󵄩󵄩
𝑝
1
− 𝑝
2

󵄩󵄩󵄩󵄩󵄩R3
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

) (𝜏) ,

(181)

where 𝐶󸀠
5
= 𝐶

󸀠

5
(𝑔
0

𝑖𝑗
, 𝑇, 𝑟).
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(d) We also have, using (109),

󵄩󵄩󵄩󵄩󵄩
𝐼
4
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

4
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩R

≤ 𝐶
󸀠

6
(
󵄩󵄩󵄩󵄩𝑈1 − 𝑈2

󵄩󵄩󵄩󵄩R
) (𝜏) ,

(182)

where 𝐶󸀠
6
is given by (163).

(e) Finally, from (126) in which we set 𝐸
1
= 𝐸

1
, 𝐸
2
= 𝐸

2
,

𝑓
1
= 𝑓

1
, 𝑓
2
= 𝑓

2
, using the fact that 𝐸

𝑗
, Φ
𝑗
, 𝑈
𝑗
, 𝑗 =

1, 2 are uniformly bounded and ‖𝑓j(𝑡)‖ ≤ |‖𝑓
𝑗
‖| ≤ 𝑟,

𝑗 = 1, 2, we deduce that

󵄩󵄩󵄩󵄩󵄩󵄩
𝐼
5
(𝑡, 𝐸

1
, 𝑝
1
, 𝑓
1
, Φ
1
, 𝑈
1
) − 𝐼

5
(𝑡, 𝐸

2
, 𝑝
2
, 𝑓
2
, Φ
2
, 𝑈
2
)
󵄩󵄩󵄩󵄩󵄩󵄩R

≤ 𝐶
󸀠

7
(
󵄩󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑓
1
− 𝑓
2

󵄩󵄩󵄩󵄩󵄩𝐻3
𝑑
(R3)

+
󵄩󵄩󵄩󵄩Φ1 − Φ2

󵄩󵄩󵄩󵄩R
+
󵄩󵄩󵄩󵄩𝑈1 − 𝑈2

󵄩󵄩󵄩󵄩R
) (𝜏) ,

(183)

where 𝐶󸀠
7
= 𝐶

󸀠

7
(𝑔
0

𝑖𝑗
, 𝑇,𝑚

0
, |𝐸
0
|, |Φ

0
|, 𝑈
0
, 𝑟) is given by

(169).

Already notice that the constants 𝐶󸀠
3
, 𝐶󸀠
4
, 𝐶󸀠
5
, 𝐶󸀠
6
, and 𝐶󸀠

7

are absolute constants independent of 𝑡
0
.

Now using the inequalities (179), (180), (181), (182), and
(183), we deduce from (178), using the norm |‖ ⋅ ‖| and since
𝑡 ∈ [0, 𝛿]

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󸀠

3
𝛿 (
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓
1
− 𝑓
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
)

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨

≤ 𝐶
󸀠

4
𝛿 (

󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓
1
− 𝑓
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
)

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓1 − 𝑓2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 ≤ 𝐶
󸀠

5
𝛿 (
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑝
1
− 𝑝
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓1 − 𝑓2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩Φ1 − Φ2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 ≤ 𝐶
󸀠

6
𝛿 (
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑈1 − 𝑈2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑈1 − 𝑈2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 ≤ 𝐶
󸀠

7
𝛿 (

󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓
1
− 𝑓
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩Φ1 − Φ2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑈1 − 𝑈2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 ) .

(184)

Now add (184) to obtain

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓1 − 𝑓2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩Φ1 − Φ2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑈1 − 𝑈2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨

≤ (𝐶
󸀠

3
+ 𝐶

󸀠

4
+ 𝐶

󸀠

5
+ 𝐶

󸀠

6
+ 𝐶

󸀠

7
) 𝛿

× (
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨)

+ (𝐶
󸀠

3
+ 𝐶

󸀠

4
+ 𝐶

󸀠

5
+ 𝐶

󸀠

6
+ 𝐶

󸀠

7
) 𝛿

× (
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓1 − 𝑓2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩Φ1 − Φ2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑈1 − 𝑈2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨)

+ (𝐶
󸀠

3
+ 𝐶

󸀠

5
+ 𝐶

󸀠

7
) 𝛿

× (
󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑝
1
− 𝑝
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓
1
− 𝑓
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
) .

(185)

First of all we take 𝛿 such that

(𝐶
󸀠

3
+ 𝐶

󸀠

4
+ 𝐶

󸀠

5
+ 𝐶

󸀠

6
+ 𝐶

󸀠

7
) 𝛿 <

1

2
. (186)

Then, reporting (186) in (185) and simplifying, we obtain
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓1 − 𝑓2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩Φ1 − Φ2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑈1 − 𝑈2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨

≤ 2 (𝐶
󸀠

3
+ 𝐶

󸀠

5
+ 𝐶

󸀠

7
) 𝛿

× (
󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑝
1
− 𝑝
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓
1
− 𝑓
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
) .

(187)

Secondly choosing 𝛿 such that

2 (𝐶
󸀠

3
+ 𝐶

󸀠

5
+ 𝐶

󸀠

7
) 𝛿 <

1

2
, (188)

(187) becomes
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓1 − 𝑓2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩Φ1 − Φ2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑈1 − 𝑈2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨

≤
1

2
(
󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑝
1
− 𝑝
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓
1
− 𝑓
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
)

(189)

from which we deduce that
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑝1 − 𝑝2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓1 − 𝑓2
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨

≤
1

2
(
󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝐸
1
− 𝐸
2

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑝
1
− 𝑝
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓
1
− 𝑓
2

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
) .

(190)

Consequently, if we take

0 < 𝛿 < inf {1, 1

4 (𝐶
󸀠

3
+ 𝐶

󸀠

4
+ 𝐶

󸀠

5
+ 𝐶

󸀠

6
+ 𝐶

󸀠

7
)
} , (191)

(190) shows that 𝑔 : 𝑋
𝑡0

𝛿
→ 𝑌

𝑡0

𝛿
, (𝐸, 𝑝, 𝑓) 󳨃→ (𝐸, 𝑝, 𝑓,Φ,𝑈)

defined by (172) induces a contraction (𝐸, 𝑝, 𝑓) 󳨃→ (𝐸, 𝑝, 𝑓)

in the complete metric space 𝑋𝑡0
𝛿
which then has a unique

fixed point (𝐸, 𝑝, 𝑓) and solution of the integral system (173)-
(174)-(175) and, hence, of the differential system (𝐸

1
)-(𝐸

2
)-

(𝐸
3
) such that (𝐸, 𝑝, 𝑓)(𝑡

0
) = (

̃
𝐸(𝑡
0
),
̃
𝑝(𝑡
0
), 𝑓(𝑡

0
)). But using
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the fact that (𝐸, 𝑝, 𝑓) ∈ (C([𝑡
0
, 𝑡
0
+ 𝛿];R3))

2

× 𝐻
3

𝑑,𝑟
(𝑡
0
, 𝑡
0
+

𝛿,R3) and that 𝑡 󳨃→ 𝐸(𝑡), 𝑡 󳨃→ 𝑝(𝑡) are uniformly bounded,
we conclude by Proposition 16 that the subsystem (𝐸

4
)-(𝐸

5
)

in (Φ,𝑈) is globally Lipschitzian in (Φ,𝑈). So the unique
solution (Φ,𝑈), such that (Φ,𝑈)(𝑡

0
) = (Φ̃(𝑡

0
), 𝑈̃(𝑡

0
)), is

global on [𝑡
0
, 𝑡
0
+ 𝛿] since Φ and 𝑈 remain uniformly

bounded.
Consequently, for 𝑡

0
∈ [0, 𝑇[, there exists a number 𝛿 ∈

]0, 1[, independent of 𝑡
0
, such that the system (𝐸

1
)-(𝐸

2
)-(𝐸

3
)-

(𝐸
4
)-(𝐸

5
) has a unique solution (𝐸, 𝑝, 𝑓,Φ,𝑈) ∈ 𝑌𝑡0

𝛿
such that

(𝐸, 𝑝, 𝑓,Φ,𝑈) (𝑡
0
) = (

̃
𝐸 (𝑡

0
) ,
̃
𝑝 (𝑡

0
) , 𝑓 (𝑡

0
) , Φ̃ (𝑡

0
) , 𝑈̃ (𝑡

0
)) .

(192)

This completes the proof of Proposition 17.

Based on the method detailed in Section 6.1, we have
proved the following result.

Theorem 18. Let𝐸
0
= (𝐸

𝑖

0
) ∈ R3, 𝜑

𝑖𝑗
∈ R,𝑓

0
∈ 𝐻

3

𝑑
(0, 𝑇,R3

𝑝
),

Φ
0
∈ R, 𝑈

0
∈ R∗

+
, be given, such that ‖𝑓

0
‖ ≤ 𝑟, where 𝑟 > 0 is

a given real number. Then,

(1) the differential system (59)-(60)-(61)-(62) has a unique
global solution (𝐸, 𝑓,Φ,𝑈) defined all over the interval
[0, +∞[ and such that

(𝐸, 𝑓,Φ,𝑈) (0) = (𝐸
0
, 𝑓
0
, Φ
0
, 𝑈
0
) , (193)

(2) the Maxwell-Boltzmann-Euler system (20)-(21))-(40)-
(41) in all Bianchi types 𝐼 to 𝑉𝐼𝐼𝐼 spacetimes has a
unique global solution (𝐹, 𝑓,Φ) defined all over the
interval [0, +∞[ and satisfying 𝐸(0) = 𝐸

0
, 𝐹
𝑖𝑗
(0) = 𝜑

𝑖𝑗
,

𝑓(0) = 𝑓
0
, Φ(0) = Φ

0
.

7. Conclusion

The physical significance of the work we did in the present
paper is the study of the global dynamics of a kind of fast
moving, massive, and charged particles, in the case where
the gravitational forces are neglected in front of the electro-
magnetic forces. We have coupled the Maxwell-Boltzmann
system with the Euler equations which simply express the
conservation of the Stress-matter tensor for the unknown Φ
representing a massive scalar field. Notice that this present
work follows our paper titled “Global regular solutions to
the Maxwell-Boltzmann-Euler system in a Bianchi type 1
spacetime in presence of a massive scalar field,” where the
unknowns were like now, the electromagnetic field 𝐹, subject
to theMaxwell equations, the distribution function𝑓, subject
to the Boltzmann equation, and the massive scalar field Φ,
subject to the Euler equations. We have generalized in this
present work the result obtained for the Bianchi types 1
spacetime to all Bianchi types 1 to 8 spacetimes. We have
only excluded the case of Bianchi type 9 spacetime for the
main reason we gave in Section 1. We have also improved
the process to establish energy inequalities and the definition
of function spaces. In our future investigations we intend to

study the same system coupled this time with the Einstein
equations with the cosmological constant. The investigation
of the global existence of solutions to this Einstein-Maxwell-
Boltzmann-Euler systemwith cosmological constantΛ is with
a great interest, in the sense that some recent observations
show that the whole universe is in an accelerated expansion,
and it is the presence of the cosmological constant in the
Einstein equations which mathematically shapes this phe-
nomenon, which is also very important for the evolution of
our universe and consequently for the humanity.
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