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Polyaniline (Pani) and polypyrrole (Ppy) half hollow spheres with different shell thicknesses were successfully synthesized by three
steps process using polystyrene (PS) as the core. The PS core was synthesized by emulsion polymerization. Aniline and pyrrole
monomers were polymerized on the surface of the PS core. The shells of Pani and Ppy were fabricated by adding different amounts
of aniline and pyrrole monomers. PS cores were dissolved and removed from the core shell structure by solvent extraction. The
thicknesses of the Pani and Ppy half hollow spheres were observed by FE-SEM and FE-TEM. The chemical structures of the Pani
and Ppy half hollow spheres were characterized by FT-IR spectroscopy and UV-Vis spectroscopy. The shell thicknesses of the Pani
half hollow spheres were 30.2, 38.0, 42.2, 48.2, and 52.4 nm, while the shell thicknesses of the Ppy half hollow spheres were 16.0,
22.0, 27.0, and 34.0 nm. The shell thicknesses of Pani and Ppy half hollow spheres linearly increased as the amount of the monomer
increased. Therefore, the shell thickness of the Pani and Ppy half hollow spheres can be controlled in these ranges.

1. Introduction

Conducting polymers have recently received much attention
due to their long conjugation lengths, metallic conductivity,
and their promise for applications in molecular wires, nano-
electronics, optoelectronic devices, and biomedical devices
[1–3]. Among the conjugated conducting polymers, Pani
and Ppy have drawn the most attention due to their
superior electroactivity, good electrical conductivity, and
chemical stability. Owing to their physical, chemical, and
electrochemical properties, Pani and Ppy have been applied
in many different fields including sensors, electronics, semi-
transistors, flat-panel displays, cable shielding, ion-selective
membranes, electrocatalysis, and as the cathode material in
rechargeable batteries [4–6].

Pani and Ppy are known as an inherent electrically
conductive polymer due to the conjugation of the single
and double bonds alternating within the macromolecular
architecture. The extra electrons of a double bond in a

conjugated system are free to wander or move through the
polymer chain, which induces electrical conductivity [7–
10]. The conductivity of Pani and Ppy can be significantly
improved by doping with oxidizing agents. During the
oxidation process, an adequate amount of anions from the
solutions with HCl and FeCl3·6H2O is usually incorporated
to compensate the electrogenerated positive charges (pola-
ronic or bipolaronic species) in Scheme 1. The electrical
conductivity of Pani and Ppy can be effectively increased to
the level of a few tenths of S/cm through p-doping [11–13].

Recently, there has been immense interest in the fabri-
cation of core-shell particles with unique and tailored prop-
erties for various applications in material sciences [14–16].
Among the core-shell particles, inorganic coated polymer
(core-shell) capsules and hollow spheres have increasingly
attracted interest because of their potential applications in
catalysis, controlled delivery, artificial cells, light fillers, low
dielectric constant materials, acoustic insulation, the paint
industry, and photonic crystals.



2 Journal of Nanomaterials

The latex sphere approach uses polystyrene spheres as
a template, assisted by a template pretreatment process
or layer-by-layer technique [14, 15]. However, the hollow
spheres that are obtained have smooth surfaces. Recently,
Wan et al. developed an “emulsion template” approach to
prepare hollow Pani spheres in an aqueous media using
spherical micelles composed of a dopant and monomer as
a template [16, 17]. Otherwise, template spheres have been
prepared by simple sulfonation of PS spheres or have been
purchased for use. Pani and Ppy were polymerized by an
electrochemical method. Moreover, the sizes of Pani and
Ppy hollow spheres are generally widely dispersed, and the
control of the morphology of Pani and Ppy is difficult. The
PS cores are then removed by solvents, which are usually
expensive and toxic organic solvents such as DMF, THF,
chloroform, and toluene [15, 18–20].

In most of paper, hollow sphere structures were format-
ted by the layer-by-layer method. But in this paper, layer-
by-layer method was partly changed for surface modification
of PS. This method was progressed with three steps. The PS
templates were polymerized by micelle of anionic surfactant
for using core. The surface of PS was directly modified by
anion surfactant and formatted negative charge. The Pani
and Ppy were evenly coated on surface-modified PS because
doped Pani and Ppy have positive charge, respectively. And
then, the PS cores were dissolved using organic solvent to
produce Pani hollow sphere. This method is described in
Scheme 1. We report an approach to make PS templates
with the same size by polymerization using a chemical
method. We prepared Pani and Ppy with a half hollow sphere
structure and controlled the shell thickness. Since Pani and
Ppy are well viscously aggregated, the thickness control of
Pani and Ppy with a core-shell structure is not easy. Thus, we
aimed to control the shell thickness in the core-shell or half
hollow sphere structure. A specific amount of monomer was
added to control the shell thickness of Pani and Ppy in the
core-shell or half hollow sphere structure. We demonstrated
the ability to obtain a desired shell thickness of Pani and Ppy
half hollow spheres.

2. Experimental

Styrene (>99%, Aldrich), aniline (>99.5%, Aldrich), and
pyrrole (98%, Aldrich) monomers were purified by passing
through aluminum oxide (∼150 mesh, 58 Å) and dis-
tillation before being stored in a refrigerator. Potassium
peroxodisulfate (K2S2O8, KPS, 99%), ammonium persul-
fate ((NH4)2S2O8, APS, 98%) as initiator, dodecyl sulfate,
sodium dodecyl sulfate (C12H25O4Sna, SDS, 99%) as sur-
factant, divinylbenzene (DVB, 55% mixture of isomers) as
a cross-linking agent, hydrochloric acid (HCl, 37%), and
iron(III) chloride hexahydrate (FeCl3·6H2O, 97%) were used
as received from Aldrich. Acetone was used as received from
SK Chemical.

The PS was synthesized by emulsion polymerization. The
styrene was refined by Al2O3 to remove the polymerization
inhibitors. The 20 g (0.2 mol) of styrene monomer and 0.04 g
(1.4× 10−4 mol) of SDS were dispersed in 180 g of deionized

water, and, then, 0.2 g (7.3 × 10−4 mol) of KPS was added
under constant stirring and a N2 atmosphere at 80◦C for 4 h.

The 80 mL of the PS templates were diluted in 320 mL
of deionized water to disperse the aniline monomer on the
surface of the PS templates. Then, 1.2 mL (1.3 × 10−2 mol)
of aniline and 0.12 mL (4.6 × 10−4 mol) of DVB were added
into the PS emulsion and dispersed for 30 min in order to
arrange the aniline monomer on the surfaces of the PS cores
and to improve the stability of the resulting Pani shell. 1 M
HCl and APS were added to the solution mixture, and the
polymerization of Pani proceeded at room temperature for
24 h (aniline : APS = 1 : 1 (mol)). The thickness of the Pani
shell was adjusted by varying the amount of added aniline
monomer among volumes of 1.2, 2.4, 3.6, 4.8, and 6.0 mL,
while 0.12, 0.24, 0.36, 0.48, and 0.60 mL of DVB was added,
respectively. Therefore, the aniline monomer was added at
ratios of 1, 2, 3, 4, and 5 times the base volume of 1.2 mL in
the different experiments. Green PS/Pani composite spheres
with a core-shell structure were produced and purified by
centrifugation and dried in a vacuum oven at 60◦C.

PS/Ppy with a core-shell structure was prepared similarly
to the PS/Pani with a core-shell structure. 0.6 mL (8.47 ×
10−3 mol) of pyrrole and 0.06 mL (2.3 × 10−4 mol) of DVB
were added into the PS emulsion and dispersed for 30 min.
Then, 4.5 g (1.6 × 10−2 mol) of FeCl3·6H2O was dispersed
in 25 mL of deionized water. The FeCl3·6H2O solution and
1.97 g (8.5 × 10−3 mol) of APS were added to the solution
mixture, and the polymerization of Ppy proceeded at room
temperature for 24 h (pyrrole : APS = 1 : 1 (mol)). The
thickness of the Ppy shell was varied by adjusting the amount
of added pyrrole monomer among volumes of 0.6, 1.2, 1.8,
and 2.4 mL, while 0.06, 0.12, 0.18, and 0.24 mL of DVB was
added, respectively. Therefore, the pyrrole monomer was
added at ratios of 1, 2, 3, and 4 times the base volume of
0.6 mL. Black PS/Ppy composite spheres were produced and
purified by centrifugation and dried in a vacuum oven at
60◦C.

To prepare the Pani and Ppy half hollow spheres, excess
acetone was added to the dried PS/Pani and PS/Ppy core
shells with different thicknesses at room temperature. The
PS cores were dissolved in acetone to produce Pani and Ppy
half hollow spheres over 48 h. The Pani and Ppy half hollow
spheres were washed several times with deionized water to
remove the initiator, unreacted monomer, and oligomer.
Finally, Pani and Ppy half hollow spheres with different
thicknesses were dried in a vacuum oven at 60◦C. The full
preparation processes of the Pani and Ppy half hollow spheres
are schematically illustrated in Scheme 1.

The Pani and Ppy core shell and half hollow spheres
with different shell thicknesses were analyzed by Fourier
transform infrared spectroscopy (FT-IR) recorded on Varian
2000 in the range from 400 to 3,250 cm−1. We used the
pellet type using KBr powder for measuring. And the
optical properties of prepared samples characterized through
ultraviolet visible spectroscopy (UV-Vis, Varian Karry) in the
range of 250–900 nm. The NMP (N-methyl pyrrolidinone)
was used as solvent for Pani. The surface morphologies and
shell thicknesses were observed by field emission scanning
electron microscopy (FE-SEM, Zeiss Supra-40) with an
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Scheme 1: The oxidation of aniline and pyrrole with ammonium persulfate in dopant solution for doping and dedoping.
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accelerating voltage of 15 kV and field emission transmission
electron microscopy (FE-TEM, JEM 2100F, JEOL operated at
200 kV).

3. Results and Discussion

The FT-IR spectra of the overall process materials are shown
in Figure 1. Figure 1(a) shows the FT-IR spectra of PS,
bulk Pani, and Pani half hollow spheres. The characteristic
absorption bands due to the PS component are at around
1496, 1449, 754, and 696 cm−1. The bands at 1,496 and
1,449 cm−1 are indicative of the C=C ring stretching and
C–H stretching of PS, respectively [21]. The peaks of C=N
and C=C stretching of quinoid and benzenoid rings are
specific peaks of the bulk Pani. Similar FT-IR spectra to
those shown in Figure 1(a) were observed for the bulk Pani
and Pani half hollow spheres. The Pani half hollow spheres
exhibited peaks at 1,580, 1,494, 1,302, 1,142, and 692 cm−1.
The peaks at 1,580 and 1,494 cm−1 indicated the C=N and
C=C stretching mode of the quinoid and benzenoid rings
of the Pani half hollow spheres, respectively. The peaks of
at 1,302 and 1,142 cm−1 corresponded to C-N stretching

(–N-benzenoid-N–) and C=N stretching (–N=quinoid=N–),
respectively [22].

Figure 1(b) shows the FT-IR spectra of PS, bulk Ppy,
and Ppy half hollow spheres with different thicknesses.
Similar FT-IR spectra were observed for the bulk Ppy and
Ppy half hollow spheres. The Ppy half hollow spheres shown
in Figure 1(b) demonstrated peaks at 1,710, 1,157, 1,449,
1,371, 1,192, 1,046, 978, 753, and 698 cm−1. The peak
corresponding to oxygen dopant (FeCl3·6H2O) occurred
at 1,710 cm−1, and the two peaks of 1,449 and 1,192 cm−1

corresponded to the C–N stretching. The peak observed
at 1,557 cm−1 corresponded to the C–C stretching peak
observed from the pyrrole ring. The peaks at 1,371 and
1,046 cm−1 correspond to the =C–H bond. The 918 cm−1

peak indicated the C–H bending. The regions of the C–H
out-of-plane deformation vibration of the ring and the
C–C out-of-plane ring deformation are indicated at 753
and 698 cm−1, respectively [23]. However, the characteristic
absorption peaks of PS still existed in Pani and Ppy half
hollow spheres at 760–700 cm−1. Therefore, we could guess
that PS still remained in Pani and Ppy half hollow spheres.

Figures 2(a) and 2(b) show the UV-Vis spectra of the
Pani half hollow spheres and Ppy half hollow spheres,
respectively. The Pani half hollow spheres in Figure 2(a) show
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Figure 1: FT-IR spectra of (a) Pani half hollow spheres and (b) Ppy half hollow spheres with different thicknesses.
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Figure 2: UV-Vis spectra of (a) Pani half hollow spheres produced with (i) 1.2, (ii) 3.6, and (iii) 6.0 mL of aniline and (b) Ppy half hollow
spheres made with (i) 0.6, (ii) 1.2, (iii) 1.8, and (iv) 2.4 mL of pyrrole.

two characteristic absorption broad band peaks at around
330 and 620 nm. The peaks at 329, 335, and 338 nm can
be ascribed to the π-π∗ transition in the benzenoid rings,
and the peaks at 635, 623, and 613 nm can be attributed to
the polaron-polaron transition. As the amount of the aniline
monomer was increased, the π-π∗ transition red shifted and
the polaron-polaron transition blue shifted.

The π-π∗ transitions shown in Figure 2(a) were red
shifted to longer wavelengths. Thus, the thicknesses of the
Pani half hollow spheres were larger, and the π-π∗ transition
peaks appeared at 329, 335, and 338 nm. The red-shift is
indicative of small changes of the chain geometry interring
the torsion angle along the Pani backbone leading to mixing
of the π and n orbital of the Pani chain and dopant. The red
shifted transition of the π-π∗ band gap indicates a reduction
of the band gap, allowing the phenylene rings to adopt a more
twisted geometry. As the thickness of the Pani hollow spheres
increased, the polaron-polaron peaks were shifted to shorter
wavelengths. The position of the shifted polaron-polaron

peaks varied depending on the experimental conditions
employed. The blue shifting was normally accompanied by
the appearance and growth of a shoulder on the short
wavelength side of the absorption band in the UV-Vis
spectra (Figure 2(a)). The absorption of the polaron-polaron
transition was observed at 635, 623, and 613 nm. This blue
shift was dependent on the thickness. It has been proposed
that direct interaction of planar benzenoid and quinoid
chromophore groups rather than oxidation of the polymer
chains is responsible for the blue-shifted exciton transition
in Pani half hollow spheres with different thicknesses.

The Ppy half hollow spheres in Figure 2(b) show absorp-
tion peaks at 264, 269, 265, and 264 nm can be ascribed to
the π-π∗ transition in the aromatic ring, and the peaks at
369, 371, 425, and 432 nm can be attributed to the π-π∗

transition.
The structures, morphologies, and diameter of particles

were investigated by FE-SEM and FE-TEM. The FE-SEM
images in Figure 3 show the successful formation of uniform
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Figure 3: FE-SEM images of the PS/Pani core shell produced with (a) 1.2, (b) 2.4, (c) 3.6, (d) 4.8, and (e) 6.0 mL of aniline and the PS/Ppy
core shell made with (f) 0.6, (g) 1.2, (h) 1.8, and (i) 2.4 mL of pyrrole.

Pani shells on PS cores (Figures 3(a), 3(b), 3(c), 3(d), and
3(e)) and Ppy shells on PS cores (Figures 3(f), 3(g), 3(h),
and 3(i)). In the experiments, we used PS cores with the
same diameter. These images reveal that the PS/Pani and
PS/Ppy core shells have a rough surface. The diameters of
the PS/Pani core shell in Figures 3(a), 3(b), 3(c), 3(d), and
3(e) were measured to be 380.6, 400.1, 410.3, 419.0, and
431.8 nm, respectively. The diameters of the PS/Ppy core shell

in Figures 3(f), 3(g), 3(h), and 3(i) were 295.6, 305.3, 313.5,
and 322.5 nm, respectively. As the amount of the monomer
increased, the shell diameters of PS/Pani and PS/Ppy also
increased.

The structure and thickness of the Pani half hollow
spheres were investigated by FE-SEM and FE-TEM. FE-SEM
and FE-TEM images of the Pani half hollow spheres and
Ppy half hollow spheres after removal of the PS core are
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Figure 4: FE-SEM and FE-TEM images of Pani half hollow spheres made with (a, f) 1.2, (b, g) 2.4, (c, h) 3.6, (d, i) 4.8, and (e, j) 6.0 mL of
aniline.

shown in Figures 4 and 5, respectively. Therefore, the half
hollow spheres had vacancies, as observed in the FE-TEM
image. When the PS was treated with acetone, the acetone
permeated the shell (Pani or Ppy) and melted the PS. Next,
the melted PS got out of the shell. At this time, the melted

PS got out from the part of weak or thin shell. After enough
time had passed, the entrance was enlarged.

The thickness of the half hollow spheres was investigated
by FE-SEM. The FE-SEM images of the Pani half hollow
spheres (Figures 4(a), 4(b), 4(c), 4(d), and 4(e)) and Ppy



Journal of Nanomaterials 7

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

SEM TEM

Figure 5: FE-SEM and FE-TEM images of Ppy half hollow spheres produced with (a, e) 0.6, (b, f) 1.2, (c, g) 1.8, and (d, h) 2.4 mL of pyrrole.

half hollow spheres (Figures 5(a), 5(b), 5(c), and 5(d))
demonstrated different thicknesses. The thicknesses of the
Pani half hollow spheres (Figures 4(a), 4(b), 4(c), 4(d), and
4(e)) were 30.2, 38.0, 42.2, 48.2, and 52.4 nm, respectively.
The thicknesses of the Ppy half hollow spheres (Figures 5(a),
5(b), 5(c), and 5(d)) were 16.0, 22.0, 27.0, and 34.0 nm,
respectively.

Figures 6(a) and 6(b) show the shell thicknesses of the
Pani half hollow spheres and Ppy half hollow spheres as a
function of the amount of monomer. The shell thickness
linearly increased with increasing amount of monomer.
From these results, it is possible to control the shell thickness
of the Pani and Ppy half hollow spheres by adjusting the

amount of aniline or pyrrole monomer. Therefore, it is able
to control the desired shell thickness of the Pani and Ppy half
hollow sphere in these ranges. As demonstrated in the results
shown in Figures 6(a) and 6(b), it is simple to obtain Pani
and Ppy half hollow spheres with specific shell thicknesses.

4. Conclusions

Pani and Ppy half hollow spheres with a controlled thickness
were successfully synthesized by three steps using the PS
core with micelle assistance. The PS was polymerized by
emulsion polymerization using an anionic surfactant with
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Figure 6: The shell thicknesses of the (a) Pani half hollow spheres and (b) Ppy half hollow spheres as a function of the amount of added
monomer.

SDS for surface modification. Aniline and pyrrole were
polymerized by an oxidizing agent on the PS core surfaces.
The shell thickness of the Pani and Ppy was controlled
by adjusting the amount of aniline and pyrrole monomer,
respectively. In separate experiments, aniline monomer was
added at volumes of 1.2, 2.4, 3.6, 4.8, and 6.0 mL, and pyrrole
monomer was added at volumes of 0.6, 1.2, 1.8, and 2.4 mL.
Finally, the PS was dissolved in acetone to create Pani and Ppy
half hollow spheres. The shell thicknesses of the Pani and Ppy
in the half hollow sphere structure were 30.2, 38.0, 42.2, 48.2,
and 52.4 nm and 16.0, 22.0, 27.0, and 34.0 nm, respectively.
The shell thickness of the Pani and Ppy was proportional to
the amount of aniline and pyrrole monomer. Therefore, it is
possible to control the desired shell thickness of the Pani and
Ppy half hollow spheres in these ranges.
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