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Abstract By employing some modification to the widely
used two-flavor Polyakov-loop extended Nambu–Jona–Lasi-
nio (PNJL) model, we discuss the Wigner solution of the
quark gap equation at finite temperature and zero quark
chemical potential beyond the chiral limit, and then we try to
explore its influence on the chiral and deconfinement phase
transitions of QCD at finite temperature and zero chemical
potential. The discovery of the coexistence of the Nambu and
the Wigner solutions of the quark gap equation with nonzero
current quark mass at zero temperature and zero chemical
potential, as well as their evolutions with temperature, is very
interesting for the studies of the phase transitions of QCD.
According to our results, the chiral phase transition might
be of first order (while the deconfinement phase transition
is still a crossover, as in the normal PNJL model), and the
corresponding phase transition temperature is lower than that
of the deconfinement phase transition, instead of coinciding
with each other, which are not the same as the conclusions
obtained from the normal PNJL model. In addition, we also
discuss the sensibility of our final results on the choice of
model parameters.

In the non-perturbative regime of Quantum Chromodynam-
ics (QCD), chiral symmetry breaking and quark color con-
finement are of great importance and continuous interest for
studying the QCD phase diagram. However, their relation is
not yet clarified directly from the first principles of QCD.
Generally speaking, color confinement indicates chiral sym-
metry breaking, while the reverse is not necessarily true. How
these two phenomena are related to each other and whether
(and/or under which conditions) these two transitions coin-
cide when the temperature and/or quark chemical potential
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grow larger have been speculated and discussed by many peo-
ple via many a model, for example, see Refs. [1–16]. Strictly
speaking, chiral and deconfinement phase transitions only
occur in opposite sectors in QCD. Chiral symmetry is an
exact global symmetry only when the current quark mass mq

is zero (the chiral limit). In the low-temperature and low-
chemical potential phase (hadronic phase, often referred to
as Nambu–Goldstone phase or Nambu phase), this symme-
try is spontaneously broken, and as a consequence there exist
N 2

f − 1 pseudoscalar Nambu–Goldstone bosons, meanwhile
the QCD vacuum hosts a chiral condensate (two quark con-
densate) 〈q̄q〉, which acts as an order parameter for chiral
phase transition. However, the Z(3) center symmetry asso-
ciated with the color confinement is exact only in the limit
of pure-gauge QCD, which means mq → ∞, and so of
course is too far from our real world. In the high-temperature,
deconfinement phase (the Wigner phase, where the quark–
gluon plasma, or QGP, is expected to appear) of QCD, this
symmetry is spontaneously broken; the Polyakov loop [17],
which is related to the heavy quark free energy, can serve
as an order parameter for the deconfinement phase transi-
tion. For the case of finite physical quark mass, neither the
quark condensate nor the Polyakov loop is a good order
parameter.

It is generally believed that with increasing temperature
or baryon number density, strongly interacting matter will
undergo a phase transition from the hadronic matter to the
QGP, which is expected to appear in the ultrarelativistic heavy
ion collisions or the inner core of compact stars. As for the
nature of the phase transitions, popular scenario may favor
a crossover at small chemical potential, both for the chi-
ral phase transition and the deconfinement phase transition,
and then turning into a first-order chiral transition for larger
chemical potential at a critical end point (CEP). This picture
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is consistent with most Lattice QCD simulations and vari-
ous QCD-inspired models. The search for the CEP is also
one of the main motivations in the experiments. However,
on the theoretical side there is still an ambiguity, not only
for the location of CEP, but also for whether this scenario
is correct. For example, in Ref. [18] the authors argue that
there is no CEP, since the transition is a crossover in the
whole phase diagram; in Ref. [19] the authors also think that
there is no CEP, but a Lifshitz point instead; the authors of
Refs. [20–22] consider there may be two CEPs; while the
authors of Refs. [23,24] find that the CEP and triple point
are possible to coincide with each other, due to existence of
another phases (namely, color superconducting or quarky-
onic matter) at low temperature and high density. Even in
the case of one CEP, there are still uncertainties on the
position of the CEP (see, for example, Ref. [25]). Unfor-
tunately, Lattice Monte Carlo simulations cannot be used
to resolve this issue due to the sign problem, so the cal-
culations based on effective theories of QCD are also irre-
placeable nowadays. The purpose of this work is to introduce
some modification to the widely used two-flavor Polyakov-
loop extended Nambu–Jona–Lasinio (PNJL) model and try
to explore its influence on the chiral and deconfinement phase
transitions of QCD at finite temperature and zero chemical
potential.

Usually, Nambu and Wigner phases are described, respec-
tively, by two different solutions of the quark gap equation.
Although the existence of those two solutions is generally
accepted in the chiral limit, it is generally believed that the
quark gap equation only has the Nambu–Goldstone solution
beyond the chiral limit, whereas the Wigner solution disap-
pears. This is in fact not compatible with the current studies
of QCD phase transitions. The authors of Ref. [26] doubted
this issue firstly, and they discussed whether the quark gap
equation has a Wigner solution in the case of nonzero cur-
rent quark mass, and hereafter, the authors of Refs. [27–30]
investigated this further. However, this problem has not been
solved satisfactorily until now. In this work, by employing
some modification to the widely used PNJL model [31,32],
and based on the studies in Refs. [33,34], we discuss the
Wigner solution at finite temperature and zero quark chemi-
cal potential when the current quark mass mq is nonzero. As
will be discussed later, the discovery of the coexistence of
the Nambu and the Wigner solutions of the quark gap equa-
tion beyond the chiral limit when temperature and chemical
potential are both zero, along with their evolutions with tem-
perature is very interesting for the studies of the phase tran-
sitions of QCD. Moreover, we display the calculated result
of the chiral and deconfinement phase transitions in the case
of zero chemical potential and finite temperature, and fur-
thermore, we also make some discussions on the effects of
varying the weight factor of the influence of the quark prop-
agator to the gluon propagator.

In the normal PNJL model [31,32], the following general-
ized Lagrangian density is introduced, with quarks coupled
to a (spatially constant) temporal background gauge field rep-
resenting Polyakov loop dynamics (here we take the number
of flavors Nf = 2 and the number of colors Nc = 3):

LPNJL = L0 + GLI + U
= ψ̄

(
iγμDμ − m̂q

)
ψ + G

[(
ψ̄ψ

)2 + (
ψ̄iγ5τψ

)2
]

−U (
�[A], �̄[A], T

)
, (1)

where ψ = (ψu, ψd)
T is the quark field and

Dμ = ∂μ − i Aμ and Aμ = δμ0A0. (2)

The gauge coupling constant g is conveniently absorbed into
the definition of Aμ(x) = gAμ

a (x)λa/2, with Aμ
a being

the SU(3) gauge field and λa being the Gell–Mann matri-
ces. The mass matrix is m̂q = diag(mu,md). When work-
ing in the limit of exact isospin symmetry, people often
take mu = md ≡ mq. A local, chirally symmetric scalar-
pseudoscalar four-point interaction of the quark fields is
introduced with an effective coupling strength G. It should
be noted that, since G is taken to be a constant in the normal
(P)NJL model, it is the same in different phases (even in the
chiral limit, where in principle there should be no dynamical
chiral symmetry breaking, i.e. DCSB, in the Wigner phase),
and it does not change when the temperature and/or quark
chemical potential vary. However, as we will explain later, the
coupling strength should not only differ for different phases
(especially, it cannot cause DCSB for the Wigner phase in
the chiral limit), but it also has a temperature and chemical
potential dependence.

The Polyakov loop L is an SU (Nc)matrix in color space,

L (x) = P exp

⎡

⎣i

β∫

0

dτ A4 (x, τ )

⎤

⎦ , (3)

with P denoting the path-ordering operation, β = 1/T is
the inverse temperature and A4 = i A0. U(�, �̄, T ) is the
effective potential expressed in terms of the traced Polyakov
loop and its (charge) conjugate (throughout our calculation
both will be treated as classical field variables),

� = (Trc L)/Nc, �̄ = (Trc L†)/Nc. (4)

In the pure-gauge sector, one would have � = 0 below a
critical temperature T0, and� → 1 in the limit T → ∞. The
form proposed in Ref. [32] by comparison with Lattice QCD
will be adopted throughout our calculation (all the parameters
we used in this work are summarized in Tables 1 and 2):

U (
�, �̄, T

)

T 4 =−b2 (T )

2
�̄�− b3

6

(
�3 + �̄3

)
+ b4

4

(
�̄�

)2
,

(5)
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with

b2 (T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (6)

T0 is the critical value for deconfinement appearing in the
pure gauge sector. A typical value 270 MeV is employed, as
used in Refs. [31,32]. In the limiting case mainly discussed
in this paper, where quark chemical potential μ = 0, one
would find that � = �̄ and Eq. (5) could be simplified.

As usual, the effective quark mass M can be determined
via the self-consistent gap equation:

M = mq − 2G〈ψ̄ψ〉. (7)

The quark condensate is defined as

〈ψ̄ψ〉 = −
∫

d4 p

(2π)4
Tr[S(p)], (8)

where S(p) is the dressed quark propagator, and the trace is
to be taken in color, flavor, and Dirac space. Strictly speak-
ing, this quantity is ultraviolet divergent and such divergence
cannot be eliminated by the usual renormalization proce-
dure [35]. However, in the (P)NJL model one can impose
the cutoff� to regularize the integral, and then this problem
is avoided. In the normal (P)NJL model, one would obtain
M = 325 MeV from Eq. (7) as the Nambu solution, and no
Wigner solution exists beyond the chiral limit. After some
algebra, the thermodynamic potential per unit volume in the
mean field approximation can be obtained [32]:

� = U (
�, �̄, T

) + G〈ψ̄ψ〉2 − 6Nf

�∫
d3 p

(2π)3
E p

−2Nf T
∫

d3 p

(2π)3
[ln f 1 + ln f 2] , (9)

where

f 1 = 1 + e− 3(E p−μ)
T + 3

(
�+ �̄e− (E p−μ)

T

)
e− (E p−μ)

T ,

f 2 = 1 + e− 3(E p+μ)
T + 3

(
�̄+�e− (E p+μ)

T

)
e− (E p+μ)

T ,

Ep = √
p2 + M2 is the quark quasi-particle energy and

� is the three-momentum cutoff from the normal (P)NJL
model. The cutoff � is only imposed on the first integration
(zero-point energy). The second integration, which repre-
sents the finite-temperature contribution, has a natural cut-
off in itself just specified by the temperature. It is explicitly
shown that when T = 0 the Polyakov loop and the quark
sector decouple.

Now we would like to display the thermodynamic poten-
tial density � as a function of the chiral condensate and the
Polyakov loop in Figs. 1 and 2 for two different temperatures,
respectively: T = 150 MeV (below T0) and T = 300 MeV
(above T0), while the chemical potential is fixed to be zero

Fig. 1 The thermodynamic potential density � as a function of the
chiral condensate 〈ψ̄ψ〉 and the Polyakov loop �(= �̄), where the
temperature T is fixed to be 150 MeV with zero chemical potential μ

Fig. 2 The thermodynamic potential density � as a function of the
chiral condensate 〈ψ̄ψ〉 and the Polyakov loop �(= �̄), where the
temperature T is fixed to be 300 MeV with zero chemical potential μ

(then � = �̄, which is easy to understand just from the
expression of �, Eq. (9), and is shown clearly in the actual
calculations).

From the comparison between Figs. 1 and 2 one notices
that the dependence of � on �(= �̄) is much larger than
that on 〈ψ̄ψ〉. Our calculation shows that this phenomenon
holds at least for the whole temperature range discussed in
this work. When the temperature is lower than some critical
value, as illuminated in Fig. 1, the minimal value of the ther-
modynamic potential density� is located in the region where
the absolute value of chiral condensate is large and the value
of Polyakov loop is very small, which just corresponds to
the Nambu solution of the gap equation, Eq. (7). As the tem-
perature increases, the location of the minimum for � will
continuously goes to the region with smaller chiral conden-
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sate and larger Polyakov loop. For the temperatures above
some critical value, as revealed in Fig. 2, the corresponding
effective quark mass M will be much smaller than the nor-
mal Nambu one, and it is close to the current quark mass
mq, which is just the Wigner solution of gap equation. These
confirm that the Lagrangian (1) can satisfactorily describe
chiral symmetry restoration and quark deconfinement simul-
taneously to a certain degree, even beyond the chiral limit.
Moreover, we want to stress that, as illustrated by the plots,
for a given temperature the thermodynamic potential has only
one minimum, which means that the gap equation only has
one solution: either the Nambu one or the Wigner one, they
do not coexist.

The exact values of 〈ψ̄ψ〉, �, and �̄ for a given (T, μ)
can be obtained by solving the following equations in a self-
consistent way:

∂�

∂〈ψ̄ψ〉 = ∂�

∂�
= ∂�

∂�̄
= 0. (10)

One would find that when one imposes the condition μ = 0,
� and �̄ will equal to each other for all values of T .

It is well known that the quark propagator and the gluon
propagator satisfy their respective Dyson–Schwinger Equa-
tions (DSEs), and they are coupled with each other [36,37].
As a result of the quark propagators in Nambu and Wigner
phases being so different, the corresponding gluon propa-
gators in these two phases should be different, too. Just as
pointed out and discussed in Refs. [26,33,34], the differences
between the vacua of the Nambu phase and the Wigner phase
can be characterized by the quark condensate (which is asso-
ciated with the spontaneous breaking of chiral symmetry).
Therefore, the gluon propagators would be different due to
different quark condensate in these two phases (obviously,
in the normal (P)NJL model this has never been considered).
Similar discussions have already been performed and veri-
fied in quantum electrodynamics for 2+1 dimensions (QED3,
which has many features similar to QCD, such as sponta-
neous chiral symmetry breaking in the massless fermion limit
and confinement, and thus can serve as a toy model of QCD),
for the fermion and the photon propagators [38].

At present it is impossible to calculate the influence of the
quark propagator to the gluon propagator from the first prin-
ciple of QCD. So one has to resort to various non-perturbative
QCD models to express them phenomenologically. Over the
past few years, considerable progress has been made in the
framework of the QCD sum rule [39,40], which provides a
successful description of various non-perturbative aspects of
strong interaction physics at both zero and finite temperature.
We naturally expect that it might provide some useful clue to
the studies of the non-perturbative contribution of the quark
propagator to the model gluon propagator.

From the plane wave method of QCD sum rule [41], the
non-perturbative part of a Green function is defined as the dif-

ference between the full Green function (which is unknown)
and the perturbative part. The condensates are then identi-
fied with the various moments of the non-perturbative Green
function. So the most general form of the “non-perturbative”
gluon propagator should be

Dnpert
μν ≡ Dfull

μν − Dpert
μν ≡ c1〈ψ̄ψ〉 + c2〈GμνGμν〉 + · · · ,

where 〈ψ̄ψ〉 and 〈GμνGμν〉 are the two-quark condensate
and gluon condensate, respectively, the coefficients c1 and c2

can be calculated using the QCD sum rule approach [42,43],
and the ellipsis represents the contribution from other con-
densates, e.g., the mixed quark-gluon condensate. Among all
the condensates, the two-quark condensate (a nonvanishing
value of which will signal the DCSB in the chiral limit) has
the lowest dimension, and it is generally believed to be the
most important one in the QCD sum rule approach. Hence, in
this work we will pick out the contribution of the two-quark
condensate separately, and the contribution from other con-
densates will be added into the perturbative gluon propagator.
In the normal (P)NJL model, this is equivalent to modifying
the coupling constant G in the following way:

G → G1 + G2〈ψ̄ψ〉. (11)

Physically, it is well known that QCD has a non-trivial vac-
uum structure. One way to characterize this structure is by
means of various vacuum condensates. These condensates
are also essential for describing the strong interaction physics
using the QCD sum rule method. So, when gluons propagate
in the non-perturbative vacuum of QCD, they will certainly
be affected by these condensates [42,43]. Just as discussed
above, among all the condensates, the two-quark condensate
is generally believed to be the most important one in describ-
ing the non-perturbative vacuum of QCD. Hence in this work
we pick it out (and the effects of all the other condensates are
simplified into the first term G1 of Eq. (11)) to study its qual-
itative influences on the gluon propagator, and then on the
chiral and deconfinement phase transitions of QCD. There-
fore, G1 is an effective coupling strength that reflects all the
other contributions besides the part proportional to the two-
quark condensate to the gluon propagator, and is considered
to be the same in both Nambu and Wigner phases1; while
G2〈ψ̄ψ〉 is different in Nambu and Wigner phases. Briefly
speaking, once all the parameters are chosen, we can regard
G2 as an effective coupling strength that reflects the weight
factor of the influence of the quark propagator to the gluon

1 Actually, the gluon condensate is also temperature dependent. Some
studies show that it decreases with the increase of the temperature (for
example, see Refs. [44–46]). This will bring about some corrections
to G1 in the case of finite temperature. However, at low temperature
the variation of the gluon condensate is small (see, e.g., Ref. [46]). For
simplicity, in our model we have not considered the influence brought
about by this correction.
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Fig. 3 Solutions of the gap equation when the chiral condensate is
separated to characterize the differences between the vacuum of Nambu
phase and that of Wigner phase

propagator. We hope that by such a simple model one can
capture the essential physics of QCD phase transitions.

Now let us turn to the determination of the model parame-
ters in this work. The way to fix the values of the new param-
eters G1 and G2 in this work is illustrated in Fig. 3, where

F(M) = M − mq − 2(G1 + G2〈ψ̄ψ〉)〈ψ̄ψ〉. (12)

is the gap equation.
The value of G1 + G2〈ψ̄ψ〉 for M = 325 MeV with

temperature and chemical potential being both zero is fixed
to be 5.04 × 10−6 MeV−2, which equals the value of GNJL

in the normal (P)NJL model. We find that only when G1 =
3.16 × 10−6 MeV−2 and G2 = −5.91 × 10−14 MeV−5, can
one get the result for mq = 5.5 MeV shown in Fig. 3, where
the equation F(M) = 0 has and only has two solutions. One
solution, M = 325 MeV, is the ordinary Nambu solution; the
other one, which is much smaller (approximately 68 MeV,
about half of the mass of a pion; it will continuously tend
to zero when mq approaches zero, as can be seen clearly
from Fig. 3), could be identified as the Wigner solution that
describes the perturbative dressing effect in the case mq �= 0.

In the normal (P)NJL model, it is well known that only
when the coupling constant G is above a critical value will
chiral symmetry breaking happen. Specifically, in the case of
chiral limit, there should be no DCSB in the Wigner phase,
which means that the coupling constant in the Wigner phase
should be smaller than this critical coupling constant. In
our model, in the case of chiral limit and in Wigner phase,
G2〈ψ̄ψ〉 ≡ 0 and the effective coupling constant G ≡ G1.
It is natural to ask whether this requirement is fulfilled in
our model. In order to confirm this, here it is necessary and
interesting to plot the curve of the vacuum energy density
difference between Nambu phase and Wigner phase in the
chiral limit, namely,

0 100 200 300 400
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M
10

9
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eV
4

GNJL
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Fig. 4 The vacuum energy density difference between Nambu phase
and Wigner phase (in the chiral limit) for different coupling constants.
For details, please see the text

Table 1 Parameter set used in our work for the Polyakov loop potential
(5) and (6)

a0 a1 a2 a3 b3 b4

6.75 −1.95 2.625 −7.44 0.75 7.5

All parameters are taken from Ref. [32]

�E = E(M)Nambu − E(M = 0)Wigner

= M2

4G
− 3

4π2

[
�

√
M2 +�2(M2 +�2)

−M4sinh−1
(
�

M

)
− 2�4

]
, (13)

as shown in Fig. 4. For comparison, we show three cases of
the coupling constant, where G11 is just 3.16×10−6 MeV−2,
as chosen above, and there is indeed no DCSB; Gcrit =
3.88×10−6 MeV−2 is a critical value, at which DCSB begins
to appear; and GNJL is the coupling constant in the normal
(P)NJL model, where clear DCSB is illustrated. Moreover, it
should be noted that not only the G1 above but also the two
cases of G1 as will be discussed in Table 3 are smaller than
Gcrit , so that this can also be regarded as a self-consistency
check of our model.

Strictly speaking, since the coupling contains informa-
tion from gluons, in principle G1 and G2 should depend
on the Polyakov loop L , too. Nevertheless, observing that
L is essentially the temporal component of gluons, G1 and
G2 would not be affected by L only, therefore the qualitative
results would not change. So, we will simply neglect any pos-
sible L dependence, and we assume that G1 and G2 include
all the information from gluons, as the way people treat G
in the normal PNJL model [31,32]. Then all the parame-
ters used in this work are listed in Table 1 (for the Polyakov
potential part) and Table 2 (for the NJL model part).

After making the replacement of Eq. (11), we then cal-
culate the temperature dependence of the chiral condensate
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Table 2 Parameter set used in our work for the NJL model part of the
effective Lagrangian (1)

mq (MeV) � (MeV) G1 (MeV−2) G2 (MeV−5)

5.5 651 3.16 × 10−6 −5.91 × 10−14
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Fig. 5 Scaled chiral condensate of Nambu phase and Wigner phase
together with the Polyakov loop �(= �̄), as functions of temperature
at zero chemical potential

and the Polyakov loop, with the chemical potential fixed to
be zero, too. The results are plotted in Fig. 5.

Generally speaking, since the relation between the (P)NJL
model and QCD remains somewhat obscure, accordingly the
qualitative results are often more valuable than the quantita-
tive ones. Here it is interesting to compare our results with
those of the normal PNJL model, such as Fig. 4 of Ref. [32].
We find that thanks to the introduction of quarks coupled to
both 〈ψ̄ψ〉 and� fields, the first-order deconfinement phase
transition seen in pure-gauge lattice QCD is now a continuous
crossover2, as found in Refs. [31,32]. However, our results
show that the chiral phase transition which is indicated by
the chiral condensate is obviously of first order, and it does
not coincide with the deconfinement phase transition, which
is indicated by the Polyakov loop. This is somewhat different
from the normal PNJL model. The value of the critical tem-
perature Tc for the first-order chiral phase transition (i.e., the
temperature at which the Nambu solution disappears) here is
about 175 MeV, which is in accordance with the data of two-
flavor Lattice QCD, Tc = 173 ± 8 MeV [47], and even the
same as the result of Ref. [48], meanwhile is much smaller
than the temperature of deconfinement. These results show

2 In some sense, even though the gluon properties is directly connected
with color confinement, it has no direct connection with DCSB. This can
be understood by the example of pure Yang–Mills theory, where there is
color confinement but no DCSB, since in pure Yang–Mills theory there
is no fermion and hence no concept of chiral symmetry. Furthermore,
we think that this still holds when one considers full QCD. In view of
this, it seems that the continuous behavior of the Polyakov loop at the
chiral transition point in our model is reasonable.

that the chiral phase transition might happen earlier than the
deconfinement phase transition, which is qualitatively the
same as the result found in the Lattice QCD studies of the
Wuppertal–Budapest collaboration, where the critical tem-
perature for the chiral restoration is about 25 MeV lower than
the deconfinement one [49–51]. More interestingly, once the
difference of the gluon propagators (in other words, the dif-
ference of vacua) between Nambu phase and Wigner phase is
taken into consideration via the chiral condensate, we can see
that the Nambu solution and Wigner solution would coexist
below Tc, which is very interesting in the studies of QCD
phase transitions, and has never been found in the normal
(P)NJL model. The plot shows that the effective masses of
both Nambu phase and Wigner phase will decrease as T
increases, which means that the dressing effect of quarks
becomes weaker and weaker.

For the chiral phase transition with two-flavor quarks, the
results above are qualitatively different from previous results
in the original PNJL model. When we do not take into account
the feedback of the quark condensate to the gluon propa-
gator, our model will reduce to the original PNJL model.
Here, a natural question arises: is our treatment reasonable?
This question can be answered from the viewpoints of three
aspects. Firstly, just as discussed above, using different gluon
propagators in different phases is a requirement of QCD, and
the treatment in this work can also ensure that there would not
be DSCB for the Wigner phase in the chiral limit; Secondly,
in the DSEs approach, the bag constant is identified with the
pressure difference between Nambu phase and Wigner phase
[36,37]. However, according to the usual point of view in the
literature, only in the case of chiral limit does the quark gap
equation has both the Nambu and the Wigner solutions simul-
taneously. In other words, in the usual (P)NJL model, only
in the chiral limit can one define the bag constant. Never-
theless, in the real world, the current quark mass is nonzero,
and the bag models (such as the famous MIT bag model)
are constructed for this case, where the bag constant plays
an important role. In our work, since the coexistence of the
Nambu and the Wigner solutions are found beyond the chiral
limit at zero temperature and zero chemical potential, one can
then define the bag constant in this case; last but not least, in
principle, the coupling strength should not only be distinct
in different phases, but it should also vary when temperature
and/or chemical potential change. Nevertheless, this is still
an open problem, especially in the non-perturbative regime
of QCD. Yet in our model setup the coupling strength would
change naturally, since the chiral condensate is temperature
and chemical potential dependent.

Just as explained above, the value of G1 + G2〈ψ̄ψ〉 in
our model is fixed to be the coupling constant in the normal
(P)NJL model. Now, it is interesting to change the relative
weight of G1 and G2〈ψ̄ψ〉 (while all the other parameters
are fixed as before) to see their influence on the results. For
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Fig. 6 Scaled chiral condensate of Nambu phase and Wigner phase
together with the Polyakov loop �(= �̄), as functions of temperature
at zero chemical potential for the case (I) of Table 3
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Fig. 7 Scaled chiral condensate of Nambu phase and Wigner phase
together with the Polyakov loop �(= �̄), as functions of temperature
at zero chemical potential for the case (II) of Table 3

Table 3 Different parameter choices of G1 and G2

G1 (MeV−2) G2 (MeV−5)

Case (I) 3.21 × 10−6 −5.77 × 10−14

Case (II) 3.61 × 10−6 −4.49 × 10−14

instance, in Figs. 6 and 7, we show, respectively, the two
cases of different parameter choices in Table 3.

As far as we know, as mentioned above, due to the dif-
ficulty of determining how the gluon propagator is affected
by the quark condensate from the first principles of QCD,
there is hardly any discussion of this issue, especially in the
non-perturbative region. So, here we would like to continue
our discussions with larger G1 and correspondingly smaller
G2 (this is understood in the sense of the absolute value
of the parameters, and similarly hereinafter), which means
that the influence of the quark propagator to the gluon prop-
agator is evaluated to be weaker. We are not interested in
the cases where G1 is small while the corresponding G2 is

larger, because in that cases there is no qualitative change in
both the Nambu solution and the Wigner solution, neverthe-
less there would appear another metastable solution, which
in our opinion is nonphysical, just as in some cases studied
in Ref. [30].

As a result of the increase of G1 and the corresponding
decrease of G2, the Wigner solution of the gap equation may
not appear at lower temperatures, but it begins to coexist
with the Nambu solution at some critical temperature, just
as illustrated obviously in Fig. 6, case (I) of Table 3. Qual-
itatively, this is very similar to the discoveries of another
recent work of our group, Ref. [52], which used quite dis-
tinct theoretical tools. Although one is for the case of zero
chemical potential and finite temperature, the other is for
the case of zero temperature and nonzero chemical poten-
tial. We think that the coexistence of the Nambu solution
and the Wigner solution of the quark gap equation might be
an interesting physical phenomenon which has never been
found before, rather than a coincidence or just mathematical
results of the calculations. At the same time, the curve for
the crossover of the deconfinement phase transition moves
slightly towards the direction of lower temperature, while its
shape is basically unchanged. This shows once again that
the changes of the chiral properties of the system might not
have any obvious qualitative influence on its deconfinement
nature. If we continue to take larger G1 and correspondingly
smaller G2, the critical temperatures at which the Nambu
solution disappears and the Wigner solution begin to appear
would both increase, but the range of the region in which
they coexist would decrease more rapidly. Then, at some
critical value of G1 (and correspondingly for G2), which
we take as case (II) of Table 3, the Nambu solution and the
Wigner solution would converge with each other, and the
first-order chiral phase transition discovered above is now a
crossover with a very sharp slope, as shown in Fig. 7. Then
for even larger G1 and correspondingly even smaller G2,
which means the influence of the quark condensate to the
gluon propagator becomes even weaker, the two curves will
continue to approach each other, meanwhile the crossover of
the chiral phase transition becomes smoother and smoother.
Then at the very last, the results of the normal PNJL model
and the widely accepted Lattice QCD calculations will be
perfectly repeated, as expected. Therefore, in some sense we
can say that the coexistence of the Nambu and Wigner solu-
tions is a consequence of this fact: it always happens that, in
the presence of a first-order transition, one has a region of
coexistence of different phases in some range of the model
parameters (such as the temperature in this work). Finally,
we want to point out that our quantitative results are sensi-
tive to the parameters adopted (such as the critical tempera-
ture T0), which is also discussed in Ref. [32,53]. However,
the qualitative conclusions drawn from our results would not
change.
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In summary, we have presented the model setup of a
widely used two-flavor chiral effective model with Polyakov
loop dynamics (PNJL model) and discussed the pattern of
the solutions of the quark gap equation beyond the chiral
limit. Then we studied the Wigner solution of the quark
gap equation with nonzero current quark mass in the case
of finite temperature and zero chemical potential by intro-
ducing some modification to the normal PNJL model. Usu-
ally, people think that the quark gap equation does not have
the Wigner solution beyond the chiral limit. However, when
we pick out the two-quark condensate effect and investigate
its influence on the gluon propagator, the outcome shows
that the Wigner solution may coexist with the Nambu solu-
tion at nonzero current quark mass. This discovery is very
interesting in the studies of both the chiral and the decon-
finement phase transitions of QCD. Based on this, we fur-
ther discuss the chiral and deconfinement phase transitions
of QCD at finite temperature and zero chemical potential
using the modified two-flavor PNJL model. Our results show
that the influence of the Polyakov loop on the thermody-
namical potential is much larger than that from the quark
condensate, and the Nambu solution would disappear at suf-
ficiently high temperature, rather than a crossover as many
people found in the normal PNJL model and the Lattice QCD
results. The critical temperature we obtain is about 175 MeV,
which is in accordance with the data of two-flavor Lattice
QCD. Moreover, according to our results, the chiral phase
transition might happen earlier than the deconfinement phase
transition, instead of coinciding with each other, which is not
the same as the result of the normal PNJL model, but qualita-
tively the same as the result found in the Lattice QCD studies
of the Wuppertal–Budapest collaboration. However, further
discussions show that the weight factor of the influence of
the quark propagator on the gluon propagator may be crucial
for one to draw some reliable conclusions, since it is very
difficult to clarify this from the first principles of QCD. For
smaller weight of the influence of the quark condensate to
the gluon propagator, the coexistence region of the Wigner
solution with the Nambu solution may decrease and even
disappear, and the first-order chiral phase transition found
above may degenerate to a widely accepted crossover. How-
ever, all the modifications do not show obvious impact on
the deconfinement phase transition. These qualitative con-
clusions obtained in our work do not change with the differ-
ent choices of the parameters. Last but not least, it should be
noted that the relation between the model we employed in this
work and QCD itself is still obscure in some sense, hence we
cannot conclude that our model is a faithful representation
of full QCD. To draw some more reliable conclusions, fur-
ther studies, using more elegant models, like DSEs, should
be performed.
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