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This paper focuses on the average consensus problem for the wireless sensor networks (WSNs) with fixed andMarkovian switching,
undirected and connected network topologies in the noise environment. Event-based protocol is applied to each sensor node to
reach the consensus. An event triggering strategy is designed based on a Lyapunov function. Under the event trigger condition,
some sufficient conditions for average consensus in mean square are obtained. Finally, some numerical simulations are given to
illustrate the effectiveness of the results derived in this paper.

1. Introduction

Wireless sensor network (WSN) has attracted significant
attention as an emerging communication architecture. It
has many practical applications in such areas as robotics,
surveillance and environment monitoring, and information
collection.

A WSN can be viewed as a multiagent system (MAS)
from a network-theoretic perspective. Each node represents
a sensor and each edge performs information exchange
between sensors. In some cases, the agreement is a common
value which may be the average of the initial states of the
system, is often called average consensus, and has wide
application background in the areas such as formation control
[1], distributed filtering [2], and distributed computation [3].
It means to achieve the accordance of the states of MAS. In
[4], Olfati-Saber and Murray consider the average consensus
control for the directed and undirected networks with fixed
and switching topologies. In [5], Kingston and Beard extend
the results of [4] to the discrete-time models and weakened
the condition of instantaneous strong connectivity. In [6],
Xiao and Boyd consider the distributed averaging consensus
of the networks with fixed and undirected topologies. In
[7], Q. Zhang and J. Zhang design a distributed consensus
protocol to analyze the multiagent systems in uncertain

communication environments including the communication
noises and Markov topology switches. In [8], Wang et al.
investigate the H∞ consensus control problem for a class of
discrete time-varying multiagent systems with both missing
measurements and parameter uncertainties. Also, the dis-
tributed estimation problems over sensor networks have been
widely discussed in [9–11].

For the node of the WSNs with limited energy, control
over networks with limited resources is a challenging task.
Consequently, the most important problem in WSN is the
energy consumption, which is directly proportional to the
transmit power of the information exchange between the sen-
sors. The event-based control can facilitate the efficient usage
of the resources. Based on the event-based control mech-
anism, it can reduce the useless communication between
neighboring agents along with the energy consumption. In
[12], Wang and Lemmon discuss the event-triggered data
transmission in distributed networked control systems with
packet loss and transmission delays. In [13], Mazo and
Tabuada focus on reducing the number of messages from
sensors to controllers and from controllers to actuators by the
use of the decentralized event-triggered mechanism. In [14],
Seyboth et al. propose a novel control strategy for multiagent
coordination with event-based broadcasting. The proposed
control strategy guarantees either asymptotic convergence to
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average consensus or convergence to a ball centered at the
average consensus. In [15], Meng and Chen study an average
consensus problem for multiagent systems by event-based
control, which is used on each agent to drive the state to their
initial average eventually.

The main contribution of this paper is studying average
consensus problem for the WSN with fixed topology and
Markovian switching topology in the noise environment; the
event-based average consensus control protocol is designed
for the WSN based on a Lyapunov function. Under the event
trigger condition, sufficient conditions for average consensus
in mean square are obtained.

The remainder of the paper is organized as follows. In
Section 2, some concepts in graph theory are described, and
the problem to be investigated is formulated. In Section 3,
the main results are presented. In Section 4, some numerical
examples show the reliability of themain results. In Section 5,
some conclusions are given.

2. Problem Formulation and Preliminaries

2.1. Concepts in Graph Theory. Let G = {V,E,A} be an
undirected graph, whereV = {1, 2, . . . , 𝑛} is the set of nodes,
node 𝑖 represents the 𝑖th sensor node,E is the set of edges, and
an edge in G is denoted by an ordered pair (𝑗, 𝑖). (𝑗, 𝑖) ∈ E if
and only if the 𝑗th sensor node can send information to the
𝑖th sensor node directly. The neighborhood of the 𝑖th sensor
node is denoted by 𝑁

𝑖
= {𝑗 ∈ V | (𝑗, 𝑖) ∈ E}.

A = [𝑎
𝑖𝑗
] ∈ R𝑛×𝑛 is called the adjacency matrix ofG. For

any 𝑖, 𝑗 ∈ V, 𝑎
𝑖𝑗

≥ 0, and 𝑎
𝑖𝑗

> 0 ⇔ 𝑗 ∈ 𝑁
𝑖
. degin(𝑖) =

∑
𝑛

𝑗=1
𝑎
𝑖𝑗
is called the in-degree of 𝑖; degout(𝑖) = ∑

𝑛

𝑗=1
𝑎
𝑖𝑗
is

called the out-degree of 𝑖; 𝐿 = D − A is called the Laplacian
matrix of G, where D = diag(degin(1), . . . , degin(𝑛)). Its
eigenvalues are real and can be ordered as

𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛 (1)

with 𝜆
1
= 0 and 𝜆

2
being the smallest nonzero eigenvalue for

connected graphs.

2.2. Average Consensus for WSNs. In this paper, we study the
average consensus control for a WSN with dynamics

𝑥̇
𝑖 (
𝑡) = 𝑢

𝑖 (
𝑡) , (2)

where 𝑥
𝑖
(𝑡) ∈ R is the state of the 𝑖th sensor and 𝑢

𝑖
(𝑡) ∈ R is

the control input. The initial state 𝑥
𝑖
(0) is deterministic.

Each sensor includes a digital microprocessor and
dynamics. The microprocessor of sensor 𝑖 monitors its own
measurement value 𝑥

𝑖
(𝑡) continuously and decides when to

communicate with the neighboring sensors by broadcasting
the actual measurement value. Therefore the latest broad-
casted value of sensor 𝑖 can be described by the piecewise
constant function

𝑥
𝑖 (
𝑡) = 𝑥

𝑖
(𝑡
𝑖

𝑘
) , 𝑡

𝑖

𝑘
≤ 𝑡 < 𝑡

𝑖

𝑘+1
, (3)

where 𝑡𝑖
0
, 𝑡
𝑖

1
, . . . is sequence of event-times of sensor 𝑖. We can

see that the discrete-time signal 𝑥
𝑖
(𝑡
𝑖

𝑘
) is converted into the

continuous-time signal 𝑥
𝑖
(𝑡).

The 𝑖th sensor can receive information from its neighbors

𝑦
𝑗𝑖 (

𝑡) = 𝑥
𝑗 (

𝑡) + 𝜎
𝑗𝑖
𝜔
𝑗𝑖 (

𝑡) , (4)

where𝑦
𝑗𝑖
(𝑡) denotes themeasurement of the 𝑗th sensor’s state

𝑥
𝑗
(𝑡) by the 𝑖th sensors, {𝜔

𝑗𝑖
(𝑡) | 𝑖, 𝑗 = 1, 2, . . . , 𝑛} are the

communication noises, and𝜎
𝑗𝑖
is the noise intensity function.

For the dynamic network (G, 𝑋), we give the event-based
consensus protocl.

𝑢
𝑖 (
𝑡) = ∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑦
𝑗𝑖 (

𝑡) − 𝑥
𝑖 (
𝑡)) . (5)

The dynamics of agent 𝑖 for 𝑡 ∈ [𝑡
𝑖

𝑘
+ 𝑙ℎ, 𝑡

𝑖

𝑘
+ 𝑙ℎ + ℎ) is given by

𝑥̇
𝑖 (
𝑡) = ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡
𝑗

𝑘
󸀠) − 𝑥

𝑖
(𝑡
𝑖

𝑘
) + 𝜎
𝑗𝑖
𝜔
𝑗𝑖 (

𝑡)]

= ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡
𝑖

𝑘
+ 𝑙ℎ) − 𝑥

𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ)]

+ ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
[𝑥
𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ) − 𝑥

𝑖
(𝑡
𝑖

𝑘
)]

+ ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡
𝑗

𝑘
󸀠) − 𝑥

𝑗
(𝑡
𝑖

𝑘
+ 𝑙ℎ)]

+ ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
𝜎
𝑗𝑖
𝜔
𝑗𝑖 (

𝑡)

= ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡
𝑖

𝑘
+ 𝑙ℎ) − 𝑥

𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ)]

+ ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
[𝑒
𝑗
(𝑡
𝑖

𝑘
+ 𝑙ℎ) − 𝑒

𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ)]

+ ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
𝜎
𝑗𝑖
𝜔
𝑗𝑖 (

𝑡) ,

(6)

where 𝑡
𝑗

𝑘
󸀠 is defined as

𝑡
𝑗

𝑘
󸀠 = max {𝑡 | 𝑡 ∈ {𝑡

𝑗

𝑘
, 𝑘 = 0, 1, . . .} , 𝑡 ≤ 𝑡

𝑖

𝑘
+ 𝑙ℎ} . (7)

Substituting the protocol (5) into the system (2) leads to

𝑑𝑥 (𝑡) = − [𝐿 (𝑥 (𝑘ℎ) + 𝑒 (𝑘ℎ))] 𝑑𝑡 + 𝐺𝑑𝑊(𝑡) , (8)

where 𝐿 is the Laplacian matrix ofG, 𝐺 is the noise intensity
matrix, and 𝑊(𝑡) = (𝑊

1
(𝑡), . . . ,𝑊

𝑛
(𝑡))
𝑇 is an 𝑛-dimensional

Brownian motion.
The event condition for agent 𝑖 has the following form:

𝜆
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝜆
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2‖𝐺‖
2
, (9)

where

𝑒
𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ) = 𝑥

𝑖
(𝑡
𝑖

𝑘
) − 𝑥
𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ) . (10)

Remark 1. Each sensor broadcasts its state information to
the neighbors and also receives state information from its
neighbors for event detection at each sampling instant. The
event detector in (9) guarantees that it reduces the sensor
energy consumption andnetwork bandwidth usage because it
only checks the event condition at discrete sampling instants.
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Next, we consider the average consensus control protocol
for the system (8) as follows:

𝑑𝛿 (𝑡) = − 𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)] 𝑑𝑡

+ (𝐼 − 𝐽) 𝐺𝑑𝑊 (𝑡) ,

(11)

where 𝛿(𝑡) = 𝑥(𝑡) − 𝐽𝑥(𝑡) and 𝐽 = (1/𝑛)1
𝑛
1
𝑇

𝑛
.

If we define
𝑓 (𝛿, 𝑡) = −𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)] ,

𝑔 (𝛿, 𝑡) = (𝐼 − 𝐽) 𝐺,

(12)

then (11) becomes

𝑑𝛿 (𝑡) = 𝑓 (𝛿, 𝑡) 𝑑𝑡 + 𝑔 (𝛿, 𝑡) 𝑑𝑊 (𝑡) . (13)

In WSNs, each sensor node communicates with other
sensor nodes through the unreliable networks. If the commu-
nication channel between sensors 𝑖 and 𝑗 is (𝑗, 𝑖) ∈ E

𝑓
, and

E
𝑓
is the set of the communication channels which probably

lost the signal, then the time-varying topologies under link
failure or creation can be described by the Markov switching
topology.

Let {𝑟(𝑡)
𝑡≥0

} be a right-continuous Markov chain on the
probability space taking values in a finite state set 𝑆 =

{1, 2, . . . , 𝑁} with generator Γ = (𝛾
𝑖𝑗
)
𝑁×𝑁

given by

𝑃 {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {

𝛾
𝑖𝑗
Δ + 𝑜 (Δ) , if 𝑖 ̸= 𝑗,

1 + 𝛾
𝑖𝑖
Δ + 𝑜 (Δ) , if 𝑖 = 𝑗,

(14)

where Δ > 0 and 𝛾
𝑖𝑗

≥ 0 is the transition rate from 𝑖 to 𝑗 if
𝑖 ̸= 𝑗, while

𝛾
𝑖𝑖
= −∑

𝑗 ̸= 𝑖

𝛾
𝑖𝑗 (15)

and 𝑟(0) = 𝑟
0
.

We denote the undirected communication graph by G =

{G(1),G(2), . . . ,G(𝑁)}, where G(𝑘) = {V,EG(𝑘),AG(𝑘)} is
the undirected graph. Denote the topology graph by G

𝑡
at

moment 𝑡 (𝑡 ≥ 0), so 𝑟(𝑡) = 𝑘 if and only ifG
𝑡
= G(𝑘).

Under Markovian switching topology, we have

𝑑𝑥 (𝑡) = − [𝐿 (𝑟 (𝑡)) (𝑥 (𝑘ℎ) + 𝑒 (𝑘ℎ))] 𝑑𝑡

+ 𝐺 (𝑟 (𝑡)) 𝑑𝑊 (𝑡) ,

(16)

𝑑𝛿 (𝑡) = − 𝐿 (𝑟 (𝑡)) [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)] 𝑑𝑡

+ (𝐼 − 𝐽) 𝐺 (𝑟 (𝑡)) 𝑑𝑊 (𝑡) .

(17)

So, under this condition, the event condition for agent 𝑖
has the following form:

𝜆
𝑛 (

𝐿 (𝑟 (𝑡)))

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝜆
2 (

𝐿 (𝑟 (𝑡)))

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2‖𝐺‖
2
,

(18)

where

𝑒
𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ) = 𝑥

𝑖
(𝑡
𝑖

𝑘
) − 𝑥
𝑖
(𝑡
𝑖

𝑘
+ 𝑙ℎ) . (19)

3. Main Results

In this section, we consider the average consensus for the
WSNswith fixed topology andMarkovian switching topology
by event-based control.

3.1. WSNs with the Fixed Topology

Theorem 2. Consider the system (8) over a connected com-
munication graph driven by event condition in (9). Then the
system (11) is asymptotically stable in mean square; it means
that the system (8) reaches average consensus in mean square
if 0 ≤ ℎ ≤ 1/2𝜆

𝑛
.

Proof. Define the function 𝑉 : 𝑅
𝑛
× 𝑅
+

→ 𝑅
+ by

𝑉 (𝛿, 𝑡) =

1

2

𝛿
𝑇
(𝑡) 𝛿 (𝑡) . (20)

Computing 𝑑𝑉(𝛿, 𝑡) along the trajectory generated by the
system (11) for any 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ), we have

𝑑𝑉 (𝛿, 𝑡) = [𝛿
𝑇
(𝑡) 𝑓 (𝛿, 𝑡) + trace [𝑔𝑇 (𝛿, 𝑡) 𝑔 (𝛿, 𝑡)]] 𝑑𝑡

+ 𝛿
𝑇
(𝑡) (𝐼 − 𝐽) 𝐺𝑑𝑊 (𝑡)

= [−𝛿
𝑇
(𝑡) 𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+ ‖(𝐼 − 𝐽)𝐺‖
2
] 𝑑𝑡 + 𝛿

𝑇
(𝑡) (𝐼 − 𝐽) 𝐺𝑑𝑊 (𝑡)

= [(𝑡 − 𝑘ℎ) [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]
𝑇

× 𝐿
𝑇
𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

− 𝛿
𝑇
(𝑘ℎ) 𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+ ‖(𝐼 − 𝐽)𝐺‖
2
] 𝑑𝑡

− (𝑊
𝑇
(𝑡) − 𝑊

𝑇
(𝑘ℎ)) 𝐺 (𝐼 − 𝐽)

× 𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+ 𝛿
𝑇
(𝑡) (𝐼 − 𝐽) 𝐺𝑑𝑊 (𝑡)

≤ (ℎ𝜆
𝑛[
𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

𝑇

× 𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

− 𝛿
𝑇
(𝑘ℎ) 𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+ ‖(𝐼 − 𝐽)𝐺‖
2
) 𝑑𝑡

− (𝑊
𝑇
(𝑡) − 𝑊

𝑇
(𝑘ℎ)) 𝐺 (𝐼 − 𝐽)

× 𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+ 𝛿
𝑇
(𝑡) (𝐼 − 𝐽) 𝐺𝑑𝑊 (𝑡)
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= ((ℎ𝜆
𝑛
− 1) 𝛿

𝑇
(𝑘ℎ) 𝐿𝛿 (𝑘ℎ) + (2ℎ𝜆

𝑛
− 1)

× 𝛿
𝑇
(𝑘ℎ) 𝐿 (𝐼 − 𝐽) 𝑒 (𝑘ℎ)

+ ℎ𝜆
𝑛‖
𝐼 − 𝐽‖

2
𝑒
𝑇
(𝑘ℎ) 𝐿𝑒 (𝑘ℎ)

+ ‖(𝐼 − 𝐽) 𝐺‖
2
) 𝑑𝑡

− (𝑊
𝑇
(𝑡) − 𝑊

𝑇
(𝑘ℎ)) 𝐺 (𝐼 − 𝐽)

× 𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+ 𝛿
𝑇
(𝑡) (𝐼 − 𝐽) 𝐺𝑑𝑊 (𝑡) .

(21)

Applying the inequality

𝛿
𝑇
(𝑘ℎ) 𝐿 (𝐼 − 𝐽) 𝑒 (𝑘ℎ) ≤

1

2

‖𝐿‖
2
𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ)

+

1

2

‖𝐼 − 𝐽‖
2
𝑒
𝑇
(𝑘ℎ) 𝑒 (𝑘ℎ) ,

(22)

it can be derived that

𝑑𝑉 (𝛿 (𝑡) , 𝑡) ≤ (−

1

2

𝛿
𝑇
(𝑘ℎ) 𝐿𝛿 (𝑘ℎ)

+

1

2

‖𝐼 − 𝐽‖
2
𝑒
𝑇
(𝑘ℎ) 𝐿𝑒 (𝑘ℎ)

+ ‖(𝐼 − 𝐽)𝐺‖
2
)𝑑𝑡

− (𝑊
𝑇
(𝑡) − 𝑊

𝑇
(𝑘ℎ)) 𝐺 (𝐼 − 𝐽)

× 𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+ 𝛿
𝑇
(𝑡) (𝐼 − 𝐽) 𝐺𝑑𝑊 (𝑡)

(23)

with 2ℎ𝜆
𝑛
≤ 1.

We can see that

𝑑 [𝑒
−𝑡
𝑉 (𝛿 (𝑡) , 𝑡)]

= 𝑒
−𝑡

[−𝑉 (𝛿 (𝑡) , 𝑡) 𝑑𝑡 + 𝑑𝑉 (𝛿 (𝑡) , 𝑡)]

≤ 𝑒
−𝑡

[−𝑉 (𝛿 (𝑡) , 𝑡) −

1

2

𝛿
𝑇
(𝑘ℎ) 𝐿𝛿 (𝑘ℎ)

+

1

2

‖𝐼 − 𝐽‖
2
𝑒
𝑇
(𝑘ℎ) 𝐿𝑒 (𝑘ℎ)

+ ‖(𝐼 − 𝐽)𝐺‖
2
] 𝑑𝑡

− 𝑒
−𝑡

(𝑊
𝑇
(𝑡) − 𝑊

𝑇
(𝑘ℎ)) 𝐺 (𝐼 − 𝐽)

× 𝐿 [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+ 𝑒
−𝑡
𝛿
𝑇
(𝑡) (𝐼 − 𝐽) 𝐺𝑑𝑊 (𝑡) .

(24)

Integrating both sides of the previous inequality from 𝑘ℎ to
𝑡 (𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ)), making use of (9), and taking the
expectation, one can obtain that

𝑒
−𝑡
E𝑉 (𝛿 (𝑡) , 𝑡) ≤ ∫

𝑡

𝑘ℎ

−𝑒
−𝑡
E𝑉 (𝛿 (𝑡) , 𝑡) 𝑑𝑡

+

1

2

𝑒
−𝑘ℎ

𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ)

− (

1

2

𝛿
𝑇
(𝑘ℎ) 𝐿𝛿 (𝑘ℎ)

−

1

2

‖𝐼 − 𝐽‖
2
𝑒
𝑇
(𝑘ℎ) 𝐿𝑒 (𝑘ℎ)

− ‖(𝐼 − 𝐽) 𝐺‖
2
) (𝑒
−𝑡

− 𝑒
−𝑘ℎ

)

≤ ∫

𝑡

𝑘ℎ

−𝑒
−𝑡
E𝑉 (𝛿 (𝑡) , 𝑡) 𝑑𝑡

+

1

2

𝑒
−𝑘ℎ

𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ)

+ (

1

2

𝛿
𝑇
(𝑘ℎ) 𝐿𝛿 (𝑘ℎ)

−

1

2

‖𝐼 − 𝐽‖
2
𝑒
𝑇
(𝑘ℎ) 𝐿𝑒 (𝑘ℎ)

−‖(𝐼 − 𝐽) 𝐺‖
2
) (𝑒
−𝑘ℎ

− 𝑒
−(𝑘+1)ℎ

)

= ∫

𝑡

𝑘ℎ

−𝑒
−𝑡
E𝑉 (𝛿 (𝑡) , 𝑡) 𝑑𝑡

+

1

2

𝑒
−𝑘ℎ

𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ)

+ (

1

2

‖𝐼 − 𝐽‖
2
𝑥
𝑇
(𝑘ℎ) 𝐿𝑥 (𝑘ℎ)

−

1

2

‖𝐼 − 𝐽‖
2
𝑒
𝑇
(𝑘ℎ) 𝐿𝑒 (𝑘ℎ)

− ‖(𝐼 − 𝐽)𝐺‖
2
) (𝑒
−𝑘ℎ

− 𝑒
−(𝑘+1)ℎ

)

≤ ∫

𝑡

𝑘ℎ

−𝑒
−𝑡
E𝑉 (𝛿 (𝑡) , 𝑡) 𝑑𝑡

+

1

2

𝑒
−𝑘ℎ

𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ) .

(25)

By using Gronwall inequality, we have

E𝑉 (𝛿 (𝑡) , 𝑡) ≤

1

2

𝑒
−𝑘ℎ

‖𝛿(𝑘ℎ)‖
2
𝑒
−(𝑡−𝑘ℎ)

=

1

2

‖𝛿(𝑘ℎ)‖
2
𝑒
−𝑡
.

(26)

Letting 𝑡 → ∞ (𝑘 → ∞), we obtain

lim
𝑡→∞

E‖𝛿(𝑡)‖
2
= 0. (27)

So the system (8) reaches average consensus in mean square.
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3.2. WSNs with Markovian Switching Topology

Theorem 3. Consider the system (16) over a number of
connected switching communication graphs driven by event
condition in (18). Then the system (17) is asymptotically stable
in mean square; it means that the system (16) reaches average
consensus in mean square if 0 ≤ ℎ ≤ 1/2𝜆

𝑛
(𝑟(𝑡)).

Proof. Define the function 𝑉 : 𝑅
𝑛
× 𝑅
+
× 𝑆 → 𝑅

+ by

𝑉 (𝛿, 𝑡, 𝑟 (𝑡)) =

1

2

𝛿
𝑇
(𝑡) 𝛿 (𝑡) . (28)

Computing 𝑑𝑉(𝛿, 𝑡, 𝑟(𝑡)) along the trajectory generated by
the system (11) for any 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ), we have

𝑑𝑉 (𝛿, 𝑡, 𝑟 (𝑡)) = [𝛿
𝑇
(𝑡) 𝑓 (𝛿, 𝑡, 𝑟 (𝑡))

+ trace [𝑔𝑇 (𝛿, 𝑡, 𝑟 (𝑡)) 𝑔 (𝛿, 𝑡, 𝑟 (𝑡))]] 𝑑𝑡

+ 𝛿
𝑇
(𝑡) (𝐼 − 𝐽) 𝐺 (𝑟 (𝑡)) 𝑑𝑊 (𝑡)

=
[

[

− 𝛿
𝑇
(𝑡) 𝐿 (𝑟 (𝑡)) [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+‖(𝐼 − 𝐽) 𝐺‖
2
+

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝑉 (𝛿, 𝑡, 𝑟 (𝑡))

]

]

𝑑𝑡

+ 𝛿
𝑇
(𝑡) (𝐼 − 𝐽) 𝐺 (𝑟 (𝑡)) 𝑑𝑊 (𝑡)

≤ ((ℎ𝜆
𝑛
− 1) 𝛿

𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) 𝛿 (𝑘ℎ)

+ (2ℎ𝜆
𝑛
− 1) 𝛿

𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) (𝐼 − 𝐽) 𝑒 (𝑘ℎ)

+ ℎ𝜆
𝑛‖
𝐼 − 𝐽‖

2
𝑒
𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) 𝑒 (𝑘ℎ)

+ ‖(𝐼 − 𝐽) 𝐺 (𝑟 (𝑡))‖
2
+ 𝛾𝑉 (𝛿, 𝑡, 𝑟 (𝑡))) 𝑑𝑡

− (𝑊
𝑇
(𝑡) − 𝑊

𝑇
(𝑘ℎ)) 𝐺 (𝑟 (𝑡)) (𝐼 − 𝐽)

× 𝐿 (𝑟 (𝑡)) [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+ 𝛿
𝑇
(𝑡) (𝐼 − 𝐽) 𝐺 (𝑟 (𝑡)) 𝑑𝑊 (𝑡)

≤ (−

1

2

𝛿
𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) 𝛿 (𝑘ℎ)

+

1

2

‖𝐼 − 𝐽‖
2
𝑒
𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) 𝑒 (𝑘ℎ)

+‖(𝐼 − 𝐽)𝐺(𝑟(𝑡))‖
2
+ 𝛾𝑉 (𝛿, 𝑡, 𝑟 (𝑡)) ) 𝑑𝑡

− (𝑊
𝑇
(𝑡) − 𝑊

𝑇
(𝑘ℎ)) 𝐺 (𝑟 (𝑡)) (𝐼 − 𝐽)

× 𝐿 (𝑟 (𝑡)) [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+ 𝛿
𝑇
(𝑡) (𝐼 − 𝐽) 𝐺 (𝑟 (𝑡)) 𝑑𝑊 (𝑡)

(29)

with 2ℎ𝜆
𝑛
≤ 1.

For 𝛾 > 0, 𝛾 = max{|𝛾
𝑖𝑖
: 𝑖 ∈ 𝑆|}, compute

𝑑 [𝑒
−2𝛾𝑡

𝑉 (𝛿 (𝑡) , 𝑡, 𝑟 (𝑡))]

= 𝑒
−2𝛾𝑡

[−2𝛾𝑉 (𝛿 (𝑡) , 𝑡, 𝑟 (𝑡)) 𝑑𝑡 + 𝑑𝑉 (𝛿 (𝑡) , 𝑡, 𝑟 (𝑡))]

≤ 𝑒
−2𝛾𝑡

[ − 2𝛾𝑉 (𝛿 (𝑡) , 𝑡, 𝑟 (𝑡))

−

1

2

𝛿
𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) 𝛿 (𝑘ℎ)

+

1

2

‖𝐼 − 𝐽‖
2
𝑒
𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) 𝑒 (𝑘ℎ)

+ ‖(𝐼 − 𝐽)𝐺(𝑟(𝑡))‖
2
+ 𝛾𝑉 (𝛿, 𝑡, 𝑟 (𝑡))] 𝑑𝑡

− 𝑒
−2𝛾𝑡

(𝑊
𝑇
(𝑡) − 𝑊

𝑇
(𝑘ℎ)) 𝐺 (𝐼 − 𝐽)

× 𝐿 (𝑟 (𝑡)) [𝛿 (𝑘ℎ) + (𝐼 − 𝐽) 𝑒 (𝑘ℎ)]

+ 𝑒
−2𝛾𝑡

𝛿
𝑇
(𝑡) (𝐼 − 𝐽) 𝐺 (𝑟 (𝑡)) 𝑑𝑊 (𝑡) .

(30)

Integrating both sides of the above inequality from 𝑘ℎ to
𝑡 (𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ)), making use of (18), and taking the
expectation, one can obtain that

𝑒
−2𝛾𝑡

E𝑉 (𝛿 (𝑡) , 𝑡, 𝑟 (𝑡))

≤ ∫

𝑡

𝑘ℎ

−𝛾𝑒
−2𝛾𝑡

E𝑉 (𝛿 (𝑡) , 𝑡, 𝑟 (𝑡)) 𝑑𝑡

+

1

2

𝑒
−2𝛾𝑘ℎ

𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ)

− (

1

2

𝛿
𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) 𝛿 (𝑘ℎ)

−

1

2

‖𝐼 − 𝐽‖
2
𝑒
𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) 𝑒 (𝑘ℎ)

− ‖(𝐼 − 𝐽) 𝐺 (𝑟 (𝑡))‖
2
) (𝑒
−2𝛾𝑡

− 𝑒
−2𝛾𝑘ℎ

)

≤ ∫

𝑡

𝑘ℎ

−𝛾𝑒
−2𝛾𝑡

E𝑉 (𝛿 (𝑡) , 𝑡, 𝑟 (𝑡)) 𝑑𝑡

+

1

2

𝑒
−2𝛾𝑘ℎ

𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ)

+ (

1

2

𝛿
𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) 𝛿 (𝑘ℎ)

−

1

2

‖𝐼 − 𝐽‖
2
𝑒
𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) 𝑒 (𝑘ℎ)

− ‖(𝐼 − 𝐽)𝐺(𝑟(𝑡))‖
2
)

× (𝑒
−2𝛾𝑘ℎ

− 𝑒
−2𝛾(𝑘+1)ℎ

)
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= ∫

𝑡

𝑘ℎ

−𝛾𝑒
−2𝛾𝑡

E𝑉 (𝛿 (𝑡) , 𝑡, 𝑟 (𝑡)) 𝑑𝑡

+

1

2

𝑒
−2𝛾𝑘ℎ

𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ)

+ (

1

2

‖𝐼 − 𝐽‖
2
𝑥
𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡)) 𝑥 (𝑘ℎ)

−

1

2

‖𝐼 − 𝐽‖
2
𝑒
𝑇
(𝑘ℎ) 𝐿 (𝑟 (𝑡))

× 𝑒 (𝑘ℎ) − ‖(𝐼 − 𝐽) 𝐺 (𝑟 (𝑡))‖
2
)

× (𝑒
−2𝛾𝑘ℎ

− 𝑒
−2𝛾(𝑘+1)ℎ

)

≤ ∫

𝑡

𝑘ℎ

−𝛾𝑒
−2𝛾𝑡

E𝑉 (𝛿 (𝑡) , 𝑡, 𝑟 (𝑡)) 𝑑𝑡

+

1

2

𝑒
−2𝛾𝑘ℎ

𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ) .

(31)

By using Gronwall inequality, we have

E𝑉 (𝛿 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤

1

2

𝑒
−2𝛾𝑘ℎ

‖𝛿(𝑘ℎ)‖
2
𝑒
−𝛾(𝑡−𝑘ℎ)

=

1

2

𝑒
−𝛾(𝑡+𝑘ℎ)

‖𝛿(𝑘ℎ)‖
2
.

(32)

Letting 𝑡 → ∞ (𝑘 → ∞), we obtain that

lim
𝑡→∞

E‖𝛿(𝑡)‖
2
= 0. (33)

So the system (16) reaches average consensus in mean
square.

4. Numerical Examples

In this section, we give two examples to examine the average
consensus of the systems (8) and (16).

Example 1. Consider a WSN composed by four sensors in
which each dynamic state of the sensor is 𝑥̇

𝑖
= 𝑢
𝑖
, where

𝑖 = 1, 2, 3, 4 (see the topology in Figure 1, which is used in
Dimarogonas [16]) and the initial state is𝑋(0) = (4−1, 5, 2)

𝑇.

The adjacent matrix is

𝐴 = (

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

) (34)

The related degree matrix is

𝐷 = (

2 0 0 0

0 2 0 0

0 0 3 0

0 0 0 1

) . (35)

The related Laplacian matrix is

𝐿 = (

2 −1 −1 0

−1 2 −1 0

−1 −1 3 −1

0 0 −1 1

) . (36)

The nonzero largest and smallest eigenvalues are 𝜆
𝑛
= 4

and 𝜆
2
= 1, respectively.

Let the noise intensity matrix 𝐺 be

𝐺 = (

0.001 0 0 0

0 0.002 0 0

0 0 0.003 0

0 0 0 0.001

) . (37)

The sampling period for all sensor nodes is chosen as
ℎ = 0.003 which satisfies 0 ≤ ℎ ≤ 1/2𝜆

𝑛
. Using the

event condition in (9), we can draw the dynamic curve of
the states of the sensors by Matlab as Figure 2. It shows us
that the four sensor nodes reach the average consensus in
mean square with fixed topology.The control signal when the
events occur for each sensor is shown in Figure 3. We can see
that the number of sensor control updates that only occur
at the sampling instant under the event trigger condition is
rapidly reduced to reach average consensus.

Example 2. The switching topology of the four sensors is
determined by the Markov chain 𝑟(𝑡) whose state space
is 𝑆 = {1, 2, 3}. The related topology graph is G(𝑖) =

{V(𝑖),E(𝑖),A(𝑖)} (see the topologies in Figure 4).

The adjacent matrices are

𝐴 (1) = (

0 1 1 0

1 0 0 0

1 0 0 1

0 0 1 0

) , 𝐴 (2) = (

0 1 0 0

1 0 0 1

0 0 0 1

0 1 1 0

) ,

𝐴 (3) = (

0 0 1 0

0 0 0 1

1 0 0 1

0 1 1 0

) .

(38)

The related degree matrices are

𝐷 (1) = (

2 0 0 0

0 1 0 0

0 0 2 0

0 0 0 1

) , 𝐷 (2) = (

1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 2

) ,

𝐷 (3) = (

1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2

) .

(39)
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1

2
3

4

Figure 1: The topology of the four sensors.

The related Laplacian matrices are

𝐿 (1) = (

2 −1 −1 0

−1 1 0 0

−1 0 2 −1

0 0 −1 1

) ,

𝐿 (2) = (

1 −1 0 0

−1 2 0 −1

0 0 1 −1

0 −1 −1 2

) ,

𝐿 (3) = (

1 0 −1 0

0 1 0 −1

−1 0 2 −1

0 −1 −1 2

) .

(40)

The nonzero largest and smallest eigenvalue are 𝜆
𝑛

=

3.4142 and 𝜆
2
= 0.5858, respectively.

Let the noise intensity matrices 𝐺 be

𝐺 (1) = (

0.001 0 0 0

0 0.002 0 0

0 0 0.003 0

0 0 0 0.001

) ,

𝐺 (2) = (

0.002 0 0 0

0 0.003 0 0

0 0 0.003 0

0 0 0 0.001

) ,

𝐺 (3) = (

0.003 0 0 0

0 0.002 0 0

0 0 0.001 0

0 0 0 0.001

) .

(41)

The sampling period for all sensor nodes is chosen as ℎ =

0.002 which satisfies 0 ≤ ℎ ≤ 1/2𝜆
𝑛
(𝑖) (𝑖 = 1, 2, 3). Using the

event condition in (18), we can draw the dynamic curve of the
states of the sensors by Matlab as Figure 5. It shows us that
the four sensor nodes reach the average consensus in mean
square with Markovian switching topologies.

5. Conclusions

In this paper, we have dealt with the problem of average
consensus in mean square of the WSNs. By using the event-
based control mechanism, we have obtained several sufficient
conditions to ensure the average consensus in mean square
for WSNs with fixed and Markovian switching topologies.
There are many other topics worth investigating, such as the
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Figure 2:The trajectories of the state vectors 𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
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(𝑡), and

𝑥
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(𝑡).
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Figure 3: Control inputs for the sensors.
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Figure 4: The topologies of the four sensors in states 1, 2, and 3.
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packet loss and time-delay cases of the WSN’s consensus
problem under event condition.
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