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Complex engineering system optimization usually involves multiple projects or tasks. On the one hand, dependency modeling
among projects or tasks highlights structures in systems and their environments which can help to understand the implications
of connectivity on different aspects of system performance and also assist in designing, optimizing, and maintaining complex
systems. On the other hand, multiple projects or tasks are either happening at the same time or scheduled into a sequence in
order to use common resources. In this paper, we propose a dynamic intelligent decision approach to dependency modeling
of project tasks in complex engineering system optimization. The approach takes this decision process as a two-stage decision-
making problem. In the first stage, a task clustering approach based on modularization is proposed so as to find out a suitable
decomposition scheme for a large-scale project. In the second stage, according to the decomposition result, a discrete artificial
bee colony (ABC) algorithm inspired by the intelligent foraging behavior of honeybees is developed for the resource constrained
multiproject scheduling problem. Finally, a certain case from an engineering design of a chemical processing system is utilized to
help to understand the proposed approach.

1. Introduction

Nowadays, complex engineering projects or design processes
with long development times usually involve multiple disci-
plines and a great deal of effort. In general, the difficulties
in design or development do not only simply arise from
engineering complexity but also lie in the organizational
sophistication necessary to manage this design or develop-
ment process. Therefore, it is very important to optimize the
design or development process. Usually, a complex system
includes a large number of tasks or subprojects, and com-
plex dependencies existing among tasks will cause resource
competition and coordination. It means that in order to
understand the implications of connectivity on different
aspects of system performance, it is necessary to model the
task dependencies and then sequence all project tasks to
reveal the underlying structure of the design or development
process.

In most of the literatures, graphs or directed graphs such
as flow charts and signal flow diagrams are used to analyze
complex processes. For example, digraphs are easy to assim-
ilate until they become quite large and lose their intuitive
[1]. Related to the diagraphs, adjacency matrices expedite the
decomposition of large systems since computers can easily
handle the matrices [2]. In this paper, we focus on two
main issues, that is, task clustering as well as its sequencing,
where there are more researches concentrating on the first
one. For instance, Tseng and Jiao [3] proposed an approach
through clustering analysis of a design matrix based on
axiomatic design theory and aimed at implementingmodular
electrical design of electronic products at the system design
level. Gershenson et al. [4] discussed the incorporation of
modularization intomechanical designs.They also developed
the measure of relative modularity and the modular design
methodology that encouraged modularity and prevented a
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Figure 1: The flow chart of the dynamic intelligent decision ap-
proach.

cascade of product design changes due to changes in life-cycle
process. Brændeland et al. [5] presented a modular approach
to themodeling and analysis of risk scenarios with dependen-
cies such as the electric power supply or telecommunications.
In addition, this approach might be used to deduce the risk
level of an overall system from previous risk analyses of its
constituent systems. Another issue related to the paper is
task scheduling, and some representative pieces of research
are as follows. Some scholars [6–8] developed a branch and
bound approach to solve the task scheduling problem and the
differences among them lay in branch schemes aswell as elim-
ination rules and other details. Mori and Tseng [9] proposed
a genetic algorithm for multimode resource-constrained
project scheduling problems (RCPSPs) and compared it
with a stochastic scheduling method proposed by Drexl and
Gruenewald [10]. Xu et al. [11] illustrated how to combine the
idea of rollout with priority rule heuristics and justification
for the RCPSP and examined the resulting solution quality
and computational cost. They presented empirical evidence
that these procedures are competitive with the best solution
procedures described in the literature. In addition, Jarboui et
al. [12] designed a combinatorial particle swarm optimization
(CPSO) algorithm in order to solve RCPSP. The results that
have been obtained using a standard set of instances, after
extensive experiments, proved to be very competitive in
terms of number of problems solved to optimality. Ju and
Chen [13] developed design structure matrix (DSM) and
an improved artificial immune network algorithm to solve
a multi-mode resource-constrained multiproject scheduling
problem (MRCMPSP). Moreover, this approach was also
tested on a set of random cases generated from ProGen,
and the results validated the effectiveness of the proposed
algorithm comparing with other famous metaheuristic ones.

However, these researchesmentioned earlier only consid-
ered one aspect of complex engineering system optimization
and neglected connections between task dependencies and
task sequencing. Due to these reasons, in this work, we
propose a dynamic intelligent decision approach to depen-
dency modeling of project tasks in complex engineering

system optimization. It takes this decision process as a two-
stage decision-making problem, where in the first stage,
large interdependent tasks are decomposed into smaller and
manageable task groups by transforming the binary form
of task relationships into the quantifiable numerical one. In
this stage, three steps are needed. Firstly, DSM is adopted
to model dependencies between tasks. And then, a two-way
comparison scheme is used to transform the binary DSM
into numerical one. Secondly, task clustering based on indices
including bid value as well as coordination cost function is
realized so as to discompose the large-scale project into some
subprojects. Finally, a method for solving task clustering is
also developed. In the second one, according to the result
of task clustering developed in the first stage, the resource
constrained multiproject scheduling model is built firstly,
subsequently, a discrete artificial bee colony (ABC) algorithm
inspired by the intelligent foraging behaving of honeybee
is designed for solving this problem. The whole flow chart
of this dynamic intelligent decision approach is shown in
Figure 1.

This paper is organized as follows. Firstly, the approach
to project task clustering in complex engineering system
is proposed in Section 2. Secondly, the mathematic model
of multi-project scheduling problem based on the result of
task clustering analysis is developed, and a discrete artificial
bee colony based multi-project scheduling problem is also
proposed in Section 3. Thirdly, an illustrative case from an
engineering design of a chemical processing system is given
in Section 4. Finally, conclusions and possible future research
extensions comprise Section 5.

2. An Approach to Task Clustering in
Complex Engineering System

Optimization process in a complex system faces the diffi-
culties not only from technology complexity but also from
time pressure. Generally, to decompose large interdependent
task groups into small ones by modularization is a very
efficient approach to realize engineering optimization. This
process usually includes three steps, that is, task dependency
modeling, task clustering, and problem-solving strategies.

2.1. Task Dependency Modeling. In this paper, the task-based
modeling method is adopted. Here, the design structure
matrix representation of the design process is chosen for three
reasons. Firstly, it overcomes the size and visual complexity
of many graph-based techniques such as PERT and CPM.
Secondly, matrices are easy to manipulate and store in
computer. Finally, the DSM modeling has been proven by
a number of researchers as a useful tool in task scheduling
and management [14]. It has been widely applied to design
and development [15], such as design optimization [16], tasks
sequencing [17], control and monitoring of design tasks [18],
and risk analysis and evolution [19].

In general, a simple DSM displays the relationships
between components of a system in a compact, visual, and
analytical advantageous format. Specifically, in DSM, each
row and its corresponding column are identified with the
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Figure 2: Sample of the DSM.

identical labels. Along each row, the marks indicate what
other elements the element in that row depends on. A certain
column indicates what other elements the element in that row
provide to. Diagonal elements do not convey any meaning at
this point.Thus, in Figure 2, elementAprovides something to
element B, D, and E, and it also depends on something from
element C and E.

In the engineering system optimization process, the
typical clustering process is comprised of two sections: one
is to define modules it includes, and the other is to define
the relationships among different modules which will realize
the whole function of a system together. Consider the impli-
cations of system performance as well as the characteristics
of the DSM, there are two steps needed to model task
dependencies: (1) transforming the binary format of task
relationships into the quantifiable numerical ones so as to
represent dependency strength among project tasks from
viewpoints of structure, function, shape, and so on; (2)
building upmultidimension DSMmodel and then normalize
these multi-dimension data.

2.1.1. Quantitative Approach to Dependencies among Tasks.
Dependencies among tasks are determined by their function,
structure, shape, and so on. However, the original DSM is
populated with “ones” and “zeros” or “X” marks and empty
cells. This single attribution was used to convey relationships
between different elements namely, the “existence” attributes
which signifies the existences or absences of a dependency
between the different elements. Compared to binary DSM,
numerical DSM could contain a multitude of attributes
that provide more detailed information on the relationships
between the different system elements. An improved descrip-
tion of these relationships provides a better understanding of
the system and allows for the development of more complex
engineering system. In this work, we introduce a two-way
comparison scheme developed by Su et al. [20] to realize
normalization of the binary DSM. The main criteria of this
approach are to perform pairwise comparisons in one way
for tasks in rows and in another way for tasks in columns to
measure the dependency between different tasks. In the row-
wise perspective, each task in rows will serve as a criterion

to evaluate the relative connection measures for the nonzero
elements in that row. It means that for each pair of tasks
compared in rows, which one provides more information
input than another. Similarly, in the column-wise perspective,
each task in columns will serve as a criterion to evaluate the
relative connection measures in that column.It also means
that for every pair of tasks compared in columns, which one
receives more information output than another. Moreover, in
order to obtain comparison scale, we also use a single level
of analytic hierarchy process (AHP). For example, if ranking
of information input for tasks in row 𝑇

𝑖
is the criterion for

comparison matrix, the comparison scale 3 for 𝑇
𝑗
comparing

to 𝑇
𝑘
denotes that task 𝑇

𝑗
provides somewhat information

input to task 𝑇
𝑖
than task 𝑇

𝑘
provides. Conversely, the

comparison scale 1/9 for𝑇
𝑗
comparing to𝑇

𝑘
denotes that task

𝑇
𝑗
provides much less information input to task 𝑇

𝑖
than task

𝑇
𝑘
provides. This two-way comparison scheme contains four

phases described as follows.
(1) Select a criterion for every pair of tasks compared

and compare which one provides more information input to
downstream tasks or which one receives more information
output from upstream tasks.

(2) Construct a pairwise comparison matrix as follows:
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, (1)

where 𝑇
𝑖
or 𝑇
𝑙
is a criterion for the comparison matrix

selected from rows or columns; {𝑇
𝑗
, . . . , 𝑇

𝑘
} ∈ {non-

zero elements of tasks in row 𝑖 or column 𝑖}; 𝑥
𝑗𝑘
(𝑦
𝑗𝑘
) is the

comparison scale for 𝑇
𝑗
compared with 𝑇

𝑘
when selecting 𝑇

𝑖

or 𝑇
𝑙
as a criterion, and 𝑥

𝑗𝑘
(𝑦
𝑗𝑘
) ∈ {1, 3, 5, 7, 9}. In addition,

𝑥
𝑗𝑘
(𝑦
𝑗𝑘
) = 1/𝑥

𝑘𝑗
(1/𝑦
𝑘𝑗
).

(3) In order to obtain the relative connection measures
between the related tasks in rows and in columns, an eigen-
vector is calculated for each pairwise comparisonmatrix.This
eigen-vector denotes the ranking for each comparing task
within the comparison matrix.

(4) There are totally 𝑛 eigen-vectors for 𝑛 rows and 𝑛

eigen-vectors for 𝑛 columns. Combining n rows of eigen-
vectors, an 𝑛 × 𝑛 matrix 𝑋 is formed in which each element
in the vector is placed back in its location in the original
binary DSM matrix. In addition, another 𝑛 × 𝑛 matrix 𝑌 is
formed in the same way. The element in matrix 𝑋 and the
one in matrix 𝑌 should be combined together to measure
all relationships. This may be realized by multiplying the
corresponding element of𝑋 and 𝑌matrices and taking their
geometrical average. In doing so, a numerical DSM matrix
which describes quantitative relationships among tasks will
be obtained.

2.1.2. Normalized Treatment of Multidimension DSM Model.
Numerical DSMmodel obtained from Section 2.1.1 is amulti-
dimensional matrix. Each element in it contains multiple
components which defines information relationships among
tasks fromdifferent viewpoints. Generally, it is difficult to fur-
ther deal with themulti-dimensionalmatrix. In order to solve



4 Mathematical Problems in Engineering

this problem, a dimensionality reduction method for the
multidimensional matrix is proposed, and the corresponding
expression is as follows:

𝐴
𝑖𝑗
=

𝑁

∑

𝑘

(𝑤
𝑘
× (𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨View𝑘
)) , (2)

where 𝑤
1
+ 𝑤
2
+ ⋅ ⋅ ⋅ + 𝑤

𝑁
= 1. 𝐴

𝑖𝑗
is a new element

value in DSM after dimensionality reduction. View
𝑘
(𝑘 =

1, 2, . . . , 𝑁) represents analysis viewpoints such as space
structure, function, shape, and physical interface. 𝑎

𝑖𝑗
is a

dependency strength between task 𝑖 and 𝑗 from viewpoint
View
𝑘
.

2.2. Task Clustering Modeling. The main purpose of task
clustering is to make tasks with close connection in the same
block so as to form an independent project blocks, while
the ones with loose connection will be in different blocks.
In doing so, it is easy to realize optimization in engineering
system.

At present, there are many methods used to realize
task clustering such as similar coefficient method, ranking
method, and path search method. However, it is not satisfac-
tory when all thesemethods are applied to clustering of DSM,
especially that group size is unknown in advance. Due to this
reason, other researchers developed more efficient methods,
where one of the typical ones is suggested byThebeau [21]. He
combined bid and evaluation to realize task clustering. Bid
value measures the dependency degree between the element
and the group which is proportional to dependent density
and is used to determine which group the selected element
belongs to. It can be defined as follows

𝐵
𝑖
=

(∑ 𝐼
𝑖
)
𝜆𝑑

(𝑆
𝑖
)
𝜆𝑏

, (3)

where 𝑖 is the number of groups. 𝐵
𝑖
is the bid value of group

𝑖 for the selected element. ∑𝐼
𝑖
is the dependency gross in

group 𝑖. 𝑆
𝑖
is the number that group 𝑖 contains. 𝜆

𝑑
is a weight

exponent. 𝜆
𝑏
is a bid exponent of groups.

Another index presented byThebeau [21] is coordination
cost which is the objective function of the bid and evaluation
method. It comprehensively describes dependencies among
tasks as well as the size of the corresponding group. It is
formulated as

𝐶
𝐼
= [DSM (𝑗, 𝑘) + DSM (𝑘, 𝑗)] 𝑆

𝜆𝑐

𝑦
,

𝐶
𝐸
= [DSM (𝑗, 𝑘) + DSM (𝑘, 𝑗)] 𝑆

𝜆𝑐

𝐷
,

𝐶
𝑇
= ∑𝐶

𝐼
+∑𝐶

𝐸
,

(4)

where 𝐶
𝐼
is the coordination cost inside groups (for instance,

tasks 𝑗 and 𝑘 belong to the same group). 𝐶
𝐸
is the coordina-

tion cost outside groups (for instance, tasks 𝑗 and 𝑘 belong
to different groups, resp.). DSM(𝑗, 𝑘) and DSM(𝑘, 𝑗) denote
relationships between task 𝑗 and 𝑘. 𝑆

𝑦
is the number of tasks

that group 𝑦 contains. 𝑆
𝐷
is the total number of tasks that the

whole DSM matrix contains. 𝜆
𝑐
is a weight exponent of bid

groups.

2.3. A Method for Solving Task Clustering. In general, there
exist 𝑀𝑁 possible combination schemes for the DSM clus-
tering containing 𝑀 tasks and 𝑁 groups. According to the
characteristics of the problem, we adopt a heuristic approach
in this research, and the concrete steps are as follows.

(1) Initialize the problem, where every task is taken as an
independent group.

(2) Randomly select one of tasks 𝑖 and calculate each
of the other groups’ bid values for it. Subsequently,
distribute it to the group which has the highest bid
value after repeated calculation.

(3) Delete empty groups, subgroups, and same ones.
(4) Choose a new task to repeat the process mentioned

above until all tasks has been traversed and the system
reaches a stable state.

3. Multiproject Tasks Scheduling

In the above sections, tasks that have more information rela-
tionships will be converged to the same group. Nevertheless,
how to arrange these tasks is another important problem
to realize engineering system optimization. As a result, a
multiproject tasks scheduling problem is proposed in this
section. Generally, scheduling process involves allocation of
the given resource to projects to determine the start and
completion time of the detailed tasks.The allocation of scarce
resources then becomes amajor objective of the problem, and
several compromises have to be made to solve the problem
to the desired level of near-optimality [22]. Usually, this
process includes two steps: first, build up the model of the
multiproject scheduling problem; second, solve the problem
using intelligent algorithms.

3.1. The Model of Multiproject Scheduling Problem. The prob-
lem consists of the number of projects I, and the following
assumptions are taken in to consideration.

(1) Task 𝑖 cannot start unless all of its predecessors have
been completed.

(2) There are only renewable resources, and nonrenew-
able ones are not considered.

(3) Task preemption is not allowable.
(4) In a multiproject environment, the delay of any

project will lead to iterations and alterations of related
follow-up work, so we can assume that the objective
is to minimize the completion time of all projects but
not a certain project.

Based on these assumptions, the problem and the con-
ceptual model will be described as follows. The considered
problem consists of M parallel projects, each project 𝑖 =

1, . . . ,𝑀, being composed of 𝐽
𝑖
tasks 𝑖𝑗, 𝑗 = 1, . . . , 𝐽

𝑖
.The tasks

are interrelated by two kinds of constrains. One is precedence
constraints, the other is resource constraints. While being
processed, task 𝑖𝑗 in project 𝑖 requires 𝑞

𝑖𝑗𝑟
units of renewable

resource type 𝑟 = 1, . . . , 𝑅 during each period of its non-
preemptive duration 𝑑

𝑖𝑗
. Each resource type 𝑟 has a fix and
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limit available amount 𝑄
𝑟
. In addition, the optimal objective

of the problem is to make the makespan of all projects
shorter through finding out feasible starting time of tasks and
allocation of resources. Therefore, the model of the problem
can be described as follows:

min {

𝐼

∑

𝑖=1

𝛼
𝑖
(𝐹
𝑖
− 𝐶𝑃
𝑖
)} , (5)

subject to : 𝐹
𝑖𝑙
≤ 𝐹
𝑖ℎ
− 𝑑
𝑖ℎ𝑚

,

(𝑖 = 1, 2, . . . 𝐼, ℎ = 1, 2, . . . , 𝐽
𝑖
) , (𝑙 ∈ ℘

ℎ
) ,

(6)

∑

𝑖𝑗∈𝐵𝐽(𝑡)

𝑞
𝑖𝑗𝑟

≤ 𝑄
𝑟
, (7)

where 𝛼
𝑖
denotes the weight of the 𝑖th project and 𝐼 represents

the number of projects. 𝐹
𝑖
is the completion time of project

𝑖. 𝐶𝑃
𝑖
is the resource unconstrained critical path length of

project 𝑖. 𝐵𝐽(𝑡) is a task set being executed at time 𝑡. ℘
ℎ

is the precedence-task set of task ℎ. The objective function
(5) seeks to minimize the performance measure. Obviously,
minimizing this criterion is equivalent to minimizing the
mean resource-constrained completion time of the projects.
A constraint (6) imposes the precedence relations between
tasks, and a constraint (7) limits the resource demand
imposed by the tasks being processed time t to the available
capacity. It means the number of available resources will
change according to the completion and starting time of
tasks.

However, during the scheduling of multiprojects, some
tasks will not be performed concurrently due to resource
constraints and precedence ones which will also increase
the difficulty to solve this problem. In this circumstance,
precedence constraints among tasks should be satisfied firstly
so as to determine an eligible task set. And then, resource
conflicts possibly occurred in this eligible set should be
identified in order to decide the task priority values, issued
from the select priority rule. Therefore, combined DSM, the
following will give a simplifying approach of precedence
constraints and the task priority values, respectively: (1) set
up DSM clustering model of multiproject based on Section 2;
(2) construct an eligible task set,𝐸𝐽, a task set being executed,
𝐵𝐽, and a task set completed, 𝐹𝐽, where 𝐸𝐽 can be generated
through DSM. That is to say, if the task satisfies (DSM(𝑖𝑗, :

) = 𝐾) ∈ 𝐹𝐽 from a row, we can obtain 𝑖𝑗 ∈ 𝐸𝐽 or 𝑖𝑗 ∉ 𝐸𝐽.
Similarly, we can determine whether task 𝑗𝑘 belongs to 𝐸𝐽. In
doing so,𝐸𝐽 can be determined; (3) identify resource conflicts
between task 𝑖𝑗 and 𝑗𝑘. If exists, perform tasks according to
priority value; if not, perform them concurrently and add
those tasks which are to be scheduled to 𝐵𝐽; (4) if tasks 𝑖𝑗,
𝑗𝑘 have been fulfilled, update 𝐸𝐽, 𝐵𝐽, and 𝐹𝐽. Determine the
next task set which will possibly cause resource conflicts and
repeat the process till all of the tasks have been fulfilled.

3.2. Artificial Bee Colony Based Multiproject Scheduling Prob-
lem. In this section, the basic artificial bee colony algorithm
based on the foraging behavior of honeybees is introduced

firstly. Subsequently, the discrete artificial bee colony algo-
rithm used for solving the multiproject scheduling problem
is proposed.

3.2.1. Honeybee Modeling. In the basic ABC algorithm, the
colony of artificial bees contains three groups of bees:
employed bees, onlookers, and scouts. Employed bees deter-
mine a food source within the neighborhood of the food
source in their memory and share their information with
onlookers within the hive, while onlookers select one of the
food sources according to this information. In addition, a
bee carrying out random search is called a scout. In ABC
algorithm, first half of the colony consists of the employed
bees and the rest half includes the onlookers. There is only
one employed bee corresponding to one food source. That is
to say, the number of employed bees is equal to the number of
food sources around the hive. The position of a food source
denotes a possible solution of the optimization problem and
the nectar amount of a food source corresponds to the quality
(fitness) of the associated solution.

The initial population of solutions is filled with SN
number of randomly generated D-dimensional real-valued
vectors (i.e., food sources). Each food source is generated as
follows:

𝑥
𝑗

𝑖
= 𝑥
𝑗

min + rand (0, 1) (𝑥
𝑗

max − 𝑥
𝑗

min) , (8)

where 𝑖 = 1, 2, . . . , SN, 𝑗 = 1, 2, . . . , 𝐷. 𝑥𝑗min, and 𝑥
𝑗

max are
the lower and upper bounds for the dimension 𝑗, respectively.
These food sources are assigned randomly to SN number of
employed bees and their corresponding fitness is evaluated.

In order to produce a candidate food position from the
old one, the ABC used the following equation:

V
𝑗

𝑖
= 𝑥
𝑗

𝑖
− 𝜑
𝑗

𝑖
(𝑥
𝑗

𝑖
− 𝑥
𝑗

𝑘
) , (9)

where 𝑗 ∈ {1, 2, . . . , 𝐷} and 𝑘 ∈ {1, 2, . . . , SN} are randomly
chosen indexes. Although 𝑘 is determined randomly, it has
to be different from 𝑖. 𝜑

𝑖𝑗
is a random number in the range

[−1, 1]. Once𝑉
𝑖
is obtained, it will be evaluated and compared

to𝑋
𝑖
. If the fitness of𝑉

𝑖
is equal to or better than that of𝑋

𝑖
,𝑉
𝑖

will replace𝑋
𝑖
and become a newmember of the population;

otherwise,𝑋
𝑖
is retained.

After all employed bees complete their searches, onlook-
ers evaluate the nectar information taken from all employed
bees and choose one of food source sites with probabilities
related to its nectar amount. In basic ABC, roulette wheel
selection scheme in which each slice is proportional in size
to the fitness value is employed as follows:

𝑃
𝑖
=

fit (𝑥
𝑖
)

∑
SN
𝑚=1

fit (𝑥
𝑚
)

, (10)

where fit(𝑥
𝑖
) is the fitness value of solution 𝑖. Obviously, the

higher the fit(𝑥
𝑖
) is, the more probability that the 𝑖th food

source is selected.
If a position cannot be improved further through a pre-

determined number of cycles, then that food source is
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assumed to be abandoned. The scouts can accidentally dis-
cover rich, entirely unknown food sources according to (8).
The value of predetermined number of cycles is called “limit”
for abandoning a food source which is an important control
parameter of ABC algorithm.

There are three control parameters used in the basic ABC:
the number of the food sources which is equal to the number
of employed bees (SN), the value of limit, and the maximum
cycle number (MEN).

3.2.2. Discrete Artificial Bee Colony for Solving Multiproject
Scheduling Problem. Themultiproject scheduling problem is
a typical NP-hard problem and traditional exact algorithms
may cause large computation time and is very difficult
to find out the optimal solution. With the last decades,
various kinds of optimization algorithms based on swarm
intelligence have been designed and applied to function-
optimization, task-allocation, and other problems [23]. Some
of the popular approaches are ant colony optimization (ACO)
[24, 25], particle swarm optimization (PSO) [26, 27], artificial
immune systems (AISs) [28], and so on, where Karaboga
[29] has described a bee swarm algorithm called artificial bee
colony (ABC) algorithm based on the foraging behavior of
honeybees.They have compared the performance of the ABC
algorithm with those of other well-known modern heuristic
algorithms for unconstrained optimization problems, and the
results have shown that the ABC algorithm is superior to
other ones. However, the basic ABC algorithm was designed
to solve continuous optimization problems. In order to make
it applicable for solving scheduling problem, a discrete ABC
algorithm is proposed in this section, and the concrete steps
are as follows.

(1) Solution Representation. According to the characteristics
of the problem, a direct problem representation is used.
Complete information of a schedule for the problem consists
of a task priority rule, tasks and their corresponding modes.

(2) Population Initialization. To guarantee an initial popu-
lation with certain quality and diversity, a portion of food
sources are generated by using some priority rules while the
others are produced randomly. For the project scheduling
problem, the smallest slack time (SST), the earliest due date
(EDD), and the smallest execution time (SET) rules are
commonly adopted to yield the initial schedule. Therefore,
this work applies these rules to produce three different
solutions. For example, the EDD rule sorts the activities
according to their ascending due dates such that 𝑑

𝑥(𝑗)
≤ 𝑑
𝑥(𝑗+1)

and the same to SST and SET.

(3) Employed Bee Phase. The employed bees generate food
sources in the neighborhood of their position in the ABC
algorithm. In this work, three operations including SWAP,
INSERT, and INVERSE are used to produce neighboring
solutions, where the SWAPoperator is defined by interchang-
ing two activities in different positions, while the INSERTone
is defined by removing an activity from its original position
and inserts it into a new position, and the last one, INVERSE,
generates a neighbor by inversing the sequence between two

activities in different positions. Note that if the neighboring
solutions do not satisfy preference constraints, the old one
should be retained. Furthermore, in order to enrich searching
region and diversify the population, five related approaches
based on SWAP, INSERT, or INVERSE operators are adopted
to produce neighboring solutionswhich are shown as follows:

(1) performing one SWAP operator to a sequence;
(2) performing two SWAP operators to a sequence;
(3) performing one INSERT operator to a sequence;
(4) performing two INSERT operators to a sequence;
(5) performing the INVERSE operator to a sequence.

(4) Onlooker Bee Phase. In the basic ABC algorithm, an
onlooker bee chooses a food source depending on the
probability value associated with that food source. In other
words, the onlooker bee chooses one of the food sources after
making a comparison among the food sources around the
current position which is similar to “roulette wheel selection”
in genetic algorithm (GA). In this work, we also retain this
approach to make the algorithm converge fast.

(5) Scout Bee Phase. In the basic ABC algorithm, a scout
produces a food source randomly. This will decrease the
search efficacy, since the best food source in the population
often carried better information than others. As a result, in
this paper, the scout produces a food source using several
SWAP, INSERT, and INVERSE operators to the best food
source in the population. In addition, to avoid the algorithm
be trapped into a local optimum, this process should be
repeated several times.

4. Simulation Experiments

In this section, a numerical example derived from an engi-
neering design of a chemical processing system is utilized so
as to help to understand the proposed dynamic intelligent
decision approach firstly. After that, further analysis and
discussions about the effect of task clustering analysis on
scheduling schemes as well as the performance of ABC
algorithm for solving multiproject scheduling problem are
also given.

4.1. Numerical Experiment. To demonstrate the effectiveness
of our proposed approach, we use 20-task binary DSM
matrix derived from Su et al. [20]. In this example, an
engineering design of a chemical processing system has 20
tasks, and detailed task information is listed in Table 1. The
whole design process usually involves several disciplines.
We aggregated these disciplines into four types: systems
engineers (𝑟

1
), software engineers (𝑟

2
), hardware engineers

(𝑟
3
), and supporting engineers (𝑟

4
). Hardware engineers

include chemical engineers as well as electrical engineers and
supporting engineers consist of the disciplines that act as
a supporting role during the design process; for example,
manufacturing, logistics, tests,maintainability, reliability, and
so forth. Assume that the ready-time is 0. The resource
availability 𝑅(𝑟

1
, 𝑟
2
, 𝑟
3
, 𝑟
4
) is set to (7, 6, 7, 5).
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Figure 3: DSMmodel of design process.

Table 1: Task information for an engineering design of a chemical processing system.

Number Description of tasks Resource Duration (day) Predecessor
𝑟
1

𝑟
2

𝑟
3

𝑟
4

1 Operating structure design 3 0 0 0 6 13, 15
2 Vessel design 5 3 3 2 12 7, 9
3 Plant layout/general arrangement 4 2 4 2 5
4 Shipping design 4 2 2 2 8 1, 15
5 Structure lifting design 5 0 0 0 4 1, 7, 9, 12
6 Pressure drop analysis 4 2 2 2 4 8, 15, 17
7 Process engineering 4 3 3 2 3
8 Structural documentation 0 4 2 0 3 3, 4, 5
9 Size valves 2 1 5 3 4 3, 12
10 Wind load design 4 0 0 0 5 1, 2, 8
11 Seismic design 5 0 0 0 9 3, 5, 7, 12
12 Piping design 3 0 0 1 4
13 Process and instrumentation diagram 3 2 0 1 2 2, 7, 12
14 Equipment support 3 0 3 2 2 1, 2, 6, 7, 15
15 Pipe flexibility analysis 4 2 2 2 2 2, 3, 12
16 Design documentation 5 2 2 0 4 1, 2, 3, 5, 10, 18
17 Foundation load design 5 2 4 2 5 4, 9, 13
18 Insulation structural design 2 2 3 3 5 1, 2, 7, 8, 11
19 Structural bill of material (BOM) 3 2 3 4 6 5, 10, 18
20 Assembly design 4 0 0 0 7 4, 9, 12, 14

In the first stage, according to dependency modelling
technology mentioned in Section 2, the DSMmodel is set up,
shown in Figure 3(a), where the empty elements represent no
relationships between two tasks and number “1” represents
input or output information among tasks. For example,
task 1 requires information from tasks 13 and 15 when it
executes. Additionally, task 1 must provide information to
tasks 4, 5, 10, 14, 16, and 18, otherwise they can not be
start. Nevertheless, Figure 3(a) only denotes the ‘existence’
attributes of a dependency between the different tasks. In

order to further reveal their matrix structure, it is necessary
to quantify dependencies among tasks.

Subsequently, using a two-way comparison scheme, we
can transform the binary DSM into the numerical one.
Here, two criterions named task evolution (represented by
EC) and task sensitivity (represented by SC) are adopted to
perform pairwise comparisons, where the former means the
information transfer rate to the element 𝑗 from 𝑖, and the
latter means the effect degree of information change to the
element 𝑖 from element 𝑗. For example, if the criterion for the
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Figure 4: A flow chart of task clustering algorithm.
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comparison matrix is task evolution, the comparison scale 9
for task 4 compared to task 18 indicates task 4 is evolving
much faster than task 18 when they receive information
from task 1. In addition, the comparison scale 1/3 for task
5 comparing to task 4 represents the evolution degree of
task 5 is somewhat slower than that of task 4 when they
receive information from task 1. In doing so, we can obtain
the comparison matrix of evolution shown as follows:

EC (𝑇
1
) 𝑇
13

𝑇
15

𝑇
13

1 3

𝑇
15

1

3
1

[
𝑇
13

𝑇
15

] = [
0.949

0.316
]

𝜆max = 2.

(11a)
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In the same way, if the criterion for the comparison matrix
is task sensitivity, we can get the comparison matrix of
sensitivity shown as follows:

SC (𝑇
1
) 𝑇
4

𝑇
5

𝑇
10

𝑇
14

𝑇
16

𝑇
18

𝑇
4

1 3 5 5 7 9

𝑇
5

1

3
1 3 3 5 7

𝑇
10

1

5

1

3
1 1 3 5

𝑇
14

1

5

1

3
1 1 3 3

𝑇
16

1
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1
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1

3

1

3
1 3

𝑇
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1

9

1

7

1

5
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1

3
1

[
[
[
[
[
[
[

[

𝑇
4

𝑇
5

𝑇
10

𝑇
14

𝑇
16

𝑇
18

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[

[

0.847

0.442

0.204

0.186

0.097

0.056

]
]
]
]
]
]
]

]

𝜆max = 6.25.

(11b)

The detailed computation process including every pair of
tasks compared in DSM are not given due to the length
limitation of this paper, and the final computation result is
shown in Figure 3(b) after normalized treatment mentioned
in Section 2.1.2.

After dependency modeling based on DSM, a cluster-
ing algorithm based on coordination cost mentioned in
Section 2.2 is used. Firstly, initialize the problem, where
every task is taken as an independent group. Then, select
task i randomly and calculate each group’s bid value for it,
respectively, and assign it to the group with the highest bid
value through loop computation until the total coordination
cost is no longer reduced. Finally, update groups and delete
empty ones. When all the tasks have been traversed and
the system arrives to a stable state, this procedure is over.
The detailed task clustering algorithm procedure is shown in
Figure 4.

The final task clustering result is displayed in Figure 5,
and the corresponding changing curve of the coordination
cost with iteration number is shown in Figure 6. We can see
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Table 2: Problem instances generated by ProGen for the testing
problem subset.

Problem subset NOI 𝐽
𝑖

𝑅

MP30 20 30 4
MP60 20 60 4
MP90 20 90 4
MP120 20 120 4
MP150 20 150 4
MP180 20 180 4
MP210 20 210 4
NOI: no. of instances; 𝐽𝑖: no. of tasks of a project; 𝑅: resources each task can
use.

from Figure 5, that the whole design process can be divided
into four blocks, where block 1 contains 3 tasks such as 3,
7, and 12, and all of them can be executed without input
information from others; block 2 consists of tasks 2, 9, 13,
and 15, and they must receive information from block 1;
block 3 includes task 1, 4, 5, 8, 10, 11, 17, and 18, and all
the tasks must depend on information from blocks 1 and
2; block 4 is comprised of tasks 6, 14, 16, 19, and 20, where
tasks 16, 19, and 20 only receive input information from other
tasks but provide nothing to others. Furthermore, the cost
curve in Figure 6 reveals that the coordination cost converges
to a minimum which indicates the whole system has the
minimum complexity. Moreover, according to the clustering
analysis, each block shown in Figure 5 can be defined as
an independent subproject. It means that the original large-
scale project is decomposed into four simple, manageable,
and small subprojects. The reason that the subprojects are
defined is because tasks belonging to the same block have
higher correlation degrees, but ones belonging to different
blocks have lower correlation degrees. In doing so, a suitable
decomposition scheme for a large-scale project is obtained so
as to reduce the difficulty of task planning problem using the
ABC algorithm below in the second stage.

In the second stage, according to the clustering result, the
task planning problem can be transformed into multiproject
scheduling one. Considering the objective function of the
problem is tominimize the delay time of all projects, wemust
define the shortest makespans of all projects in advance, and

critical path method (CPM) is used to obtain their values of
the shortest makespans (i.e., 5, 18, 28, and 13). Moreover, so as
to simplify themathematicmodel, we set all projects that have
the same weight coefficients.That is to say 𝛼

1
= 𝛼
2
= 𝛼
3
= 𝛼
4
.

Subsequently, a discrete ABC algorithm is used to solve this
problemmentioned in Section 3.2, and the related parameters
are set as follows: SN = 10, limit = 20, MEN = 500. The
planning result is shown in Figure 7, and the delay time of
the whole process is 41 (obtained from 3 + 8 + 18 + 12).

We can see from Figure 7, tasks in the same project will
be executed more tightly and hardly be affected by other
tasks from different projects. This is because after clustering
operation, tasks with tight dependencies belong to the same
project. In addition, the task clustering analysis will help to
reduce the search space and further improve the efficiency of
solution in the second stage.

4.2. Analysis and Discussions. In this section, the effect of
task clustering analysis on scheduling schemes as well as
the performance of ABC algorithm for solving multiproject
scheduling problem is discussed, and extensive experiments
to analyze theses have been illustrated. The project test
problems are generated by the project generator ProGen
developed by Kolisch et al. [30] and the number of tasks in
a project is 30, 60, 90, 120, 150, 180, and 210, respectively.
For each problem type, we generated 20 instances. Each task
can use up to four resources. To generate the test instances
the single project problems were randomly selected network
complexity and resource factor, where network complexity
means that the network depends on interdependent relations
among different tasks. Table 2 shows the related information
about projects used for the problem.

4.2.1. The Effect of Task Clustering Analysis on Scheduling
Schemes. In order to analyze the effect of task clustering
analysis on scheduling schemes, two indexes are introduced:
one is the average deviation of project delay time, and
the other is the computation time, where the former is
used to measure robustness of search algorithms and the
latter to compare the complexity of computation. Table 3
shows results obtained on the problem subsets. We can see
from it that after task clustering operation, the computation
complexity of scheduling problems reduces obviously (𝑇

𝑐
≪

𝑇
𝑠
).The reason is that a large-scale project is decomposed into

several simple, manageable, and small sub-projects using a
task clustering approach proposed in this work. In addition,
after task clustering operation, average deviation of project
delay time is also reduced when the project scale is larger. It
means that the task clustering analysis will help to decrease
the search space and further improve efficiency of algorithms
in the second decision stage.

4.2.2. Performance of ABC Algorithm for Solving Multipro-
ject Scheduling Problem. According to task clustering result
obtained in the first decision stage, the ABC algorithm is used
to solve multiproject scheduling problem in the second one.
In order to get the most out of the ABC algorithm, parameter
setting mentioned in Section 3.2 was implemented on a
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Table 3: The effect of task clustering analysis on scheduling schemes.

Problem subset NOI Average deviation of project delay time Computation time (s)
TD
𝑐

TD
𝑠

𝑇
𝑐

𝑇
𝑠

MP30 20 14.3 14.5 0.10 0.22
MP60 20 21.3 23.4 0.53 0.88
MP90 20 29.7 36.9 2.14 3.55
MP120 20 40.2 53.4 3.21 5.71
MP150 20 58.5 81.3 4.35 8.77
MP180 20 82.6 114.8 5.94 12.45
MP210 20 108.7 152.6 7.12 19.88
TD𝑐: average deviation of project delay time through task clustering; TD𝑠: average deviation of project delay time without task clustering operation; 𝑇𝑐:
computation time through task clustering; 𝑇𝑠: computation time without task clustering operation.

Table 4: Comparison of performance obtained by different algorithms.

Problem subset Schedules ABC SA ACO AIS
APD LTM CPU

𝑡
APD LTM CPU

𝑡
APD LTM CPU

𝑡
APD LTM CPU

𝑡

1000 21.1 98.6 0.09 20.1 92.5 0.06 22.4 93.5 0.07 25.6 101.4 0.07
MP30 5000 19.3 95.3 0.23 19.3 91.3 0.19 19.2 89.2 0.18 24.3 97.5 0.21

10000 19.1 89.9 0.67 18.6 91.3 0.55 19 89 0.61 22.1 95.1 0.61
1000 42.1 130.7 0.61 41.9 147.4 0.41 42.1 130.4 0.98 41.9 129.8 0.62

MP60 5000 39.2 125.1 3.9 41.5 140.3 1.79 42.0 124.7 3.7 41.9 127.6 3.9
10000 34.8 122.3 7.9 41.5 138.6 4.5 41.8 124.5 8.8 41.8 127.5 9.5
1000 68.5 254.7 2.3 87.4 253.3 0.9 67.3 287.9 1.2 67 296 0.7

MP90 5000 65.0 250.9 9.5 81.3 252.4 2.76 65.1 277.6 5.1 66.9 275 4.8
10000 62.4 237.6 23.1 75.6 252 6.1 64.8 274.1 10.3 66.9 251.4 11.3
1000 87.1 345.1 3.1 121.6 345 1.2 150.4 387.9 1.5 86.9 340.5 1.34

MP120 5000 84.4 323.1 11.6 119.3 340.1 5.3 144.3 366.4 6.1 86.5 338.1 5.77
10000 81.2 317.8 32.2 115.6 335.7 10.5 140.2 354.2 12.9 86 335.2 14.8
1000 116.9 410.1 4.3 125.4 419.9 2.1 130.7 443.5 2.1 110.4 415.3 2.8

MP150 5000 110.4 397.3 12.9 124.1 415.3 6.9 127.6 430.1 6.8 109.7 405.5 8.3
10000 105.9 392.1 40.5 122.3 413.5 13.7 125.5 427.7 14.9 107.4 401.1 19.3
1000 147.1 508.9 5.9 154.7 520.1 3.2 150.9 519.9 2.9 140.1 519.4 3.6

MP180 5000 135.4 501.4 15.9 149.1 515.4 7.8 144.3 514.3 8.2 138.4 512.2 10.7
10000 129.1 492.1 51.1 147.1 512.5 19.1 141.8 510.5 21.7 134.9 508.5 29.1
1000 180.9 619.5 7.1 191.4 653.1 4.1 199.3 647.9 4.7 189.7 625.1 6.1

MP210 5000 172.5 611.2 19.3 186.6 651.4 11.2 195.1 641.6 10.7 186.9 624.3 15.7
10000 167.1 606.7 67.8 185.1 650.1 23.5 189.8 639.2 24.1 185.1 621.4 58.1

set of produced multiproject problems after task clustering
operation. Table 4 shows results obtained by the various
algorithms on the problem subsets. The proposed algorithm
is compared with other approaches, including simulated
annealing (SA), ant colony optimization (ACO), and artificial
immune system (AIS), in view of the average project delay
(APD), lower total makespan (LTM) of multiproject, and
processing time of CPU (CPU

𝑡
). In this table, the first column

indicates the problem subset. The second column shows the
number of schedules which is used as the stopping criterion.
The third to the fifth columns represent the averages of APD,
LTM, and CPU

𝑡
from various algorithms. From Table 4, it

is seen that out of 7 subsets, the ABC algorithm is superior
to others when the problem scale is larger. The average

project delays and lower total makespan obtained by the four
approaches for all the problems are also compared which
show that our approach is obviously better than AIS and
SA for all the problems but a little worse than ACO when
the problem scale is small. In addition, when the number
of schedules increases, our approach still searches for the
optimum schedule scheme but others are hardly influenced
by it. This is because our approach introduces operations
including scout bee searching process which is helpful to
maintain the diversity of individuals. However, our algorithm
may spend more computation time. There are two reasons
causing this result: one is that five related approaches based
on SWAP, INSERT, or INVERSE operators mentioned in
Section 3.2.2 may occupy more time in order to find out the
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local optimum; the other is that the new individuals generated
by scout bees are introduced to replace the worse ones so as
to open up a new searching field.

5. Conclusions

In this study, we have presented a two-stage intelligent deci-
sion approach to dependency modelling of project tasks in
complex engineering system optimization. Both the depen-
dencies among tasks and sequence of project tasks are clearly
identified. In the first stage, in order to optimize the complex
engineering system, we further investigate task evolution
degree and sensitivity degree based on a two-way comparison
scheme. In addition, we have also introduced DSM model
that systematically quantifies the strength between related
tasks and decomposes large interdependent task groups into
smaller and manageable sub-projects. Subsequently, accord-
ing to decomposition results obtained from the first stage, the
discrete artificial bee colony (ABC) algorithm is developed
for project task planning in the second stage, where DSM has
also adopted to simplify the mathematic model of the task
planning. In doing so, a better sequence of project tasks is
expected because of less communication links and simpler
information flows among tasks in different sub-projects. The
major contributions of the research are as follows: (a) the inte-
grated model of complex engineering system optimization
is developed. This has led to a visible dependency structure
and a simpler task sequence through systematic procedures;
(b) the task dependencies in the complex system are clearly
identified by quantitative measures. It is very important
to offer a great research potential in understanding and
analyzing the implications of connectivity ondifferent aspects
of complex system performance; (c) the decomposition of
a large number of task groups and the planning of projects
tasks lay a sound foundation for engineering optimization. In
addition, each sub-project obtained from decomposition has
been limited to a manageable size so that tasks in the same
sub-project have more communication links. The results
will serve as the task requirements for efficiently scheduling
project tasks.

In this work, we focus on dependency modeling of
project tasks in complex engineering system optimization.
For sound project task management, it is necessary to con-
sider influences from external factors. Due to this reason, our
future research extension will focus on analysing the effects
from customers’ requirements on engineering optimization
process. After that, how to apply this two-stage intelligent
decision approach to other optimization fields also needs
further study.
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