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The truncated singular value decomposition (TSVD) regularization applied in ill-posed problem is studied. Through mathematical
analysis, a new method for truncated parameter selection which is applied in TSVD regularization is proposed. In the new method,
all the local optimal truncated parameters are selected first by taking into account the interval estimation of the observation noises;
then the optimal truncated parameter is selected from the local optimal ones. While comparing the new method with the traditional
generalized cross-validation (GCV) and L curve methods, a random ill-posed matrices simulation approach is developed in order
to make the comparison as statistically meaningful as possible. Simulation experiments have shown that the solutions applied with
the new method have the smallest mean square errors, and the computational cost of the new algorithm is the least.

1. Introduction

Ill-posed problem is widespread in the field of geophysical
survey, such as GNSS rapid positioning, precise orbit solution
of spacecraft, and downward continuation of airborne gravity
[1-7]. The least square estimation is not stable in the ill-posed
problem and other approaches have to be utilized. Tikhonov
[8] proposed the Tikhonov regularization theory, Hanke [9]
utilized iteration while Walker and Birch [10] and Hoerl and
Kennard [11] applied ridge regression method. Han¢kowiak
[12] and Lin et al. [13] also studied this problem. Among those
approaches, methods based on singular value decomposition
(SVD) have drawn extensive attention, thanks to the numer-
ical stability of their solutions [7]. On that basis, Wiggins [14]
and Xu [15] intensively studied the truncated singular value
decomposition (TSVD) regularization method.

The standard form of the observation equation is (non-
standard form can be transformed to a standard one) as
follows:

L=AX+g, (1)

where A is the m x n coeflicient matrix, m > n, rank(A) =
n, X is the n x 1 parameter vector, L is the m x 1 observation

vector, ¢ is the m x 1 residual vector, E(¢) = 0, and E(ec") =
0§I .
The condition number of normal matrix (N = AT A) is

generally used as the measurement of the ill-posed severity
as follows:

o
cond (N) = = 2)
O-Vl

where 0, and o, are the maximum and minimum singular
values of A, respectively.

According to application experiences, if Ig(cond) > 4, the
system is considered as ill-posed [16].

In ill-posed problem, some singular values of the coef-
ficient matrix approximate to 0, the least square estimation
will enormously amplify the observation noises and degrade
the precision. In TSVD regularization, items containing these
small singular values are discarded to maintain the stability
of the solution. Setting a small positive number # as the
threshold value, items containing singular values smaller than
n are discarded; thus, the amplification to the observation



noises is restrained. If there are k singular values bigger than
1, the TSVD solution is given as

k T

- ViU,
Xy = ZTL. 3)

i=1 i

Normally, the mean square error (MSE) is used to eval-
uate the quality of ill-posed problem solution. The key point
of the TSVD is how to select a proper truncated parameter
to get the smallest mean square error of the solution. Many
scholars have extensively studied this problem. Golub et al.
[17] proposed GCV method, Hansen [18, 19] and Hansen and
O’Leary [20] made use of the property of the L curve to select
truncated parameter, and these methods will be introduced in
Section 2. A new truncated parameter selecting method will
be proposed in Section 3. In Section 4, a random ill-posed
matrices simulation approach for simulation experiment will
be developed, and the performances of GCV; L curve, and the
new methods will be compared Section 2.

2. Traditional Truncated Parameter
Selecting Method

2.1. GCV Method. Based on statistical point of view, Golub
et al. [17] proposed GCV method for truncated parameter
selection. In linear system AX = L, assuming that A” is the
matrix mapping observation vector L to regularized solution
X;, AL = X,. GCV method is equal to selecting a truncated
parameter k to minimize the GCV function, which is defined
as

|- aa) ],
[trace (I - AA*)]>

GCV (k) = (4)

where “trace(-)” denotes the trace of a matrix.

The disadvantage of GCV method is that the GCV
function converges very slowly in some cases. It may lead
to the GCV function minimization while k is equal to #, in
which situation, the truncated parameter cannot be selected,
and the GCV method fails.

2.2. L Curve Method. Hansen [18, 19] extensively stud-
ied the application of L curve method in regularization.
With the variation of k, the discreet points (ln(||)A(k||2) and
In(||IL - AXkIIZ)) (k = 1,2...,n) can be fitted with a cubic
spline curve w = Q(p). He defined the maximum curvature
point of this curve by (5) [18] as follows:

lel _ I/w/
max = PO P “

(o) + ()]

where p and w are the independent and dependent variables
of the cubic spline function, respectively.

The original discreet point which lies closest to the
maximum curvature point from the left side is selected. Its
truncated serial number k is the truncated parameter asked
for.
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Further descriptions of the L curve method can be seen
in Hansen [18, 19]. Hansen [19] indicated that the truncated
parameter selected by the L curve method is not the optimum
parameter but the asymptotically optimum one.

3. A New Truncated Parameter
Selecting Method

In this section, we develop a new approach to selecting
the truncated parameter. We focus on the MSE of the
solution, making some proper estimation, and finally derive
the conditions that the optimal truncated parameter should
meet. In this section and the subsequent sections, k is called
the optimal value if MSE(X,) is the smallest in all the
MSE()?i) (i = 1,2...,n); k is called the local optimal value
if MSE(X) is the smallest just in MSE(X,_,), MSE(X,), and
MSE(X,,,)- Before the optimal value selection, we first select
all the local optimal values as the candidates.

3.1. Local Optimal Truncated Parameter Selection. The MSE
of TSVD solution is

MSE (X,) = E (X, - x)" (X, - x)]. 6)

Taking the singular values decomposition into considera-
tion, the least square solution of the observation equation can
be written as

XLS—Z

According to (1) and (3), we rewrite the TSVD solution as

k k T

—_ V:u.

Xe=Yvy X+) te (8)
& ~ 0
i=1 i=1 1

Inserting (8) into (6) yields

L X+Z o (7)

i VITXXT‘V

i=k+1

k 2
MSE (X,) = Z—‘;. ©)
=1 1

As mentioned above, if k is the local optimal value, the
following inequalities are satisfied:

MSE (X, ) - MSE (X, ;) = U% Vi XX v <0,
, (10)
MSE (X, ) - MSE(X,) = = — vf XX v, > 0,
k+1
Denoting Y = VTX = Yoy, - .,y,,]T, inequalities (10)

can be rewritten as

2 22
Oy < 0 Yk a

2 2 2
0o > Ok+1Vk+1-
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As o) and Y are unknown, we should estimate them first.
Premultiplying matrix V7 to both sides of (7), we obtain a
new vector denoted as Y7 ¢ as follows:

Ty T M I
g |mlwl ul (12)
LS 01) 0_2:-”) O’n >
2.2 T1)?
0; Virg = (ui L) , (13)
where 74 is the ith element of Y.
Inserting (1) into (13) yields
T2 T T 2(. T2 2, 2.2
E[(ui L) ] =uiE(s£ )u,-+oi(viX) =0, +0;);.
(14)

Equation (14) is an estimator of y;; taking (14) into
account, inequalities (11) can be approximately written as

2
203 < (uZL) N
(15)
2 T 2
20, > (uk+1L) .
Then, we estimate ag ; an unbiased estimator of ag can be

obtained from least-square estimation as

L, (AX-1) (AXs-1)

Oors = — .

(16)

We have to treat G, ¢ cautiously, because it is just an
approximate value of o¢. Replacing o] with 5,y may cause
some misjudgments. For example, in the situation shown in
Figure 1, k is the local optimal value since f(k+1) < 03 < f(k)
(denoting f(i) = (u,ATL)2 - 03 ). But, if we replace (ré with 6§LS’
the opposite judgment will be made since Go;5 < f(k +1) <
o).

In order to overcome this shortcoming, the interval esti-
mation of o; is used instead of G5, in this algorithm.
Assuming that [t,,1,] is the confidence interval of o under
the confidence level 1 — &, we replace o with ¢, and t, in the
first and second inequality in inequalities (15), respectively. By
this means, a fault-tolerance interval between the judgment
thresholds is given. As seen in Figure 1, by properly selecting
t, and t,, thereare t, < f(k+ 1) < f(k) < t,, and so, k is
judged as the local optimal value.

To get a proper interval estimation of o7, analysis goes as
follows.

The estimation of the observation noises is

£=[6,5....5,] = AX;s- L, (17)

where §; ~ N(0, 0(2, ) (note that among the m elements, only
m — n of them are independent).

Thus, according to the definition of y* distribution,
> Eiz /aé ~ Xz(m—n). Since [t;,,] is the confidence interval
of o; under the confidence level 1 — «, we yield

Plty<op <t} =1-a (18)

Considering the X2 distribution, (18) can be transformed
as follows:

T~ T~
p{z Xt_}l (19)

Selecting P{)(2 < §T§/t2} = P{)(2 > ETE/tl} = /2 yields

. G
1~ Y,
Xi-ap2 (M = 1)
(20)
. G
2 X;/Z (m _ }’l) >

Equation (20) is the estimator of ¢, and t,, the final local
optimal truncated parameter selecting inequalities reads as
follows:

28TE A2
2 _ < (”kL) >
Xi—a/2 (m—n)
’ (21)
2:‘3 g T 2
—_ > (u., L) .
Xi/z (m—n) ( e )

There is an undetermined parameter in inequalities (21):
the confidence level is 1 — «. This parameter adjusts the
size of the fault-tolerance interval. Enlarging « will decrease
the fault-tolerance interval and the risk of leaking local
optimal value increases. While decreasing « will increase the
fault-tolerance interval, it will cause the judgment efficiency
to decline. In order to balance the fault-tolerance and the
judgment efficiency of inequalities (21), we first set o =
0.5 in this algorithm. If no truncated parameter matches
inequalities (21), the value of « will be decreased until one
or more truncated parameters can match it.

3.2. Optimal Truncated Parameter Selection. If there is only
one local optimal value, we regard it as the optimal value.
If not, assuming that there are r local optimal values
ki, k, ..., k,, It is essential to select the optimal value from
them. Analysis goes as follows.

The mean square error function can be transformed as

MSE (X;) = tr (cov (X)) + [E(X) - X[, @2

where “cov(-)” denotes the covariance matrix. Inserting (1)
and (3) into (22), the first and second items of which can be
simplified as follows:

tr(cov (%)) = B (%) + (D) E(R) = o2y .

k
| - x| = ’ Yyx - X
i=1

2 i=k+1
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FIGURE 1: Scheme of 0(2, estimation.

Assuming that k, and k, are both local optimal values,
k, < kq, MSE()?kP) minus MSE(X\kq) is denoted as A(kp, kq),
we derive

kq kq
Akpk)= Y (X0 -0 Y e

i=k,+1

According to inequalities (23), to determine the sign of
ks (XTvi)2 and

A(k,, k;), we take proper estimations of Zi:kpﬂ

o :.ka ol /o} simultaneously.

If we regard X as an unknown random vector, the ele-
ments of which are independent and have the same statistics
weight. That is, E(XX") = o>I. Then, it yields

kq

(XTv,)" = 02 (k,~k,). (25)

i=k,+1

As k, and k; are both local optimal values, the regular-
ization solutions X k, and X k, are much more stable than the
least square solution. We estimate o> by ka and o} by its

unbiased estimator G, , which yields

)?{Pikp (k,—k,)

A(kp k) = (26)

k
~2 q 2
n=0qs Zi:kp+1 1/0;

According to (26), if X[ X, (k, = k)/n = Gous X%
1/o7 < 0, we regard k, as the better truncated parameter
and vice versa. After comparing all the local optimal values
ky,ky, ..., k, utilizing (26), we can get the minimized MSE
of all the solutions, and the optimal truncated parameter is
determined.

3.3. Algorithm Flow. In Sections 3.1 and 3.2, we have dis-
cussed the conditions that the optimal truncated parameter
should meet. And then, the equations to select the local
optimal and the optimal truncated parameter are deduced
in detail. Although the derivation process is somehow com-
plicated and trivial, the execution of this algorithm is quite
simple. In this subsection, we summarize the steps of the
algorithm flow to make it clear and more readable.

Begin

Step 1. Set the confidence level of interval estimation
1-a=0.5.

Step 2. Calculate the two thresholds ¢, and t, using
(20).

Step 3. For each truncated parameters k from1ton—1,
calculate inequalities (21). If the inequalities are satis-
fied, select the corresponding truncated parameter as
a local optimal truncated parameter.

Step 4. If no truncated parameter matches inequalities
(21), set « = o — 0.1, return to Step 2;

else, skip this step.

Step 5. Estimate the variance of observation noise o
by (16).

Step 6. If there is only one local optimal parameter, it
is the optimal truncated parameter simultaneously;

else, make pairwise comparisons of the local optimal
truncated parameters according to (26), until getting
the one minimizing the MSE as the optimal truncated
parameter.

End

4. Random Simulation Experiment

4.1. The Approach of Random Simulation. Although we can
use a particular coeflicient matrix A to compare different
truncated parameter selecting methods, such comparisons
are of limited value [21]. Because the doubt to the conclusions
drawn from them will be threefold: (i) whether the conclu-
sions are still valid if the dimensions of the coefficient matrix
have changed; (ii) whether the conclusions are still valid if
the condition number and singular values distribution of the
coeflicient matrix have changed; (iii) whether the conclusions
are valid if they are applied to another coeflicient matrix
which has the same dimensions and condition number with
A.

In order to make the comparison of the three methods
as persuasive as possible, we have to simulate the coefficient
matrices by taking into account the three issues mentioned
above. According to (2), A = UAVT; thus, the simulation
problem has turned into how to design the matrices U, A, and
V and their dimensions.

Theoretically, the dimensions 1 and # can be set any arbi-
trary positive integer which satisfy: m > n > 1. Considering
the computing burden, we set 5 < n < 25and n < m < 40,
each of them is randomly generated in their interval. As it
is mentioned in Section 1, a coeflicient matrix is regarded as
ill-posed if Ig(cond) > 4. But the condition number cannot
be infinite; otherwise, the ill-posed matrix will be turned
into rank defect matrix. In the simulation, the mathematical
expectation of lg(cond) is uniformly distributed over [4,7].
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FIGURE 2: Dimensions and condition numbers of the 100 coefficient matrices randomly generated, respectively.

Furthermore, about the singular values, we assume that the
mathematical expectation of the sum of the logarithms of
all the singular values is 0. Finally, the equations set can be
written as follows:

E (lgaf - lgoﬁ) =,

lgo} —1go’,, =d +&,

i+1

E <ilgoi2> =0,
i=1

where the random variables ¥ and & conform to uniform
distribution, y ~ Ry, d = y/(n - 1) is also a random
Variable, E ~ R[—d,d]'

(27)

Utilizing the Gram-Schmidt method, unitary matrix U
(or V) can be derived from an m-dimension (or n-dimension)
random full rank matrix. For instance, assume that B is an
m-dimension random full rank matrix and b, b,,...,b,, are
column vectors of B; thus, the column vectors of U are as
follows:

b
Ak
(28)
b~ Yiy (bow)
U, = k Z1:1 (bkul)ul (k=2)-~-’m)'

|bk - Zf;l (b ;) ”i| ,

To make the simulation meaningful, we sample 100
random generated coefficient matrices for our simulation
experiment. The dimensions and condition numbers of these
matrices are shown in Figures 2(a) and 2(b), respectively.

4.2. Comparisons of Truncated Parameter Selecting Methods.
In this section, we will compare the performances of TSVD
solutions applied with the GCV, L curve, and the new
methods proposed in this paper. The criterion is the mean
square errors of the solutions. In the simulation, we set X as
n-dimension vector, all elements of which are 1. The elements
of residual vector ¢ are Gaussian white noises, generated
by randomizer, ¢ ~ N(0, ogl ). To enrich our comparison,
two observation noise levels are used in our simulation, the
variances of which are L'L/(100m) and LTL/(1000m). In
consideration of the randomness of ¢, objective comparisons
cannot be obtained if we only do the experiment for once.
In our simulation, 1000 times independent repeated experi-
ments have been done for each coefficient matrix and each
observation level. The mean square errors which are used
in our comparisons are the mean value of those in the 1000
experiments.

(i) Results Comparison between GCV and the New Methods.
The comparisons between GCV and the new methods under
the observation noise levels ag = LTL/(1000m) and og =
LTL/(100m) are shown in Figures 3(a) and 3(b), respectively.
In order to gain further details of the comparisons, we draw
the D-value curves of their mean square errors. The D-
value curves of Figures 3(a) and 3(b) are shown in Figures
3(c) and 3(d), respectively; the negative value means that
the new method has smaller mean square errors. Since
the GCV method may fail in some cases, the solutions
shown in Figures 3(a) to 3(d) do not contain those failure
cases.

Seen in Figures 3(a) and 3(b), the solid lines are always
beneath the dotted lines. In Figures 3(c) and 3(d), most
values are negative. That means that the solutions of TSVD



Mean square error

Example index

-.- GCV method
—— New method

(a)

D-value of MSE

72‘5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Example index

(c)

Mathematical Problems in Engineering

10 T T T T T T T T T

Mean square error

Example index

-.- GCV method
—— New method

D-value of MSE

-7 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90

Example index

(d)

100

FIGURE 3: Results comparison between GCV and the new methods in two observation noise levels.

regularization applied with the new method have smaller
mean square errors.

(ii) Results Comparison between L Curve and the New
Methods. Similar to previous comparisons, the comparisons
between L curve and the new methods under two observation
noise levels are shown in Figures 4(a) and 4(b), respectively.
The D-value curves of Figures 4(a) and 4(b) are shown in
Figures 4(c) and 4(d), respectively; the negative value means
that the new method has smaller mean square errors.

As seen in Figures 4(a) and 4(b), the solid lines are also
always beneath the dotted lines; and in Figures 4(c) and 4(d),
most values are negative. So we can verdict that the new
method has a better performance in truncated parameter
selectionthan L curve method.

(iii) Time Consuming Comparisons. Besides the quality of
results, computational cost is another important aspect to
evaluate the effectiveness of an algorithm. In the simulations,
we record the time consuming of the algorithms for each
coefficient matrix. The average time consuming of these
three algorithms are shown in Figure 5(a). (Note that these
time consuming values are the average values of 1000 times
independent repeated experiments.) Figure 5(b) has shown
the time consuming of the new algorithm under two different
noise levels. The observation noise levels cré = LTL/(1000m)
and ag = LTL/(100m) are, respectively, labeled “Noise level 1”
and “Noise level 2” in Figure 5(b).

From Figures 5(a) and 5(b), we can see that the compu-
tational costs of these algorithms are all small. Nevertheless,
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FIGURE 4: Results comparison between L curve and the new methods in two observation noise levels.

the cost of the new method is obviously smaller than that of
the other two by dozens of times. With the increasing of the
matrices’ dimension or the count of times, this advantage will
be more and more obvious. Another conclusion we can get
from Figure 5(b) is that the observation noises only have a
little influences with the computational costs.

5. Conclusions

A new truncated parameter selecting method is proposed in
this paper. Focusing on how to decrease the MSE of the solu-
tion, we divide the truncated parameter selection into two

parts: local optimal and optimal truncated parameter selec-
tion. Detailed analyses are made and finally the equations to
select the local optimal and the optimal truncated parameter
are obtained. Although the derivation of the new algorithm
is somehow trivial, its execution is quite simple and efficient.

The key point of local optimal truncated parameter selec-
tion is the estimation of the observation noises. To overcome
the inaccuracy of point estimation, we apply the interval
estimation with the confidence level 1 — «. The parameter
« balances the fault-tolerance and the judgment efficiency
of local truncated parameter selection. In this algorithm, «
is firstly set as 0.5, it can adjust automatically according to the
situation of local truncated parameter selection.
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The selection of optimal truncated parameter is based
on the local optimal truncated parameters. We regard the
parameter vector as a random variant vector, making use
of the stability of its regularization solutions, and finally
derive the equations of optimal truncated parameter selec-
tion.

A random ill-posed matrices simulation approach is
developed and a great deal of experiments is made in
Section 4. The results have shown that the solutions applied
with the new method have the smallest mean square errors.
Meanwhile, the computational cost of the new method is the
least of the three.
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