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Abstract Minimal flavour violation in its strong or weak
versions, based on U (3)? and U(2)3, respectively, allows
suitable extensions of the standard model at the TeV scale to
comply with current flavour constraints in the quark sector.
Here we discuss considerations analogous to minimal flavour
violation (MFV) in the context of SU (5)-unification, show-
ing the new effects/constraints that arise both in the quark
and in the lepton sector, where quantitative statements can
be made controlled by the CKM matrix elements. The case of
supersymmetry is examined in detail as a particularly moti-
vated example. Third generation sleptons and neutralinos in
the few hundred GeV range are shown to be compatible with
current constraints.

1 Introduction

The discovery of the Higgs boson and the measurement of
some of its couplings, together with the number of differ-
ent flavour measurements performed in the last 15 years
or so, have raised the tests of the standard model (SM)
to a qualitatively higher level. On one side there is the
reported evidence for a linear relation, m; = A;v, between
the masses and the couplings to the Higgs boson of the
SM particles (for the moment the heavier ones). On the
other side several of the flavour-changing SM loops have
been experimentally confirmed with strengths as expected in
the Cabibbo—Kobayashi—-Maskawa (CKM) picture of flavour
physics. Altogether it is appropriate to say that the ensem-
ble of these tests have turned the Yukawa couplings of the
Higgs boson in the SM into an element of physical reality. At
the same time this strikingly underlines what is perhaps the
major weakness of the SM itself: its inability to predict any
of these couplings. This is the current status of the flavour
problem in the SM, which strongly motivates the efforts to
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increase the precision of the mentioned tests, now typically
at the 10 = 30 % level.

When trying to go beyond the SM, the description of
flavour faces a further problem of different nature. If new
particles are expected at the TeV scale, the compliance with
the flavour tests is highly non trivial. Attempts to achieve it
rest on dynamical assumptions, on flavour symmetries or
on a combination thereof. Examples of the first kind are
gauge or anomaly mediation of supersymmetry breaking,
whereas a combinations of symmetries (typically U(1) fac-
tors) and dynamics is invoked in models of alignment. Based
on symmetries alone, minimal flavour violation (MFV) is
the way to make new physics at the TeV scale compatible
with flavour tests. By MFV phenomenologically defined we
mean here that in an Effective Field Theory (EFT) approach
the only relevant operators are the ones that correspond to
the Flavour Changing Neutral Current effects occurring in
the SM, weighted by a common scale and by the standard
CKM factors up to (possibly flavour dependent) coefficients
of order unity. As briefly recalled in the next section there
exists a strong version of MFV [2-4] based on the U (3)3
flavour group (or equivalent) and a weak version, based on
the U (2)? flavour group [5,6] (or equivalent).

MFV, as recalled above, refers to the quark sector. Is there
something analogous that can be said on the lepton sector,
always having in mind new physics not far from the TeV
scale? When asking such question, what comes immediately
to mind is the issue of neutrino masses, whose nature (Dirac
or Majorana) and origin (at low or high energy among other
issues) are unknown.! This is a difficulty. Perhaps the very
small neutrino masses do not influence at all the flavour struc-
ture of the charged lepton sector. If so, however, what is left
that can possibly constrain it? In the SM, without neutrino
masses, one remains with individual lepton number conser-
vation. With extra particles at the TeV scale individual lepton
number conservation is unlikely, but, leaving out neutrino

! For some early works extending MFV to the lepton sector see [7—10].
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masses, one seems to lose any way to argue further in a truly
quantitative way.

In this paper we discuss to what extent SU(5) unifica-
tion can avoid this impasse. By SU (5) unification we sim-
ply mean that there exist definite SU (5)-invariant Yukawa
couplings that give rise, after symmetry breaking, to real-
istic quark masses and mixings as well as to the observed
charged lepton masses. In the low energy theory this leads
both to deviations from MFYV in the quark sector and to a def-
inite pattern of flavour violation in the charged lepton sector,
always controlled by the CKM matrix elements. The compat-
ibility of such patterns with current bounds will be discussed
in general as well as, in particular, considering the possible
existence of supersymmetric particles at the TeV scale.

The relation between strong MFV and SU (5)-unification
has been first discussed in [1]. In this paper we analyse the
relation of SU (5)-unification with both versions of MFV,
strong or weak, as defined above, pointing out specific dif-
ferences between the two cases.

2 Strong and weak minimal flavour violation

Strong MFV [2-4] is obtained by assuming the quark flavour
symmetry in the gauge sector of the SM

UBP=U@B) o xUB) xURBy 1))

to be as well a symmetry of whatever beyond the standard
model (BSM) theory under examination, only broken by the
standard Yukawa coupling matrices Y, and Y, in the direc-
tions

Yu=@G31 Yi=@G13). ©)
Although this gives up any attempt to understand the pat-
tern of quark masses and mixings, it nevertheless leads to

MFYV since, by symmetry transformations, Y, and Y, can be
reduced as in the SM to the form

Y,=YP

b vy=vyp 3)
where Y f 4 are diagonal and V' is the CKM matrix. Here with
Y, and Y; we denote the low energy Yukawa couplings with
canonically normalised quark fields, which in general differ
from the original symmetry-breaking parameters but have
necessarily the same transformation properties under U (3)3
and can equally well be used to characterise the symmetry
breaking in the EFT.
Weak MFV [5,6] is based on the observation that

U)o xUQR)y x U2)g x U(1)g3, 4

@ Springer

briefly called U(2)3, is an approximate symmetry of the
quark spectrum and mixings.”> This suggests to consider
U (2)3 rather than U (3)? as the relevant symmetry with U )3
breaking described by small parameters. The only minimal
set of spurions that can do this is

yos=, 1,01 A, =2,2,1)0 Ag=(2,1,2)
V=211 ®)

The smallness of these parameters relates to the smallness
of all quark Yukawa couplings except the top one and to
the smallness of the elements V4, Vi, Vi, Vep of the CKM
matrix. The presence of a doublet, possibly different from V,
is necessary to allow the communication between the third
and the first two generations. It is simple to convince oneself
that any other single doublet transforming differently from
V would have to be of order unity, thus strongly breaking
U (2)3, and would not lead to MFV.
The low energy Yukawa couplings acquire the form

Here x; ; are order one coefficients and, by symmetry trans-
formations, one can set

V= <O> . =LY AD

) rg = DL AR, (6)

. .d . . .
where € is a real parameter, L”l‘2 are rotation matrices in the

space of the first two generations with angles HZ’d and &y =
diag(e~'?, 1), i.e. four parameters in total. Due to the small-
ness of €, A, and A4, both Y, and Y,; are perturbatively diag-
onalised by pure left transformations, Y, = U, YMD, Y; =
UdeD with U, 4 both of the form U = UxUy2, i.e. the
products of two successive unitary transformations in the 1—
2 and 2-3 sectors. In turn this gives for the standard CKM

matrix

u .d U, ,—id
crer )\.d spse
Vekm = U;“Ud = —A cicq cis ,
_d i(6+e) _.d
syse crs 1
@)
ud . qud ud __ u,d
where s O(e), s;" = sinf;",c;” = cosd;" and

sZcZ — sic’iei‘i’ = Xe'%. Using this parametrisation of the

CKM matrix, a direct fit of the tree-level flavour observables,
presumably not influenced by new physics, results in

s¢ =-0215+0.011, (8)
¢ = (95+7)°. 9)

s7 = 0.096 £ 0.008,
s =0.0411 £ 0.0010,

2 In fact a larger approximate symmetry of the SM is U (2) oxUQ®2), x
U(@3)q4 [11]. However, implementing MFV with this symmetry leads
exactly to the same patterns as U(3)3 [12].
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This determines the left transformations that diagonalise Y,
and Y, up to the order one coefficients x;, x;, and leads
to phenomenological MFV. As in the U (3)? case, the only
relevant flavour-changing operators are the same as in the SM
with coefficients controlled by the CKM factors &;; = V;; V;]k. .
Unlike the U (3)3 case (strong MFV), however, between the
AB = 1,2 and the AS = 1, 2 transitions there are relative
O (1) coefficients, generally complex (weak MFV).

3 U(3)? and SU (5)-unification

In terms of the usual trinification of 10(7") & 5(F ) represen-
tations of SU (5), the minimal set of Yukawa couplings for
realistic charged fermion masses is

LY — TY,THs + TY,FHs + TY,F Hys (10)

where Hs, Hs, Hys are Higgs fields transforming under
SU(5) as indicated, each with an SU(2) x U(1) breaking
component of similar size, and flavour indices are every-
where left understood. The inclusion of a coupling to Hys
is necessary to account for the different © — s and e — d
masses. A possibility to describe neutrino masses is to intro-
duce a triplet of fermions, N, not transforming under SU (5)
and include in % the further terms NYyFHs + NMN.
We assume that the elements of Yy are small enough not
to influence the considerations developed in the following.
This is certainly consistent, e.g., if any of the elements of the
matrix M is less than 10!'! GeV. As mentioned, we do this to
limit the impact of our ignorance on the values of Yy and M
separately.

In analogy with strong MFV in the SM, the obvious way
to go in the SU (5) case is to consider the symmetry

UB)r xUB) g =U@B)?, (11)

which acts on 7 and F as T = (3, 1) and F = (1, 3) [1].
Furthermore one assumes that U (3)2 is only broken in the
directions
Y, =610, 1n=0@33, n=@G3, (12)
no matter which other operator is present at whatever scale.
At the TeV scale, after integrating out all heavy particles
and including RGE running effects, the Yukawa Lagrangian,
written in conventional notation, takes the form
UG

low energy

= Qrhurh + Qrradrh® + Lpheegh™ + - -
(13)

where A is the only light Higgs doublet and the multiplets
Q,u,d, e, each with a flavour index and canonically nor-

malised kinetic terms, have definite transformation proper-
ties under U(3)7 x U(3)

(QL,up,ex) = Vr(Qr,ug.ex),
(Lr,dg) — Vr(Lp,dy), (14)

as do the low energy Yukawa matrices A, 4 .
i = Vera (VD)L O o) = Ve, k) (V)T (15)

The matrices A, 4, control at the same time the flavour sym-
metry properties of every other higher dimensional operator
left understood in (13). This is because they are in the same
number as the original “spurions” Y,,, Y1, Y2, with the same
transformation properties up to a complex conjugation. For
example it is

Au = Zp>0 anY$(YTY$)n (16)

where the a, are complex coefficients of order unity
or smaller and we neglect terms involving powers of
Nyt ny vy

In analogy with the U (3)3 case, by U (3)? transformations
one can set
Mo=AP =ik, (17)
where V is again the CKM matrix. On the contrary A, has
the form

he = VerAD (Ver)" (18)
where V,r, V7 are fixed unknown unitary matrices.

3.1 UB)? and lepton flavour violation

The presence of two spurions )\5 and X, with the same trans-
formations properties under U(3)?, one of which depen-
dent on unknown mixing matrices, is the source of poten-
tially large deviations from MFYV, particularly from chirality-
breaking down-quark operators. If compared with the current
bounds, an even stronger direct constraint arises from lep-
ton flavour violation (LFV) and, more specifically, from the
W — e + y transition.
The relevant operator is

c _
FeF,w(eL,\gaweR)v + h.c. (19)

which, in terms of the physical charged leptons (still denoted
in the same way), becomes

c _
FeF,w(eL VAR VIVEoer)v + hc. (20)

@ Springer
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For @ — e + y the likely dominant term is the one propor-
tional to the mass of the b-quark

C -
Femeuv[A;ﬁzBIB(,U«LqueR)

+A3 Baz(eroywir)] + h.c.;
A=V,r, B=V€+TV, 1)
which leads to a transition rate

m3 m%
Tusey = %ch;‘ZBBF + |cA%, Bas|?). (22)

From the current bound on the branching ratio of 5.7 -
10713[13] and using mp (3 TeV) = 2.4 GeV, one gets

2

(A5 BaP + 145 80) £ 5107 (120 )

(23)
Even taking into account a possible loop suppression fac-
tor, this is a strong constraint, far beyond the typical MFV
bounds. As mentioned a somewhat weaker but still signifi-
cant constraint on the misalignment of the 1, and A, matri-
ces arises from the consideration of chirality-breaking AB
or AS transitions. Although still highly significant, the con-
straint in (23) can be made weaker by a factor mp/mg ~ 50
if one assumes that all the elements of Y> in Eq. (10) are at

most of order m, which is sufficient to cure the mass relation
problem of the single 7Y F Hz coupling.

4 U (2)2 and SU (5)-unification

The starting point is again the SU(5)-invariant Yukawa
Lagrangian

VP =y T3T3Hs + y,x, TVT3 Hs + TA, THs
+ be3F_'3H§ + )’bbeVF3H5
+ TAFHz + TAF Hs, (24)

invariant under
UQ)r x URQ)p x U() g5 = UQ2)%. (25)

With respect to U (2)2itis

F=(1,2)
(26)

Ts=(,1), F=(,11, T=(@2,1),,

with the spurions Ay, V, A,, Ay, Ay transforming accord-
ingly to keep -y invariant.

@ Springer

In analogy with the U(3)? discussion, the low energy
Lagrangian in this case assumes the form?

e - = -
KA e)nergy = (1 Qr3ur3s + y1x:QLVugs + y;x; Qr3Vug

+ Quawur)h+ (o Qr3dr3 +ypx5QL Vdrs +Qrigd)h*
+ (veLr3ers + yexcLrVers + Lede@)h™ +--- (27)
with self-evident transformation properties under U (2)? of

the various fields/spurions. By these same transformations
one can set V, A, and A4 as [see Eq. (6)]

0
V= < ) . da=LGAP@)T, =L b,

€
(28)
and A, to the form
Ae = UerdP Uer)” (29)

where U, F, U, are fixed unknown 2 X 2 unitary matrices.
In 3 x 3 flavour space the low energy Yukawa matrices are
given by

Y, = <_ _)‘_” ;_y ’_xt_V _>
! ytxtV-T! Yt '

0
Yo=(--=-r--). 30
¢ ( Yr Xt VT! Yt > (30)
Altogether this means that to a sufficient approximation

the low energy Yukawa matrices are diagonalised by the uni-
tary 3 x 3 matrices

Yu = UMYMDUMT, Yd = UdeD, Ye = UeLYgDUeR
(3D
where
Uer |0 Uer)T 10
Vst = ( 6F‘:1'> Uer = (-(-%T ! {1-) Un@e) ()

with Us3(€) a unitary transformation of order € in the 2-3
sector. Uy, U, are the same diagonalisation matrices as in
normal U (2)3, with their parameters determined as in (8, 9),
except that in U (2)3 case the matrix U, acts only on the left
side of Y,P.

Before proceeding, let us note that U (2)2, unlike U (3)2,
makes natural room for the successful relations m;, ~ m, and
my, ~ 3my, valid at unification. This only requires that A;
be sufficiently smaller than A, not to undo the last relation

3 Note a small abuse of notation: here and below the matrices Aud.e
act in the 1-2 flavour space, unlike the case of Sect. 3 where they act
on the full 1-2-3 space.
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arising from the coupling to Hys. At the same time A must
be capable to give the proper relation between m, and m.
We assume in the following that all the elements of A are at
most of the order needed to this purpose. This in turn implies
that the relative alignment between the A, and A matrices
is, without any further assumption or tuning, of order m 4/ m
both on the left and on the right side.

4.1 U(2)? and LFV

In analogy with the discussion in the U (3)? case, the presence
of two spurions with the same transformation properties in
the down and charged lepton sectors is a source of potentially
large flavour violations. In the U (2)? case, however, there
are two significant differences. As just said, in 1-2 flavour
space A4 and AeT are misaligned only by relative rotations
of the order of m4/mg. Furthermore, due to the small U (2)2
breaking, the diagonalisation of both Y,; and Y, in 2-3 flavour
space is obtained by small rotations of the same order €.

Here again the leading constraint comes for the © — ey
transition. The relevant operator is

ch—ey

TeFW(éLxga,weR)v + h.c. (33)

only acting in 1-2 flavour space. Therefore, after going to
the physical basis, one obtains a transition rate

m3 m2
M 2 2 2
Plsey =a Tlc”_)eyl (|A3,B12|” + | A3 Bn|),

(34)
where this time A, B are the misalignment matrices between

Ae and )% in the 1-2 sector, of order my/mg. One gets there-
fore the bound

2 2 1/2
|Cu—>ey| ‘ A;ZBIZ ‘ A§IB22
mq/ms mq/msg
A 2
<5-1074 : (33)
3TeV

to be compared with the bound in Eq. (23). This is still a
significant limit, but now a loop suppression factor of about
1073, as illustrated below in a specific example, could be
consistent with new particles of TeV mass.

4.2 Electric dipole moments

In U(2)? (as in U(3)%) one expects EDMs for the quarks,
most significantly the ones of the first generation that con-

tribute to the neutron EDM. If one includes also the electron

EDM, the relevant operators are?
cEDMp, . cEDMp, )
A2 EF,LLV(ELU[LUeR)a A2 EF;w(uLUpqu)a
c dE DMy, -
TeF;w(dLU;wdR) (36)
with cf 5 2’1 generally complex in the physical basis. From the

current bounds on the electron and neutron EDMs, respec-
tivelyd, < 8.7x107%%¢-cm [14]and d,, < 2.9x10"%6¢-cm
[15], one gets the corresponding limits on the imaginary parts
of these coefficients [16—18]

2
Im(cFPM)| < 5.6 x 1073 i
~ 3 TeV

A 2
3 TeV) ’ 37)

IIm(cEPM)| < 1.6 x 1072 (

2
IIm(cEPM) < 8 x 107 A )
¢ ~ 3 TeV

In the U (2)2 case, one expects additional contributions to the
coefficients of the operators in line (36)

EDM

me — C, cEDM

me + €, my,
EDM EDM ~EDM 2
" my — ¢ my ¢ T my | Vi, (38)

EDM
Ce

whereas the dipole of the down quark receives negligible cor-
rections. For the electron the additional contribution comes
from the same type of operator as in Eq. (33), whereas for the
up quark it is due to the fact that in U (2)? both Q;, and ug
transform under the same U (2) group factor or, differently
stated, that the diagonalisation matrix U,, is present on both
sides of Y.” in Eq. (31). Barring cancellations this gives the
limits

A 2
Im(EEPMY| < 1.2 x 1072 ;
[Im(c, ") < 1.2 x TV

2
A
IIm(cEPMY| < 1.6 x 107 <3TeV) ) (39)

43 U(2)% and quark flavour violation

The counterpart in the down-quark sector of the chirality-
breaking effectin u — ey of Sect. 4.1 is due to the operator

4 For brevity we do not discuss the chromo-magnetic dipole operators
for the up and down quarks, but they lead to similar bounds on the cor-
responding coefficients. The contribution of the charm chromo-electric
dipole, CEE DMy ./ A2, to the three gluon Weinberg CP-violating opera-
tor gives also a significant bound |Im(cCCEDM)| <3x 1072 (A/3 TeV)?2
[19]. Note also that along this line by e, u, d we mean specifically the
first generation particles and not the flavour triplets as in Sect. 3.

@ Springer



602 Page 6 of 10

Eur. Phys. J. C (2015) 75:602

Table 1 Upper bounds on the coefficients of the operators discussed in the text, normalised to A = 3 TeV

Observable w— ey e EDM u EDM d EDM € ALG=!

Coefficient el [Im (@2 lm @7 ) [m(cg ”*)] |45 sing| |eAC=1]

Upper bound 5% 10~ 1.6 x 1073 1.2x 1072 5.6 x 1073 6.5 x 1072 0.2
AS=1 2.

c -7 5 U(2)” in supersymmetr

o &G @A 0 TRy + hc. (40) persy y

By a similar line of reasoning to the one that leads to the limit
in Eq. (35) and following the analyses of [20,21], the effect
of this operator on the parameter €’ sets the bound

A \2
) @

5= sinp| < 6 x 102<

where the factor sin ¢ is there to recall the role of phases, in
general a combination of them, in this effect and we have set
[A2| = |Bi2| & ma/ms.

In the up-quark sector the Yukawa couplings in 3 x 3
flavour space have the form Y, = U,YPUI with U, =
U12U»3. Similarly one can write down a U (2)2-invariant
dipole operator with the flavour structure D, = f]u DL? l~]uT
and f]u =U 12(723. The point is that the unitary transforma-
tions in the 1-2 sector are the same in the two cases whereas
U3 and 023, although both of order €, are different from
each other. In the physical basis, therefore, D, keeps to a
good approximation the same form, except for a different
U3 transformation, still of order €. This is the source both of
the correction to the up-quark EDM, discussed in Sect. 4.2,
and of the chirality-breaking AC = 1 operator proportional
to m;

CAC:]

m -
Tt Vub C}ng GZV[(MLG}LU T“cg)

+(@rowW T L] + h.c. (42)

Following [21,22], the current limit on direct CP violation in
D — nm, KK decays gives the bound

|CAC=I|M < o_2< A )2_ (43)
sin § 3 TeV

Before closing this section we summarise in Table 1 the
bounds on the coefficients of the different operators nor-
malised to a scale A = 3 TeV. The bounds on [ m(ceEDM )
and I'm(cEPM) are 8 x 107> and 1.2 x 1072 respectively.
The bounds on the coefficients of the other FCNC operators
are at the typical 10~! = 1072 level [6,12], depending on
their phases, and are the same in U (2)% or U(3)2.

@ Springer

The picture that emerges from the previous sections is that
U(2)? givesrise to several new effects than the ones normally
considered in MFV, with the relevant feature, as in MFV, that
their flavour structure, both in the quark and, more interest-
ingly, in the charged lepton sector, is always controlled by the
CKM matrix elements. It is this feature that allows to make
quantitative considerations.”

There are two good reasons that make it relevant to see
the impact of the above considerations in the special case
of supersymmetry. First of all is the obvious connection
of supersymmetry with gauge coupling unification. No less
important, however, is the consideration of the bounds in
Table 1. Unless the various coefficients include a loop sup-
pression factor, as in the case of supersymmetry, one can
interpret them as quite strong lower bounds on the scale A,
much above the few TeV range. In turn this appears in contrast
with our original motivation of understanding the compliance
with the flavour constraints of new particles with masses in
the TeV range.

The model we consider is a generic supersymmetric
SU (5)-theory with a Yukawa superpotential that gives rise to
.,2”;} @ asin Eq. (24) and with soft supersymmetry-breaking
terms generated by supergravity. In the flavour sector the
entire theory is invariant under U (2)? as in Egs. (25) and
(26). On this basis we shall consider the low energy the-
ory in two different ways. We implement the general case as
discussed above or we take universal A-terms at least when
restricted to the 1-2 sector.

At low energy flavour-changing effects are present in the
Yukawa couplings, in the A-terms and in the squared masses
for squarks and leptons. The Yukawa couplings Y, 4., with
the usual meaning of the angle S,

Ly = vsinBiip Yyug + veos B(dy Yadg + é1Yeer) + h.c.
(44)

take the form of Eq. (30). The A-terms

L4 = vsin ﬂﬁ‘[AuﬁR + v cos ,B(JZ'AdJR —i—éZAeER) +h.c.
(45)
5 This same feature is achieved in [23], where, however, it rests on a

superpotential as in (10) without the coupling to Hys, necessary for a
realistic description of fermion masses.
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2 &r  °R

Fig. 1 Diagrams contributing to the u — ey amplitude. Crosses denote a chirality flip. White circles denote flavour-changing interaction vertices

controlled by U,. The white square in Fig. 1b is the A.-insertion

have an analogous structure

A ( Ay ;y_,@,_v_)
! ytautvr! ar Yt '

T 1
Ay = (Grd tdarde VoaanV. (46)
0 Yapyp
and
T
- (.ail he Faedyi 0 ) (47)
¢ .VTaerVT 'ary,

where the various a-factors are mass terms of similar order
of magnitude, related to the low energy scale of effective
supersymmetry breaking. Finally the squared masses have
two different forms. Up to negligibly small terms quadratic
in Ae g4 4, the squared masses for Landd g are diagonal and
degenerate in 1-2 sector, whereas the mass terms for eg, it g
and Q have contributions controlled by the spurion V, i.e.

21 m:, vV
M2 = (- Tz eV 4
¢ ("ﬁlerf m33 ’ (*8)

and similar for M2Q, ML%.

50 u—e+y

To discuss u — ey it is convenient to go to the basis where
Y, and M éz’ MI% are diagonal, i.e. the physical basis for the
charged leptons but not for the sleptons, since A, is still non-
diagonal. In this basis both the bino, x, and the neutral hig-
gsino have flavour-changing interactions with the (eg, €r)
multiplets

& =28 (@ U} er) +vcos ph@ELUS YL e) +hec.,
(49)

where, as in the previous examples, U, is as U,r in Eq.
(32), except for a different unitary transformation in the 2-
3 sector, although still of order €. Furthermore in the 1-2
sector U,r = Uy uptoasmall misalignment of order m/m.
Hence the flavour violation in these interactions is controlled
by the CKM angles. Note also the non-degeneracy of relative

order € between the first two generations of right-handed
leptons, which will play a role in the following.

Let us now look at the A.-term in Eq. (45). If the A-terms
were universal, at least in the 1-2 sector, one would have no
)»5 termin (46) and (47) and, in the basis under consideration,
we would have

DI
Ao~ (-“il&e-‘ O ) Ue. (50)

On the contrary, in the general case, in which both A, and )»g
are present, it is the latter that dominates. Therefore, in this
case we have

N ani?, 0
Ae — Unn(mga/my) < 52-‘1-:[; 5 ) Uia(ma/mg)Ue  (51)
. T

where on both sides of the diagonal term there appear two
unitary 1-2 transformations of order m,/mg, representing
precisely the misalignment of )»5 with A,.

The diagrams that contribute to 4 — ey are shown in
Fig. 1. Based on Egs. (49) and (50) (with A-terms universal)
the only flavour-changing matrix present in these interac-
tions is U,. As such, a GIM-like cancellation takes place,
controlled by the non-degeneracy of the charged sleptons, of
relative order unity between the third and the first two genera-
tions and of relative order €2 within the first two generations.
As a consequence the © — ey amplitude receives contribu-
tions proportional to m, U (1)U, (eT) (a 1-2/3 effect) or to
m,ler;k () U, (ep) (a 1-2 effect), both equal to m , V;i Vig
up to a factor of order unity. In the case of a general A.-term
the presence of the misalignment matrices in Eq. (51) inhibits
the GIM-like cancellation in the diagram of Fig. 1b, which
then becomes the dominant contribution to the amplitude,
proportional to my and mediated by exchanges of sleptons
of the first two generations.

Representative values for the size of these effects, taken
incoherently, and normalised to the current limit, BR(u —
ey) <53 x 10~ 13 [13], are shown in Figs. 2 and 3 both for
general and universal A,-term. Consistently with this bound,
the largest possible value of BR(t — ny) can be reached
with a universal A.-term, at 1072 level. One should remem-
ber the order one unknown factor in front of each of these
amplitudes.
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Fig. 2 BR(u — ey) normalised to the current bound, BR < 5.3 x
1013, with non-universal A-terms for a right-handed selectron mass
of the first two generations M; and neutralino mass M, = u

5.2 Electron EDM

As seenin Table 1, the electron EDM is potentially capable of
providing the strongest limit, although generally dependent
on more than one unknown phase. In supersymmetry a well-
known effect that arises from interactions not included in
Egs. (44) or (45), since it is not related to flavour-changing
phenomena, is due to a chargino—sneutrino one loop diagram.
From the current experimental limit [15] and |M, | = |u| on
obtains the bound on the mass of the sneutrino of the first
generation [24]

my > 17 TeV - (sin ¢, tan B)'/2. (52)
040 i
0.35f - |
3
|: 0.30 i
> 0.3
s
0.5
0.25} q
1
1-2 effect
020t Qe =1 TeV 7
tang =3
0.20 0.25 0.30 0.35 0.40
Mg[TeV]

0.8F ]
b 1.8
0.7l il2 0.6 i
0.6 1 1
3 I
l_
‘—>‘< 1.6
s [
05} ]
b 08 0.4
1.4
0.4 1
r [Im(ag)|=1TeV

28 30 32 34 36 38 40
M;[TeV]

Fig. 4 Electron EDM normalised to the current bound, d, < 8.7 x
10~ - ¢m, with non-universal A-terms and M;, My asin Fig. 2

The interactions in Eqgs. (44) or (45) also contribute to the
electron EDM by diagrams analogous to the ones in Fig. 1,
again with a distinction between universal or non universal
A.-term. Representative values for the size of these effects
are shown in Figs. 4 and 5 for maximal values of the relevant
phases and some choice of the other parameters, as indicated.

6 Summary and conclusions

The effort to increase the precision of current flavour tests of
the SM, now at the 10 - 30 % level, is a strongly motivated
task of particle physics in itself. At the same time this effort

0.30F ]
0.28} J
< 026 03 i
[0 r ]
=
§>< L | 4
0.24 1
0.5 0.1
0.22} J
L 1 )
1-2/ 3 effect ]
i ae1=1TeV Mé:Z TeVA
0.20 tarf =3
0.18 020 0.22 024 026 028 0.30 0.32
Mé3 [TeV]

Fig. 3 AsinFig. 2 with universal A-terms for a right-handed selectron mass M; of the first two generations (1-2 effect, left) and for a right-handed

selectron mass Mg, of the first two generations (1-2/3 effect, right)
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Fig. 5 Asin Fig. 4 with universal A-terms for tan 8 = 1 (left) and tan 8 = 7 (right)

could give indirect signals of the existence of new particle
at the TeV scale, complementary to the potentiality of their
direct search in high energy collisions. Although not exclu-
sively, nevertheless a strong basis for this statement is the
possibility that MFV be at work in some extension of the
SM. Especially in its weak form, based on the U (2)? flavour
group, phenomenological MFV can explain the absence of
new signals so far, while making plausible their emergence
in foreseen flavour physics experiments.

While MFV has a predictive content in the quark sector,
this is relatively less the case when one tries to extend it
to the lepton sector, due to the uncertainties related to the
description of neutrino masses. To overcome this problem
here we have proposed a predictive scheme based on extend-
ing MFV considerations to SU (5)-unification. As far as the
quark sector is concerned, weak MFV can be made consistent
with SU (5)-unification without introducing new strong con-
straints, even though some interesting CP-violating effects
appear both through AS = 1 and AC = 1 chirality-breaking
operators. In the charged lepton sector, on the other hand, one
predicts flavour violations with intensities also controlled, to
a good approximation, by the CKM mixing angles. From a
general EFT point of view Table 1 is an effective summary of
our findings. As shown there, not unexpectedly, the current
limits on © — ey as on the electron EDM represent strong
constraints.

Although not exclusively, supersymmetry is the obvi-
ous arena where these considerations might be of rele-
vance. For this reason we have considered their implementa-
tion in a realistic supersymmetric SU (5)-theory with soft
supersymmetry-breaking terms generated by supergravity.
Without any extra assumption 4 — ey and the electron
EDM with maximal CP-violating phases require charged

sleptons of the first two generations in the 1 =+ 3 TeV range,
as shown in Figs. 2 and 4. Sleptons of the first two genera-
tions in the few hundred GeV range can be made compatible
with the flavour scheme proposed here provided the A-terms
are universal and the CP-violating phases contributing to the
electron EDM are not maximal. Third generation sleptons
and neutralinos in the few hundred GeV range are in any case
consistent with present bounds. This is illustrated in Figs. 3
and 5. The weaker bound on the mass of the third generation
leptons comes from the fact that in any event the communi-
cation between them and the first two lepton generations is
controlled by the small CKM matrix elements.
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