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We study some qualitative properties of the solutions of a system of difference equations, which describes an economic model.
The study of the local stability of the equilibrium points is carried out. We give some important results of the invariant
and the boundedness of the solutions to the considered system. The global convergence of the solutions is presented and
investigated.

1. Introduction

The increasing study of realistic mathematical models is a
reflection of their use in helping to understand the dynamic
processes involved in areas such as population dynamics,
biology, epidemiology, ecology, and economy. More realistic
models should include some of the past states of these
systems; that is, ideally, a real system should be modeled by
difference equations with time delays. Most of these models
are described by nonlinear delay difference equations; see,
for example, [1–4]. The subject of the qualitative study of the
nonlinear delay population models is very extensive, and the
current research work tends to center around the relevant
global dynamics of the considered systems of difference
equations such as oscillation, boundedness of solutions, per-
sistence, global stability of positive steady sates, permanence,
and global existence of periodic solutions. See [5–18] and the
references therein.

In this paper, we intend to cover some of these global
aspects of the qualitative behavior of a system of a discrete
model in the economy area, where we deal with the studying
of some qualitative properties of solutions of the following
system of difference equations:

𝑥
𝑛+1

= (1 − 𝛼) 𝑥
𝑛
+ 𝛽𝑥
𝑛
(1 − 𝑥

𝑛
) 𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

,

𝑦
𝑛+1

= (1 − 𝛼) 𝑦
𝑛
+ 𝛽𝑦
𝑛
(1 − 𝑦

𝑛
) 𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

,

𝑛 = 0, 1, . . . ,

(1)

where𝛼 and𝛽 ∈ (0,∞) with the initial conditions𝑥
0
and𝑦
0
∈

(0, ∞). We study the boundedness and the invariant of the
solutions of system (1) and also investigate global convergence
for the solutions of system (1).

System (1) is an important type of economic models
which describes a discrete-time map generated by bounded
rationally duopoly game with exponential demand function.
See [19].

The following theoremwas presented in [6], and it will be
useful in the investigation of the global stability of system (1).

TheoremA. Consider the following system of difference equa-
tions:

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
, 𝑦
𝑛
) ,

𝑦
𝑛+1

= 𝑔 (𝑥
𝑛
, 𝑦
𝑛
) ,

𝑛 = 0, 1, . . . .

(2)
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Suppose that

(i) 𝑓(𝑥; 𝑦) is nondecreasing in𝑥 and is nonincreasing in𝑦,
and 𝑔(𝑥; 𝑦) is nonincreasing in 𝑥 and is nondecreasing
in 𝑦,

(ii) if 𝑚
1

= 𝑓(𝑚
1
,𝑀
2
); 𝑀
1

= 𝑓(𝑀
1
, 𝑚
2
); 𝑚
2

=

𝑔(𝑀
1
, 𝑚
2
) and 𝑀

2
= 𝑓(𝑚

1
,𝑀
2
) imply 𝑚

1
= 𝑀
1
and

𝑚
2
= 𝑀
2
.

Then, system (2) has a unique positive equilibrium point
(𝑥, 𝑦), and every solution of system (2) converges to (𝑥, 𝑦).

The equilibrium points of system (1) are the solutions of the
following system:

𝑥 = (1 − 𝛼) 𝑥 + 𝛽𝑥 (1 − 𝑥) 𝑒
−(𝑥+𝑦)

,

𝑦 = (1 − 𝛼) 𝑦 + 𝛽𝑦 (1 − 𝑦) 𝑒
−(𝑥+𝑦)

(3)

or

𝑥 = 0, 𝛼 = 𝛽 (1 − 𝑥) 𝑒
−(𝑥+𝑦)

,

𝑦 = 0, 𝛼 = 𝛽 (1 − 𝑦) 𝑒
−(𝑥+𝑦)

.

(4)

El-Metwally and Elsadany [19] have shown that system (1)
has the equilibrium points (0, 0), (𝑥, 0), (0, 𝑥), and (𝑢, 𝑢)where
𝑥 and 𝑢 satisfy 𝛼 = 𝛽(1 − 𝑥)𝑒

−𝑥 and 𝛼 = 𝛽(1 − 𝑢)𝑒
−2𝑢,

respectively, and proved that

(i) the equilibrium point (0, 0) of system (1) is locally
asymptotically stable if 𝛽 < 𝛼 < 𝛽 + 2 and unstable
if 𝛽 > 𝛼;

(ii) the equilibrium points (𝑥, 0) and (0, 𝑥) of system (1) are
unstable;

(iii) the equilibrium point (𝑢, 𝑢) of system (1) is stable if 𝛽 <

(4𝛼
2

/(𝛼 − 2 + √4 − 4𝛼 + 9𝛼
2
)) 𝑒
(1/2𝛼)(2+3𝛼−√4−4𝛼+9𝛼

2
)

and unstable if 𝛽 > (4𝛼
2

/(𝛼 − 2 +

√4 − 4𝛼 + 9𝛼
2
)) 𝑒
(1/2𝛼)(2+3𝛼−√4−4𝛼+9𝛼

2
).

2. Boundedness and Invariant

In this section, we concern ourselves with the boundedness
character of solutions of system (1). Under appropriate
conditions, we give some bounded results related to system
(1).

Theorem 1. Assume that {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
is a solution of system

(1). Then,

(i) 𝑥
0
= 𝑦
0
implies that 𝑥

𝑛
= 𝑦
𝑛
for all 𝑛 = 0, 1, . . .,

(ii) 1−𝛼+𝛽[1−(𝑥
0
+𝑦
0
)]𝑒
−(𝑥
0
+𝑦
0
)

= 0 implies that 𝑥
𝑛
= 𝑦
𝑛

for all 𝑛 = 0, 1, . . .,
(iii) if 𝛼 + 𝛽/𝑒

2

< 1, then 𝑥
𝑛
> 𝑦
𝑛
(𝑥
𝑛
< 𝑦
𝑛
) for all 𝑛 =

0, 1, . . . provided that 𝑥
0
> 𝑦
0
(𝑥
0
< 𝑦
0
).

Proof. It follows from (1) that

𝑥
𝑛+1

− 𝑦
𝑛+1

= (𝑥
𝑛
− 𝑦
𝑛
) [1 − 𝛼 + 𝛽 (1 − (𝑥

𝑛
+ 𝑦
𝑛
)) 𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

] .

(5)

So Cases (i) and (ii) are immediately proved. Now set

𝑓 (𝑥) = 1 − 𝛼 + 𝛽 (1 − 𝑥) 𝑒
−𝑥

. (6)

Then,

𝑓


(𝑥) = 𝛽 (𝑥 − 2) 𝑒
−𝑥

. (7)

Therefore, 𝑓(2) is the absolute minimum of 𝑓(𝑥). That is,

𝑓 (𝑥) ≥ 𝑓 (2) = 1 − 𝛼 −

𝛽

𝑒
2
> 0. (8)

Note that (5) implies

𝑥
𝑛+1

− 𝑦
𝑛+1

= (𝑥
𝑛
− 𝑦
𝑛
) 𝑓 (𝑥

𝑛
+ 𝑦
𝑛
) , (9)

and, hence, (𝑥
𝑛+1

−𝑦
𝑛+1

) has the same sign of (𝑥
𝑛
−𝑦
𝑛
) for all

𝑛 > 0. The proof is so complete.

Remark 2. Theorem 1 reduces system (1) into the following
single difference equation:

𝑥
𝑛+1

= 𝑥
𝑛
[1 − 𝛼 + 𝛽 (1 − 𝑥

𝑛
)] 𝑒
−2𝑥
𝑛

. (10)

Theorem 3. Assume that 𝛼 + 𝛽/𝑒
2

< 1. Then, every solution
{(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
of system (1) with 𝑥

0
> 0 and 𝑦

0
> 0 satisfies that

𝑥
𝑛
> 0 and 𝑦

𝑛
> 0 for all 𝑛 > 0.

Proof. Let𝐻(𝑥, 𝑦) be a continuous function defined by

𝐻(𝑥, 𝑦) = 1 − 𝛼 + 𝛽 (1 − 𝑥) 𝑒
−(𝑥+𝑦)

. (11)

Then, system (1) can be rewritten in the form

𝑥
𝑛+1

= 𝑥
𝑛
𝐻(𝑥
𝑛
, 𝑦
𝑛
) ,

𝑦
𝑛+1

= 𝑦
𝑛
𝐻(𝑦
𝑛
, 𝑥
𝑛
) .

(12)

Now assume that {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
is a solution of system (1) with

positive initial values.Then, it suffices to show that𝐻(𝑥, 𝑦) is
positive for all 𝑥 > 0, 𝑦 > 0. Observe that

𝜕𝐻 (𝑥, 𝑦)

𝜕𝑥

= 𝛽 (𝑥 − 2) 𝑒
−(𝑥+𝑦)

,

𝜕𝐻 (𝑥, 𝑦)

𝜕𝑦

= −𝛽 (1 − 𝑥) 𝑒
−(𝑥+𝑦)

.

(13)

Therefore, 𝐻 has no positive critical points. Let 𝑎 and 𝑏 be
arbitrary positive numbers and consider the domain

𝐷 = {(𝑥, 𝑦) : 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏} . (14)

Then,

𝐻(0, 𝑦) = 1 − 𝛼 + 𝛽𝑒
−𝑦

, 0 ≤ 𝑦 ≤ 𝑏,

𝐻 (𝑥, 0) = 1 − 𝛼 + 𝛽 (1 − 𝑥) 𝑒
−𝑥

, 0 ≤ 𝑥 ≤ 𝑎,

𝐻 (𝑥, 𝑏) = 1 − 𝛼 + 𝛽 (1 − 𝑥) 𝑒
−(𝑥+𝑏)

, 0 ≤ 𝑥 ≤ 𝑎,

𝐻 (𝑎, 𝑦) = 1 − 𝛼 + 𝛽 (1 − 𝑎) 𝑒
−(𝑎+𝑦)

, 0 ≤ 𝑦 ≤ 𝑏.

(15)
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Using elementary differential calculus, we obtain that the
absoluteminimumof each one of the above functions is 1−𝛼−
𝛽/𝑒
2.Therefore,𝐻(𝑥, 𝑦) ≥ 1−𝛼−𝛽/𝑒

2

> 0 for all (𝑥, 𝑦) ∈ 𝐷.
Since 𝑎 and 𝑏 are arbitrary positive numbers, we can conclude
that𝐻(𝑥, 𝑦) > 0 for all (𝑥, 𝑦) ∈ (0,∞)

2.

Theorem 4. Assume that {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
is a solution of system

(1) with (𝑥
𝑛
0

, 𝑦
𝑛
0

) ∈ (0, 1]
2 for some 𝑛

0
≥ 0. Assume also that

one of the following statements is true.

(i) 𝛽 ≤ 𝑒(1 − 𝛼).

(ii) 𝑒(1 − 𝛼) < 𝛽 ≤ 𝑒.

(iii) (√𝛽 − 1)

2

≤ 𝛼.

Then, (𝑥
𝑛
, 𝑦
𝑛
) ∈ (0, 1]

2 for all 𝑛 ≥ 𝑛
0
.

Proof. Let 𝑛
0
≥ 0 be such that 𝑥

𝑛
0

∈ (0, 1]. It follows from
system (1) that

𝑥
𝑛
0
+1

≤ (1 − 𝛼) 𝑥
𝑛
0

+ 𝛽 (1 − 𝑥
𝑛
0

) 𝑥
𝑛
0

𝑒
−𝑥
𝑛
0 , (16)

𝑥
𝑛
0
+1

≤ (1 − 𝛼) 𝑥
𝑛
0

+ 𝛽 (1 − 𝑥
𝑛
0

) 𝑒
−1

= (1 − 𝛼 −

𝛽

𝑒

)𝑥
𝑛
0

+

𝛽

𝑒

,

(17)

𝑥
𝑛
0
+1

≤ (1 − 𝛼) 𝑥
𝑛
0

+ 𝛽 (1 − 𝑥
𝑛
0

) 𝑥
𝑛
0

. (18)

Set𝑤(𝑥) = (1 − 𝛼)𝑥 + 𝛽(1 − 𝑥)𝑥𝑒
−𝑥 for 𝑥 ≤ 1. Then, it follows

from (16) that 𝑥
𝑛
0
+1

≤ 𝑤(𝑥
𝑛
0

). Also, we obtain that

𝑤


(𝑥) = (1 − 𝛼) + 𝛽 (𝑥
2

− 3𝑥 + 1) 𝑒
−𝑥

,

𝑤


(𝑥) = 𝛽 (−𝑥
2

+ 5𝑥 − 4) 𝑒
−𝑥

= −𝛽 (𝑥 − 1) (𝑥 − 4) 𝑒
−𝑥

≤ 0 ∀𝑥 ∈ (0, 1] .

(19)

Then, 𝑤(𝑥) ≥ 𝑤


(1) = 1 − 𝛼 − 𝛽/𝑒. If (i) holds, then 𝑤


(1) ≥

0, and hence 𝑤(𝑥) is increasing on (0, 1]. Therefore, 𝑥
𝑛
0
+1

≤

𝑤(1) < 1. If (ii) holds, then (17) yields 𝑥
𝑛
0
+1

≤ 𝛽/𝑒 < 1.
Now suppose that (iii) holds. In this case, it follows from

(18) that𝑥
𝑛
0
+1

≤ 𝑝(𝑥
𝑛
0

), where𝑝(𝑥) = (1−𝛼)𝑥 + 𝛽𝑥(1−𝑥) for
all 𝑥 ∈ (0, 1]. It is not difficult to see that 𝑝(𝑥

∗
) is the absolute

maximum of 𝑝(𝑥) on (0, 1] where 𝑥
∗

= (1 − 𝛼 + 𝛽)/2𝛽.
According to (iii) and since 𝑝(𝑥

∗
) = (1 − 𝛼 + 𝛽)

2

/4𝛽 ≤

1, 𝑥
𝑛
0
+1

≤ 𝑝(𝑥
∗
) ≤ 1. That is in all cases we obtain that

whenever 𝑥
𝑛
0

≤ 1 gives 𝑥
𝑛
0
+1

≤ 1. So it is easy to prove by
induction that 𝑥

𝑛
∈ (0, 1] for all 𝑛 ≥ 1. The proof of 𝑦

𝑛
is

similar and so will be omitted. This completes the proof.

Theorem 5. For every solution {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
of system (1), the

following statements hold.

(i) 𝑥
𝑛
≤ 𝑥
𝑛
0

(1−𝛼)
𝑛−𝑛
0

+(𝛽/𝑒𝛼)(1−(1−𝛼)
𝑛−𝑛
0

), 𝑛 ≥ 𝑛
0
≥ 0.

(ii) 𝑦
𝑛
≤ 𝑦
𝑛
0

(1−𝛼)
𝑛−𝑛
0

+(𝛽/𝑒𝛼)(1−(1−𝛼)
𝑛−𝑛
0

), 𝑛 ≥ 𝑛
0
≥ 0.

Proof. We obtain, for 𝑛
0
≥ 0, from (1) that

𝑥
𝑛+1

≤ (1 − 𝛼) 𝑥
𝑛
+ 𝛽𝑥
𝑛
𝑒
−𝑥
𝑛

≤ (1 − 𝛼) 𝑥
𝑛
+

𝛽

𝑒

, ∀𝑛 ≥ 𝑛
0
.

(20)

Then, it follows byTheorems 3 and 4 that Case (i) is true.The
proof of Case (ii) is similar and so will be omitted.

The following corollaries are coming immediately from
Theorem 5.

Corollary 6. Assume that {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
is a positive solution

of system (1) with (𝑥
𝑛
0

, 𝑦
𝑛
0

) ∈ (0, 𝛽/𝛼𝑒]
2 for 𝑛

0
≥ 0. Then,

(𝑥
𝑛
, 𝑦
𝑛
) ∈ (0, 𝛽/𝛼𝑒]

2 for all 𝑛 ≥ 𝑛
0
.

Corollary 7. Every positive solution {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
of system (1)

is bounded. Moreover,

lim sup
𝑛→∞

𝑥
𝑛
≤

𝛽

𝛼𝑒

,

lim sup
𝑛→∞

𝑦
𝑛
≤

𝛽

𝛼𝑒

.

(21)

In Theorem 4, we gave conditions under which every positive
solution {(𝑥

𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
of system (1) to be in (0, 1]

2 provided that
(𝑥
𝑛
0

, 𝑦
𝑛
0

) ∈ (0, 1]
2. In the next result we show that every

positive solution {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
of system (1) eventually lies in

(0, 1]
2.

Theorem 8. Assume that {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
is a positive solution of

system (1), and assume that one of the following conditions is
true.

(i) 𝛽 < 𝛼𝑒.

(ii) 2 + ]2 + 2𝑒
]
− 4] − ]𝑒] > 0, 1 − 𝛼 + 𝛽𝑒

−]
[1 − ](2𝑒−] +

1) + ]2𝑒−]] and (1 − 𝛼)] + 𝛽]𝑒−] − 𝛽]2𝑒−2] < 1, where
] = 𝛽/𝛼𝑒.

Then, there exists 𝑛
0
≥ 0 such that (𝑥

𝑛
, 𝑦
𝑛
) ∈ (0, 1]

2 for all
𝑛 ≥ 𝑛
0
.

Proof. The proof of the theorem, when (i) holds, is followed
by Corollary 7. Now consider that (ii) is true.Then, it follows
from Corollary 7 that for every constant 𝜀 > 0, there exists
𝑛
0
≥ 0 such that 𝑥

𝑛
≤ 𝛽/𝛼𝑒 + 𝜀 = 𝛾, 𝑛 ≥ 𝑛

0
. Set 𝛿 = 𝑒

−𝛾.
Since 𝛿 → 𝑒

−] when 𝜀 → 0 and the inequalities in (ii) hold,
depending on the continuity in ] of the left hand side of each
inequality in (ii), one can choose 𝜀 so small such that

2 + 𝛾
2

+

2 − 𝛾

𝛿

− 4𝛾 ≥ 0, (22)

1 − 𝛼 + 𝛽𝛿 [1 − (2𝛿 + 1) 𝛾 + 𝛿𝛾
2

] ≥ 0, (23)

(1 − 𝛼) 𝛾 + 𝛽𝛾𝛿 − 𝛽𝛾
2

𝛿
2

≤ 1. (24)
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Now, we obtain from (1) that

𝑥
𝑛+1

= (1 − 𝛼) 𝑥
𝑛
+ 𝛽𝑥
𝑛
𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

− 𝛽𝑥
2

𝑛
𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

≤ (1 − 𝛼) 𝑥
𝑛
+ 𝛽𝑥
𝑛
𝑒
−𝑥
𝑛

− 𝛽𝛿𝑥
2

𝑛
𝑒
−𝑥
𝑛

= 𝐾 (𝑥
𝑛
) , 𝑛 ≥ 𝑛

0
,

(25)

where𝐾(𝑥) = (1 − 𝛼)𝑥 + 𝛽𝑒
−𝑥

(𝑥 − 𝛿𝑥
2

), 𝑥 ≤ 𝛾, and then

𝐾


(𝑥) = 1 − 𝛼 + 𝛽𝑒
−𝑥

[𝛿𝑥
2

− (2𝛿 + 1) 𝑥 + 1] ,

𝐾


(𝑥) = −𝛽𝑒
−𝑥

[𝛿𝑥
2

− (4𝛿 + 1) 𝑥 + 2 (𝛿 + 1)] .

(26)

On the other hand, the equation

𝛿𝑥
2

− (4𝛿 + 1) 𝑥 + 2 (𝛿 + 1) = 0, (27)

has the positive roots

𝑥
1
=

4𝛿 + 1 + √8𝛿
2
+ 1

2𝛿

, 𝑥
2
=

4𝛿 + 1 − √8𝛿
2
+ 1

2𝛿

.

(28)

Observe that 𝑥
2
= 2 + (1/2𝛿) − √2 + 1/4𝛿

2
≥ 𝛾 if and only if

(2 + (1/2𝛿) − 𝛾)
2

≥ 2 + 1/4𝛿
2 which holds by (22). Therefore,

𝑥
1
≥ 𝑥
2
≥ 𝛾. Consequently, 𝐾(𝑥) < 0 for all 𝑥 ≤ 𝛾 which

yields by (23) that 𝐾(𝑥) > 𝐾


(𝛾) ≥ 0. Using the increasing
property of 𝐾(𝑥) on (0, 𝛾) and inequality (24), we see that
𝐾(𝑥) ≤ 𝐾(𝛾) ≤ 1. Since 𝑥

𝑛
≤ 𝛾, it follows that

𝑥
𝑛+1

≤ 𝐾 (𝑥
𝑛
) ≤ 𝐾 (𝛾) ≤ 1 ∀𝑛 ≥ 𝑛

0
. (29)

This completes the proof.

Theorem 9. Assume that {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
is a positive solution of

system (1). If either

(1 − 𝛼 + 𝛽)
2

< 4𝛽𝑒
−2] (30)

or

𝛽𝑒
]

4

+ 𝛽 (1 − 𝛼) < 1, (31)

where ] = 𝛽/𝛼𝑒, then there exists 𝑛
0
≥ 0 such that (𝑥

𝑛
, 𝑦
𝑛
) ∈

(0, 1]
2 for all 𝑛 ≥ 𝑛

0
.

Proof. Assume that 𝛾, 𝛿, and the function 𝐾(𝑥
𝑛
) are defined

as in the previous proof. Then,

𝐾(𝑥
𝑛
) = (1 − 𝛼 + 𝛽) 𝑥

𝑛
− 𝛽𝑥
2

𝑛
𝛿
2

= 𝐾 (𝑥
𝑛
) , (32)

where𝐾(𝑥) = (1 − 𝛼 + 𝛽)𝑥 − 𝛽𝑥
2

𝛿
2

, 𝑥 ≤ 𝛾. Thus,

𝐾

(𝑥) = 1 − 𝛼 + 𝛽 − 2𝛽𝑥𝛿

2

. (33)

Hence, 𝐾(𝑥) attains its maximum value at 𝑥 = (1 − 𝛼 +

𝛽)/2𝛽𝛿
2; that is,

𝐾 (𝑥) ≤ 𝐾(

1 − 𝛼 + 𝛽

2𝛽𝛿
2

) =

(1 − 𝛼 + 𝛽)
2

4𝛽𝛿
2

. (34)

Also,

𝐾(𝑥
𝑛
) = −𝛽𝛿𝑒

−𝑥
𝑛

(𝑥
𝑛
−

1

2𝛿

)

2

+

𝛽𝑒
−𝑥
𝑛

4𝛿

+ 𝛽 (1 − 𝛼)

<

𝛽

4𝛿

+ 𝛽 (1 − 𝛼) , 𝑛 ≥ 𝑛
0
.

(35)

Similar to the proof of Theorem 8, we can choose 𝜀 so small
such that our assumptions imply that

(1 − 𝛼 + 𝛽)
2

2𝛽𝛿
2

≤ 1,

𝛽

4𝛿

+ 𝛽 (1 − 𝛼) ≤ 1. (36)

Therefore, we have either

𝑥
𝑛+1

≤ 𝐾 (𝑥
𝑛
) ≤

(1 − 𝛼 + 𝛽)
2

2𝛽𝛿
2

≤ 1, 𝑛 ≥ 𝑛
0

(37)

or

𝑥
𝑛+1

≤ 𝐾 (𝑥
𝑛
) ≤

𝛽

4𝛿

+ 𝛽 (1 − 𝛼) ≤ 1, 𝑛 ≥ 𝑛
0
, (38)

which is our desired conclusion for 𝑥
𝑛
. Similarly, one can

accomplish the same conclusion for 𝑦
𝑛
. The proof is so

complete.

3. Global Stability Analysis

In this section, we are interested in establishing conditions
under which the equilibrium points of system (1) are to be
the attractors of the solutions of system (1).

In the following theorem, we investigate the global attrac-
tivity of the equilibrium point (0, 0) of system (1).

Theorem 10. Assume that 𝛼 ≥ 𝛽. Then, (0,0) is a global
attractor of all positive solutions of system (1).

Proof. Let {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
be a solution of system (1). It follows

from system (1) that

𝑥
𝑛+1

= (1 − 𝛼) 𝑥
𝑛
+ 𝛽𝑥
𝑛
(1 − 𝑥

𝑛
) 𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

< (1 − 𝛼 + 𝛽) 𝑥
𝑛
< 𝑥
𝑛
,

𝑦
𝑛+1

= (1 − 𝛼) 𝑦
𝑛
+ 𝛽𝑦
𝑛
(1 − 𝑦

𝑛
) 𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

< (1 − 𝛼 + 𝛽) 𝑦
𝑛
< 𝑦
𝑛
.

(39)

Then, there exist 𝑥 ≥ 0 and 𝑦 ≥ 0 such that lim
𝑛→∞

𝑥
𝑛
= 𝑥

and lim
𝑛→∞

𝑦
𝑛
= 𝑦. Since the only possible values of (𝑥, 𝑦) in

the present case are (0, 0), lim
𝑛→∞

𝑥
𝑛
= 0 and lim

𝑛→∞
𝑦
𝑛
=

0. This completes the proof.

In the following theorems, we investigate the global
attractivity of the positive equilibrium point (𝑥; 𝑥) of system
(1) where 𝑥 is given by 𝛼 = 𝛽(1 − 𝑥)𝑒

−2𝑥.

Theorem 11. Assume that 𝛼 + 𝛽𝑒
−2

< 1. Then the unique
positive equilibrium point (𝑥; 𝑥) of system (1) is a global
attractor of all positive solutions of system (1).
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Proof. Let {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
be a solution of system (1), and let

𝑥
𝑛
≤ 𝑥 (the case 𝑥

𝑛
≥ 𝑥 is similar, and it will be left to the

reader).
Now there are two cases to consider.

Case 1. Assume that 𝑥
0
≥ 𝑦
0
. Then, it follows by Theorem 1

that 𝑥
𝑛

< 𝑦
𝑛
for all 𝑛 ≥ 1. Since 𝑥

𝑛
≤ 𝑥, then ℎ(𝑥

𝑛
) ≤ 0,

where ℎ(𝑥
𝑛
) = 𝛼 − 𝛽(1 − 𝑥

𝑛
)𝑒
−2𝑥
𝑛 . Thus, 𝛼 ≤ 𝛽(1 − 𝑥

𝑛
)𝑒
−2𝑥
𝑛 .

Therefore, we obtain from system (1) that

𝑥
𝑛+1

= (1 − 𝛼) 𝑥
𝑛
+ 𝛽𝑥
𝑛
(1 − 𝑥

𝑛
) 𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

≥ (1 − 𝛼) 𝑥
𝑛
+ 𝛼𝑥
𝑛
𝑒
2𝑥
𝑛

𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

= (1 − 𝛼) 𝑥
𝑛
+ 𝛼𝑥
𝑛
𝑒
𝑥
𝑛
−𝑦
𝑛

≥ (1 − 𝛼) 𝑥
𝑛
+ 𝛼𝑥
𝑛
= 𝑥
𝑛
.

(40)

Then, the sequence {𝑥
𝑛
}
∞

𝑛=0
is increasing, and since it was

shown that it is bounded above, then it converges to the
only positive equilibrium point 𝑥, and it follows by the
comparison test of convergence for sequence that {𝑦

𝑛
}
∞

𝑛=0
is

also convergent to the only positive equilibrium point 𝑦 = 𝑥:.
Thus, {(𝑥

𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
converges to (𝑥; 𝑥).

Case 2. Assume that 𝑥
0
< 𝑦
0
. Then, it follows from system (1)

andTheorem 1 that

𝑦
𝑛+1

= (1 − 𝛼) 𝑦
𝑛
+ 𝛽𝑦
𝑛
(1 − 𝑦

𝑛
) 𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

≥ (1 − 𝛼) 𝑦
𝑛
+ 𝛼𝑦
𝑛
𝑒
2𝑦
𝑛

𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

= (1 − 𝛼) 𝑦
𝑛
+ 𝛼𝑦
𝑛
𝑒
𝑦
𝑛
−𝑥
𝑛

≥ (1 − 𝛼) 𝑦
𝑛
+ 𝛼𝑦
𝑛
= 𝑦
𝑛
.

(41)

The rest of the proof is similar to Case 1, and it will be left to
the reader.

Theorem 12. Assume that 𝛽(𝛼𝑒 − 𝛽) ≥ 𝛼
2

𝑒
3. Then, the

unique positive equilibrium point (𝑥; 𝑥) of system (1) is a global
attractor of all positive solutions of system (1).

Proof. Let {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
be a solution of system (1). It follows

from system (1) that

𝑥
𝑛+1

= (1 − 𝛼) 𝑥
𝑛
+ 𝛽𝑥
𝑛
(1 − 𝑥

𝑛
) 𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

≥ (1 − 𝛼) 𝑥
𝑛
+ 𝛽𝑥
𝑛
(1 − 𝑥

𝑛
) 𝑒
−2

.

(42)

Thus, we see from Corollary 7 that

𝑥
𝑛+1

≥ [1 − 𝛼 + 𝛽(1 −

𝛽

𝛼𝑒

) 𝑒
−2

] 𝑥
𝑛
≥ 𝑥
𝑛
. (43)

Then, the sequence {𝑥
𝑛
}
∞

𝑛=0
is increasing, and since it is

bounded, then it converges to the only positive equilibrium
point 𝑥. Similarly, it is easy to show that the sequence {𝑦

𝑛
}
∞

𝑛=0

is also convergent to the unique positive equilibrium point
𝑦 = 𝑥. Therefore {(𝑥

𝑛
, 𝑦
𝑛
)}
∞

𝑛=0
converges to (𝑥, 𝑥), and then

the proof is so complete.

Theorem13. Assume that one of the following conditions hold.

(I) 5𝛽 ≤ 4𝑒
2

(1 − 𝛼).
(II) 𝛼 + 𝛽 < 1. Then the unique positive equilibrium point

(𝑥, 𝑥) of system (1) is a global attractor of all positive
solutions of system (1).

Proof. Rewrite system (1) as follows:

𝑥
𝑛+1

= 𝐹 (𝑥
𝑛
, 𝑦
𝑛
)

= (1 − 𝛼) 𝑥
𝑛
+ 𝛽 (1 − 𝑥

𝑛
) 𝑥
𝑛
𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

,

𝑦
𝑛+1

= 𝐺 (𝑥
𝑛
, 𝑦
𝑛
)

= (1 − 𝛼) 𝑦
𝑛
+ 𝛽 (1 − 𝑦

𝑛
) 𝑦
𝑛
𝑒
−(𝑥
𝑛
+𝑦
𝑛
)

,

𝑛 = 0, 1, . . . ,

(44)

where 𝐹(𝑥, 𝑦) = (1 − 𝛼)𝑥 + 𝛽(1 − 𝑥)𝑥𝑒
−(𝑥+𝑦) and 𝐺(𝑥, 𝑦) =

(1 − 𝛼)𝑦 + 𝛽(1 − 𝑦)𝑦𝑒
−(𝑥+𝑦) are continuous functions. Now,

consider the system

𝑚
1
= 𝐹 (𝑚

1
,𝑀
2
) , 𝑀

1
= 𝐹 (𝑀

1
, 𝑚
2
) ,

𝑚
2
= 𝐺 (𝑀

1
, 𝑚
2
) , 𝑀

2
= 𝐹 (𝑚

1
,𝑀
2
) .

(45)

Then,

𝑚
1
= (1 − 𝛼)𝑚

1
+ 𝛽𝑚
1
(1 − 𝑚

1
) 𝑒
−(𝑚
1
+𝑀
2
)

,

𝑀
1
= (1 − 𝛼)𝑀

1
+ 𝛽𝑀

1
(1 − 𝑀

1
) 𝑒
−(𝑀
1
+𝑚
2
)

,

𝑚
2
= (1 − 𝛼)𝑚

2
+ 𝛽𝑚
2
(1 − 𝑚

2
) 𝑒
−(𝑚
2
+𝑀
1
)

,

𝑀
2
= (1 − 𝛼)𝑀

2
+ 𝛽𝑀

2
(1 − 𝑀

2
) 𝑒
−(𝑀
2
+𝑚
1
)

.

(46)

Thus, either𝑚
1
= 𝑀
2
= 𝑚
2
= 𝑀
2
or

𝛼 = 𝛽 (1 − 𝑚
1
) 𝑒
−(𝑚
1
+𝑀
2
)

,

𝛼 = 𝛽 (1 − 𝑀
1
) 𝑒
−(𝑀
1
+𝑚
2
)

,

𝛼 = 𝛽 (1 − 𝑚
2
) 𝑒
−(𝑚
2
+𝑀
1
)

,

𝛼 = 𝛽 (1 − 𝑀
2
) 𝑒
−(𝑀
2
+𝑚
1
)

.

(47)

Then,𝑚
1
= 𝑀
2
,𝑚
2
= 𝑀
2
and

(1 − 𝑚
1
) 𝑒
−2𝑚
1

= (1 − 𝑀
1
) 𝑒
−2𝑀
1

= (1 − 𝑚
2
) 𝑒
−2𝑚
2

= (1 − 𝑀
2
) 𝑒
−2𝑀
2

.

(48)

Now, since (1 − 𝑚
1
)𝑒
−2𝑚
1
= (1 − 𝑀

1
)𝑒
−2𝑀
1 , then 𝑒

2(𝑀
1
−𝑚
1
)

=

(1 − 𝑀
1
)/(1 − 𝑚

1
); that is,

2 (𝑀
1
− 𝑚
1
) = log (1 − 𝑀

1
) − log (1 − 𝑚

1
) . (49)

We claim that 𝑀
1

= 𝑚
1
; otherwise for the sake of contra-

diction assume that 𝑀
1
> 𝑚
1
(the case where 𝑀

1
< 𝑚
1
is

similar and it will be left to the reader). Then, log(1 − 𝑀
1
) −
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log(1 − 𝑚
1
) < 0, which contradicts that the left hand side of

(49) is positive.
Now it easy to see that

𝜕𝐹 (𝑥, 𝑦)

𝜕𝑥

= 1 − 𝛼 + 𝛽 (𝑥
2

− 3𝑥 + 1) 𝑒
−(𝑥+𝑦)

,

𝜕𝐹 (𝑥, 𝑦)

𝜕𝑦

= −𝑥𝛽 (1 − 𝑥) 𝑒
−(𝑥+𝑦)

,

𝜕𝐺 (𝑥, 𝑦)

𝜕𝑥

= −𝛽𝑦 (1 − 𝑦) 𝑒
−(𝑥+𝑦)

,

𝜕𝐺 (𝑥, 𝑦)

𝜕𝑦

= 1 − 𝛼 + 𝛽 (𝑦
2

− 3𝑦 + 1) 𝑒
−(𝑥+𝑦)

.

(50)

Thus,

𝜕𝐹 (𝑥, 𝑦)

𝜕𝑥

= 1 − 𝛼 + 𝛽 (𝑥
2

− 3𝑥 + 1) 𝑒
−(𝑥+𝑦)

≥ 1 − 𝛼 + 𝛽 (𝑥
2

− 3𝑥 + 1) 𝑒
−2

= 𝛽𝑒
−2

𝑥
2

− 3𝛽𝑒
−2

𝑥 + 𝛽𝑒
−2

+ 1 − 𝛼.

(51)

Now, there are two cases to consider.
Case 1. Suppose that 5𝛽 ≤ 4𝑒

2

(1 − 𝛼). Therefore, the function
𝑤(𝑥) = 𝛽𝑒

−2

𝑥
2

− 3𝛽𝑒
−2

𝑥 + 𝛽𝑒
−2

+ 1 − 𝛼 has no real roots.
Thus, 𝜕𝐹(𝑥, 𝑦)/𝜕𝑥 ≥ 0. Similarly, it is easy to prove that
𝜕𝐺(𝑥, 𝑦)/𝜕𝑥 ≥ 0. Then, it follows by Theorem A that the
equilibrium point (𝑥, 𝑦) = (𝑥, 𝑥) of system (1) is a global
attractor of all positive solutions of system (1).
Case 2. Suppose that 𝛼 + 2𝛽 < 1. Since 0 ≤ 𝑥 ≤ 1, 3 ≥ 3 − 𝑥 ≥

𝑥(3 − 𝑥) = 3𝑥 − 𝑥
2, or 2 ≥ 3𝑥 − 𝑥

2

− 1, and since 𝛼 + 2𝛽 <

1, then 1 − 𝛼 > 2𝛽 > 2𝛽𝑒
−2

≥ 2𝛽𝑒
−(𝑥+𝑦)

≥ 𝛽(3𝑥 − 𝑥
2

−

1)𝑒
−(𝑥+𝑦). Thus, 𝜕𝐹(𝑥, 𝑦)/𝜕𝑥 ≥ 0. Similarly, it is easy to prove

that 𝜕𝐺(𝑥, 𝑦)/𝜕𝑥 ≥ 0. Then, it follows again by Theorem A
that the equilibrium point (𝑥, 𝑦) = (𝑥, 𝑥) of system (1) is a
global attractor of all positive solutions of system (1). Thus,
the proof is now completed.
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[17] S. Stević, “On a discrete epidemic model,” Discrete Dynamics in
Nature and Society, vol. 2007, Article ID 87519, 10 pages, 2007.
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