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The velocity profile and pressure gradient of an unsteady state unidirectional MHD flow of
Voigt fluids moving between two parallel surfaces under magnetic field effects are solved by the
Laplace transform method. The flow motion between parallel surfaces is induced by a prescribed
inlet volume flow rate that varies with time. Four cases of different inlet volume flow rates are
considered in this study including (1) constant acceleration piston motion, (2) suddenly started
flow, (3) linear acceleration piston motion, and (4) oscillatory piston motion. The solution for each
case is elaborately derived, and the results of associated velocity profile and pressure gradients are
presented in analytical forms.

1. Introduction

Magnetohydrodynamics (MHD) is an academic discipline, which studies the dynamic
behaviors of the interaction betweenmagnetic fields and electrically conducting fluids. Exam-
ples of such fluids are numerous including plasmas, liquid metals, and salt water or electro-
lytes. The MHD flow is encountered in a variety of applications such as MHD power
generators, MHD pumps, MHD accelerators, and MHD flowmeters, and it can also be ex-
panded into various industrial uses.

During the past decades, a great deal of papers in literatures used a combination
of Navier-Stokes equations and Maxwell’s equations to describe the MHD flow of the
Newtonian and electrically conducting fluid. Sayed-Ahmed and Attia [1] examined the effect
of the Hall term and the variable viscosity on the velocity and temperature fields of the MHD
flow. Attia [2] studied the unsteady Couette flow and heat transfer of a dusty conducting
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fluid between two parallel plates with variable viscosity and electrical conductivity. Osalusi
et al. [3] solved unsteady MHD and slip flow over a porous rotating disk in the presence of
Hall and ion-slip currents by using a shooting method.

However, the Newtonian fluid is the simplest to be solved and its application is
very limited. In practice, many complex fluids such as blood, suspension fluids, certain oils,
greases and polymer solution, elastomers, and many emulsions have been treated as non-
Newtonian fluids.

From the literature, the non-Newtonian fluids are principally classified on the basis of
their behavior in shear. A fluid with a linear relationship between the shear stress and the
shear rate, giving rise to a constant viscosity, is always characterized to be a Newtonian fluid.
Based on the knowledge of solutions to Newtonian fluid, the different fluids can be extended,
such as Maxwell fluids, Voigt fluids, Oldroyd-B fluids, Rivlin-Ericksen fluids, and power-law
fluids. In this study, we investigate the flow characteristics of the MHD flow of Voigt fluids.

The exact solutions for laminar flow in a duct with a given pressure gradient varying
with time are well known. For example, Szymanski [4] gave solutions for impulsively
imposed pressure gradient. For more complex cases of the Maxwell fluid, Rahaman and
Ramkissoon [5] provided solutions for a pressure gradient varying exponentially with time,
sinusoidal pulsating pressure gradient and constant pressure gradient. Hayat et al. [6] solved
for exact solution to some simple flows of an Oldroyd-B fluid between two parallel surfaces
with and without pressure gradient. Some researchers studied the flow motion caused by
the movement of a boundary. Bandelli and Rajagopal [7] solved for various start-up flows of
second grade fluids in domains with one finite dimension by an integral transform method.
Huang and Liu [8] analytically investigated the character of viscoelastic fluids in a double-
gap concentric cylinder rheometer.

In general for more realistic applications, the volume flow rates are given as the inlet
condition instead of the pressure gradient. For a power law fluid, J. P. Pascal and H. Pascal
[9] solved this problem by similarity transformation method. Das and Arakeri [10] gave
an analytical solution for various transient volume flow rates for a Newtonian fluid, which
complemented with earlier experimental work [11]. Chen et al. [12–16] extended Das and
Arakeri’s work by considering various non-Newtonian fluids. Hayat et al. considered the
unsteady flow of an incompressible second-grade fluid in a circular duct with a given volume
flow rate variation [17]. And further, Hayat et al. presented a lot of researches about theMHD
flows of non-Newtonian fluids [18–36].

Based upon previous studies, we, therefore, further investigate in this paper the flow
characteristics of Voigt fluids under magnetic field effects.

2. Mathematical Formulations

The unidirectional rheological equation of state for a Voigt fluid in x-direction is given by Lee
and Tsai [37]

�Tij = −pδij + τij , i = x, y, z, j = x, (2.1)

τyx = Gν + μν̇, (2.2)

where Tij is the total stress, subscript i denotes the normal direction of i-plane, subscript j
denotes the stress acting direction, p is the static fluid pressure (p = p(x, y, z)), δij is the
Kronecker delta, τij is the shear stress, G is the rigidity modulus, ν is the shear strain, ν̇ is the
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rate of shear strain, and μ is the viscosity coefficient. Here G, μ are the material properties
and are assumed to be constant. When G = 0, (2.2) reduces to that of Newtonian fluid.

The problem of the unsteady flow of incompressible Voigt fluid between the parallel
surfaces is considered. The dynamic equation is

∇ · �T + ρ�b = ρ
d �V

dt
. (2.3)

In the above equation, �T denotes the total stress tensor, ρ the fluid density, �V the velocity
vector, �b the body force field, and ∇ the divergence operator.

The continuity equation is

∇ · �V = 0. (2.4)

Using the Cartesian coordinate system (x, y, z), the x-axis is taken as the centerline direction
between these two parallel surfaces, y is the coordinate normal to the plate, z is the coordinate
normal to x and y, respectively, and the velocity field is assumed in the form

�V = u
(
y, t

)
�i, (2.5)

where u is the velocity in the x-coordinate direction and�i is the unit vector in the x-coordinate
direction. This effectively assumes that the flow is fully developed at all points in time.

Substituting of (2.5) into (2.4) shows that the continuity equation automatically satis-
fied the result of substituting in (2.1) and (2.3). So we have the following scalar equation:

∂p

∂x
=

∂τyx

∂y
− ρ

∂u

∂t
− σB0

2u, (2.6)

where B0 is the electromagnetic field, subscript y denotes the plane normal to y direction, x
the direction along the shear stress, and

∂p

∂y
=

∂p

∂z
= 0, (2.7)

where the body force is incorporated into the term of pressure gradient.
Equations (2.6) and (2.7) imply that the pressure gradient is a function of time only.
Solving (2.2) subject to τyx = 0 and ν̇ = ∂u/∂y = 0 as t = 0, the strain function is

obtained

ν(t) =
1
μ
e−(G/μ)t

∫ t

0
τyxe

(G/μ)t′dt′, (2.8)

where t′ is the integration dummy variable.
Equations (2.6) and (2.8) are our governing equations describing the Voigt fluid flow-

ing between the parallel surfaces.
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3. Methodology of Solution

Since the governing equation with boundary conditions and initial condition are known, the
problem is well posed. In general, it is not an easy question to solve this kind of equation
by the method of separation of variables and eigenfunctions expansion. In this paper, the
Laplace transform method is used to reduce the two variables into a single variable. This
procedure greatly reduces the difficulties of treating these partial differential [9] and integral
equations [11].

The governing equation of motion in x-direction and the strain function are

∂p

∂x
=

∂τyx

∂y
− ρ

∂u

∂t
− σB0

2u, (3.1)

ν(t) =
1
μ
e−(G/μ)t

∫ t

0
τyxe

(G/μ)t′dt′. (3.2)

As these two surfaces are 2h apart, the boundary conditions are

u(h, t) = 0,

∂u(0, t)
∂y

= 0.
(3.3)

The initial condition is related to the inlet volume flow rate by

∫h

−h
u
(
y, t

)
dy = up(t)2h = Q(t), (3.4)

where up(t) is the given average inlet velocity and Q(t) is the given inlet volume flow rate.
The above governing equation, boundary conditions, and initial condition are pre-

scribed and can be solved by the following calculation of Laplace transform.
Differentiating (3.2) with respect to time and taking Laplace transform, then we have

τ̂yx
(
y, s

)
=

μs +G

s

∂û
(
y, s

)

∂y
. (3.5)

Taking the Laplace transform of (3.1) and substituting (3.5) into it, we have the gov-
erning equation

∂2û
(
y, s

)

∂y2
− ρs2 + σB0

2s

μs +G
û
(
y, s

)
=

s

μs +G

∂p̂(x, s)
∂x

. (3.6)

Considering the governing equation as an ordinary differential equation (with respect
to y) and boundary conditions

û(h, s) = 0, (3.7)

dû(0, s)
dy

= 0, (3.8)
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and initial condition

∫h

−h
û
(
y, s

)
dy = ûp(s)2h, (3.9)

the general solution of (3.6) is

û
(
y, s

)
= C1 sinhmy + C2 coshmy + Ψp, (3.10)

where Ψp is the assumed particular solution andm =
√
(ρs2 + σB0

2s)/(μs +G).
The boundary conditions (3.7) and (3.8) are used to solve the two arbitrary coefficients

C1 and C2. Substituting C1 and C2 into (3.10) gives

û
(
y, s

)
= Ψp

(
1 − coshmy

coshmh

)
. (3.11)

Substituting (3.11) into the initial condition of (3.9), Ψp is readily obtained as

Ψp

∫h

−h

(
1 − coshmy

coshmh

)
dy = ûp(s)2h (3.12)

or

Ψp =
ûp(s)

(1 − sinhmh/mh coshmh)
. (3.13)

Substituting Ψp into (3.11) gives

û
(
y, s

)
=

ûp(s)
(
coshmh − coshmy

)

(coshmh − sinhmh/mh)
(3.14)

or

û
(
y, s

)
= ûp(s)Ω̂

(
y, s

)
, (3.15)

where

Ω̂
(
y, s

)
=

(
coshmh − coshmy

)

(coshmh − sinhmh/mh)
. (3.16)

Taking the inverse Laplace transform, the velocity profile is

u
(
y, t

)
=

1
2πi

∫ γ+i∞

γ−i∞
ûp(s)Ω̂

(
y, s

)
estds. (3.17)
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Furthermore, the pressure gradient is found by substituting (3.11) into (3.6) to give

∂p̂(x, s)
∂x

= −
(
ρs + σB0

2
)
Ψp (3.18)

or

∂p̂(x, s)
∂x

= −
(
ρs + σB0

2
) ûp(s) coshmh

(coshmh − sinhmh/mh)
. (3.19)

Using the inverse transform formula, the pressure gradient distribution can also be obtained.

4. Illustration of Examples

Hereafter, we will solve the cases proposed by Das and Arakeri [10] with the Voigt fluid
to understand the different flow characteristics between these two fluids under the same
condition.

For the first case, the piston velocity up(t) moves with a constant acceleration and for
the second one, the piston starts suddenly from rest and then maintains this velocity. These
two solutions are used to assess the trapezoidal motion of the piston, namely, the piston has
three stages: constant acceleration of piston starting from rest, a period of constant velocity,
and a constant deceleration of the piston to a stop. Finally, the oscillatory piston motion is
also considered.

4.1. Constant Acceleration Piston Motion

The piston motion of constant acceleration can be described by the following equation:

up(t) = apt =
(
Up

t0

)
t, (4.1)

where ap is the constant acceleration, Up is the final velocity after acceleration, and t0 is the
time period of acceleration.

Taking the Laplace transform of (4.1),

ûp(s) =
Up

t0s2
. (4.2)

From (3.17) and (4.2), the velocity profile is

u
(
y, t

)
=

1
2πi

∫ r+i∞

r−i∞

Up

t0s2

(
coshmh − coshmy

)

(coshmh − sinhmh/mh)
est ds. (4.3)

From the above expression, the integration is determined using complex variable theory, as
discussed by Arpaci [38]. It is easily observed that s = 0 is a pole of order 2.
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Therefore, the residue at s = 0 is

Res(0) = Up

{
3t
2t0

[

1 −
(
y

h

)2
]}

. (4.4)

The other singular points are the roots of following transcendental equation:

mh coshmh − sinhmh = 0. (4.5)

Setting m = iα, we have

αh cosαh − sinαh = 0 (4.6)

or

tanαh = αh. (4.6b)

If αn, n = 1, 2, 3, ...,∞, are zeros of (4.6), then

s1n =
−
(
σB0

2 + α2
nμ

)
+
√(

σB0
2 + α2

nμ
)2 − 4ρα2

nG

2ρ
,

s2n =
−
(
σB0

2 + α2
nμ

)
−
√(

σB0
2 + α2

nμ
)2 − 4ρα2

nG

2ρ
,

(4.7)

n = 1, 2, 3, ...,∞, are these poles. These are simple poles, and residues at all of these poles can
be obtained as

Res(s1n) =
Up

t0

es1nt

2s1nQ + s1n2Q′(s1n)
,

Res(s2n) =
Up

t0

es2nt

2s2nQ + s2n2Q′(s2n)
,

(4.8)

where

Q = αnh cosαnh − sinαnh, Q′(sin) = αnm
′(sin)h2 sinαnh, i = 1, 2,

m′(sin) =
∂m(sin)

∂s
=

1
2

μρsin
2 + 2Gρsin +GσB0

2

(
ρsin2 + σB0

2sin
)0.5(

μsin +G
)1.5

, i = 1, 2.
(4.9)
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Adding Res(0), Res(s1n), and Res(s2n), a complete solution for constant acceleration
case is obtained as

u
(
y, t

)
t0

Up
=

3t
2

[

1 −
(
y

h

)2
]

+
∞∑

n=1

(
es1nt

2s1nQ + s1n2Q′(s1n)
+

es2nt

2s2nQ + s2n2Q′(s2n)

)
R
(
y
)
,

(4.10)

where R(y) = αnh(cosαnh − cosαny) and Q, Q′(s1n), Q′(s2n) are defined in (4.9).
The first term on the right-hand side of (4.10) represents the steady state velocity and

the second term, the transient response of the flow to an abrupt change either in the boundary
conditions, body forces, pressure gradient, or other external driving force.

Equation (3.19) is used to determine the pressure gradient in this flowfield and follows
the same procedure for solving velocity profile

Res(0) = −ρUp

t0

[
3
2
t
(
2ρ + σB0

2t
)]

,

Res(s1n) = −ρUp

t0

(
ρs1n + σB0

2
)
αnh cosαnh

2s1nQ + s1n2Q′(s1n)
es1nt,

Res(s2n) = −ρUp

t0

(
ρs2n + σB0

2
)
αnh cosαnh

2s2nQ + s2n2Q′(s1n)
es2nt.

(4.11)

Therefore, the pressure gradient is

∂p(x, t)
∂x

= −ρUp

t0

⎧
⎪⎨

⎪⎩

3
2
t
(
2ρ + σB0

2t
)
+

∞∑

n=1

⎡

⎢
⎣

(
ρs1n + σB0

2
)
αnh cosαnh

2s1nQ + s1n2Q
′(s1n)

es1nt

+

(
ρs2n + σB0

2
)
αnhcosαnh

2s2nQ + s2n2Q′(s2n) es2nt

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
.

(4.12)

Q,Q′(s1n), Q′(s2n) are defined in (4.9).

4.2. Suddenly Started Flow

For a suddenly started flow between the parallel surfaces,

up =

{
0, for t ≤ 0,
Up, for t > 0,

(4.13)

where Up is the constant velocity.
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In which case, the velocity profile is

u
(
y, t

)

Up
=

3
2

[

1 −
(
y

h

)2
]

+
∞∑

n=1

(
es1nt

Q + s1nQ′(s1n)
+

es2nt

Q + s1nQ′(s1n)

)
R
(
y
)
, (4.14)

where R(y) = αnh(cosαnh−cosαny),Q,Q′(s1n),Q′(s2n) are defined in (4.9), and the pressure
gradient is

∂p(x, t)
∂x

= −ρUp

⎧
⎪⎨

⎪⎩

3
2
σB0

2 +
∞∑

n=1

⎡

⎢
⎣

(
ρs1n + σB0

2
)
αnh cosαnh

Q + s1nQ
′(s1n)

es1nt

+

(
ρs2n + σB0

2
)
αnh cosαnh

Q + s2nQ
′(s2n)

es2nt

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
.

(4.15)

4.3. Linear Acceleration Piston Motion

The piston motion of linear acceleration can be described by the following equation:

up(t) = apt
2 =

(
Up

t0

)
t2, (4.16)

where ap is the constant acceleration, Up is the final velocity after acceleration, and t0 is the
time period of acceleration.

In which case, the velocity profile is

u
(
y, t

)
t0

Up
= 3t2

[

1 −
(
y

h

)2
]

+ 2
∞∑

n=1

(
es1nt

3s1n2Q + s1n3Q′(s1n)
+

es2nt

3s2n2Q + s2n3Q′(s2n)

)
R
(
y
)
,

(4.17)

where R(y) = αnh(cosαnh−cosαny),Q,Q′(s1n),Q′(s2n) are defined in (4.9), and the pressure
gradient is

∂p(x, t)
∂x

= −2ρ
t0

Up

⎧
⎪⎨

⎪⎩

3
2
t
(
2ρ + σB0

2t
)
+ 2

∞∑

n=1

⎡

⎢
⎣

(
ρs1n + σB0

2
)
αnh cosαnh

3s1n2Q + s1n3Q
′(s1n)

es1nt

+

(
ρs2n + σB0

2
)
αnh cosαnh

3s2n2Q + s2n3Q
′(s2n)

es2nt

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
.

(4.18)
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4.4. Oscillatory Piston Motion

The oscillating piston motion starting from rest is considered. The piston motion is described
as

up =

{
0, for t ≤ 0,
U0 sin(ωt), for t > 0.

(4.19)

Taking the Laplace transform of (4.19), we have

ûp(s) =
U0ω

s2 +ω2
s > 0. (4.20)

Substituting (4.20) into (3.17) to find the velocity profile, the poles are simple poles at s = ±iω
and the roots of αh cosαh − sinαh = 0. The solution to the velocity profile is

u
(
y, t

)

U0
=

i

2

[
e−iωtΩ̂

(
y,−iω) − eiωtΩ̂

(
y, iω

)]

+
∞∑

n=1

(
es1nt

2s1nQ + s1n2Q′(s1n)
+

es2nt

2s2nQ + s2n2Q′(s2n)

)
R
(
y
)
,

(4.21)

whereR(y) = αnh(cosαnh−cosαny),Q,Q′(s1n),Q′(s2n) are defined in (4.9), Ω̂(y, s) is defined
by (3.16), and the pressure gradient is obtained as

∂p(x, t)
∂x

= −ρU0

2

⎧
⎨

⎩

(
iρω + σB0

2
)
eiωtΓ(iω)+

(
−iωρ + σB0

2
)
e−iiωtΓ(−i)

+
∞∑

n=1

⎡

⎢
⎣

(
ρs1n + σB0

2
)
αnh cosαnh

2s1nQ + (s1n2 +ω2)Q′(s1n)
es1nt +

(
ρs2n + σB0

2
)
αnh cosαnh

2s2nQ + (s2n2 +ω2)Q′(s1n)
es2nt

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
,

(4.22)

where Q,Q′(s1n), Q′(s2n) are defined in (4.9), and

Γ(s) =
coshmh

(coshmh − sinhmh/mh)
, m =

√
ρs2 + σB0

2s

μs +G
. (4.23)

5. Conclusions

In this paper, the analytical solutions of unsteady unidirectional MHD flow of Voigt fluids
under magnetic field effects for different piston motion that provide different volume flow
rates are derived and solved by Laplace transform technique. The results are presented in
analytical forms.
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The pressure gradient for each flow condition is thus being derived from the known
function of inlet volume flow rate by using the same method. It is interested to note that for
fully developed flows the relaxation time only appears as the motion is unsteady.
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