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The leukotrienes (LTs) are metabolic products of arachidonic acid via the 5-lipoxygenase (5-
LO) pathway. The biological activities of LTs suggest that they are mediators of acute 
inflammatory and immediate hypersensitivity responses. In particular, the 5-LO activation 
has been proposed to be an important regulator for pathogenesis in multicellular 
organisms. The role of LTs in tissue damage, associated with septic and nonseptic shock 
and ischemia-reperfusion, has been extensively studied by the use of 5-LO inhibitors, 
receptor antagonists, and mice with a targeted disruption of the 5-LO gene (5-LOKO). In 
particular, several data indicate that LTs regulate neutrophil trafficking in damaged tissue in 
shock and ischemia-reperfusion, mainly through the modulation of adhesion molecule 
expression. This concept may provide new insights into the interpretation of the protective 
effect of 5-LO inhibition, which may be useful in the therapy of pathological conditions 
associated with septic and nonseptic shock and ischemia-reperfusion injury.  
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5-LIPOXYGENASE AND LEUKOTRIENES 

5-Lipoxygenase (5-LO), whose activity was first described in 1976 by Borgeat et al.[1], is the key enzyme in 
leukotriene (LT) biosynthesis from arachidonic acid (AA).  

The purified enzyme is a monomer with an estimated molecular weight between 72 and 80 kDa. The 5-
LO gene is >82 kb in length and encompasses 14 exons separated by 13 introns[2]. The 5-LO promoter 
contains consensus regions for a number of transcription regulators belonging to the Egr, Sp, NF-kB, GATA, 
myb, and AP families[3]. For full activity, 5-LO requires cofactors, such as calcium and ATP, and interaction 
with other proteins, such as 5-LO–activating protein (FLAP), which facilitates the docking of AA to 5-LO, 
and the coactosin-like protein (CLP), which stimulates 5-LO activity and colocalizes with the enzyme[4]. 



Rossi et al.: 5-LO, shock and I/R injury TheScientificWorldJOURNAL (2007) 7, 56–74
 

 57

Moreover, the enzyme contains, in the active site, a nonheme iron that is essential for its enzymatic 
activity[5].Post-translational modifications, i.e., phosphorylation by p38 kinase–dependent mitogen-activated 
protein kinase (MAPK)[6], phosphorylation on Ser 663 by extracellular signal-regulated kinase (ERK)[7], 
and the subsequent translocation to the nuclear envelope are also fundamental for the activity of the 
enzyme[8].  

In resting cells, 5-LO occurs as a soluble enzyme either in the cytosol or in the nucleus, depending on the 
cell type[7]. In neutrophils, cytoplasmic 5-LO associates with the endoplasmatic reticulum and the outer 
nuclear membrane, whereas in dendritic cells or in alveolar macrophages, it has an intranuclear localization 
that seems to be correlated with a higher capacity for LT generation[9]. Cell stimulation by various agonists 
causes 5-LO translocation from soluble compartments to the nuclear membrane and, thus, LT generation. 5-
LO comigrates with cytosolic phospholypase A2 (cPLA2) to the nucleus where cPLA2 liberates AA from 
phospholipids, which is then transferred by FLAP to 5-LO.  

The production of LTs begins with the insertion by 5-LO of molecular O2 at carbon-5 of AA to produce 
5-hydroperoxyeicosatetraenoic acid (5-HPETE). 5-HPETE can be reduced to 5-hydroxyeicosatetraenoic acid 
(5-HETE), which can be in turn dehydrogenated to 5-oxo-ETE. More typically, 5-LO catalyzes a second 
enzymatic step, the conversion of 5-HPETE to leukotriene A4 (LTA4), an unstable intermediate[10] that can 
be catalytically converted to leukotriene B4 (LTB4) by LTA4 hydrolase[11], or can be conjugated with 
glutathione by leukotriene C4 (LTC4) synthase (LTC4S), a membrane bound enzyme, to produce the 
cysteinyl LT (cys-LT), LTC4. The LTC4 is subjected to extracellular cleavage of the glutamic acid (through 
a γ-glutamyl transpeptidase) and subsequently the glycine moiety (through a dipeptidase) to provid,e 
respectively, leukotriene D4 (LTD4) and E4 (LTE4)[12].  

LTs are proinflammatory mediators and, in fact, they are predominantly synthesized by inflammatory 
cells like polymorphonuclear leukocytes (PMNs), monocytes, macrophages, and mast cells. The 
overproduction of LTs has been associated with allergic diseases[13,14,15], pulmonary fibrosis[16], 
atherosclerosis[17,18], hyperlipidemia-dependent inflammation of the arterial wall[19], pulmonary 
hypertension[20], and arthritis[21]. In addition, increased 5-LO expression, and presumably increased LT 
synthesis, has been associated with several tumor types, such as lung[22], pancreatic[23], bladder[24], 
breast[25], colon[26], multiforme glioblastoma[27], prostate[28], testicular[29], and esophageal cancer[30]. 
The role of 5-LO and LTs in carcinogenesis seems to be related to their action on fundamental cellular 
processes, such as differentiation and proliferation, through the transcription of various cytokines and growth 
factors[31].  

Among LTs, LTB4 is a potent proinflammatory mediator that appears to play a role in various diseases 
associated with neutrophil infiltration, such as arthritis and shock, due to its chemoattractant properties. 
Moreover LTB4 and cys-LTs increase the adhesion of leukocytes to endothelial cells, an important step in 
neutrophil migration, through specific integrins. LTB4 also plays a beneficial role in host defense against 
bacterial infection, and it has been shown to promote bacterial phagocytosis and killing[32]. It acts 
principally through the BLT1 receptor[33], which is highly selective for LTB4, and displays only weak 
affinity for closely related compounds, such as 6-trans-LTB4 and 12-epi-6-trans-LTB4. The BLT1 receptor is 
necessary to elicit the physiological effects of LTB4 (e.g., recruitment of leukocytes and their adhesion to 
endothelium and calcium mobilization)[34]. There is also a second LTB4 receptor, the BLT2, which is 
somewhat less selective for this substance and whose precise function is not currently well understood[35]. 
Cys-LTs, which are released by leukocytes in response to inflammatory and immunological stimuli, cause 
contraction of endothelial cells, resulting in an increased permeability of postcapillary venules. The cys-LTs 
are potent bronchoconstrictors and induce a variety of responses associated with asthma including mucus 
secretion and airway smooth cell muscle proliferation[36]. LTD4 acts through the cys-LT1 receptor that is 
highly selective for LTD4 over LTC4, LTE4, and other eicosanoids[37]. LTD4 also interacts with a second 
receptor, the cys-LT2 receptor, which is less selective and has equal affinity for LTC4[38]. The existence of 
another receptor (cys-LT3) has been postulated[39]. The cys-LT1 receptor mediates most of the actions of 
LTD4 on the lung and various selective antagonists including montelukast (Singulair), zafirlukast (Accolate), 
and pranlukast (Ultair) are available for use in the treatment of asthma[40].  
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Other 5-LO products, such as 5(S)-HETE and 5-oxo-ETE, seem to have important biological activity. 
Both these metabolites activate neutrophils and/or monocytes, and recently a Gi/o-coupled eicosanoid 
receptor, recognized by 5-oxo-HETE, has been identified[41].  

By the use of mice with a targeted disruption of the 5-LO gene (5-LOKO), we have recently 
demonstrated that this enzyme and its metabolites play a pivotal role in several pathological conditions, such 
as pleurisy[42], acute pancreatitis[43], colitis[44,45], spinal cord injury[46], septic and nonseptic 
shock[47,48], and ischemia-reperfusion injury[49,50] characterized by an excessive neutrophil activation by 
promoting neutrophil migration through an up-regulation of adhesion molecule expression.  

In the light of what was reported, the aim of this review is to analyze the results reported in the literature 
on the role of 5-LO and its metabolites, especially LTs, in some pathological conditions, such as shock and 
ischemia-reperfusion injury, characterized by a severe neutrophil infiltration that gives rise to tissue injury. In 
fact, the comprehension of the mechanisms underlying this process, and the role of the enzyme and/or its 
metabolites, might open new perspectives in the therapy of the organ dysfunction and/or injury associated 
with these pathological conditions. 

5-LIPOXYGENASE AND LEUKOTRIENES IN SEPTIC SHOCK 

In recent years, the problem of infections has increased significantly, especially in intensive care hospital 
wards, such as intensive care units, emergency medicine, surgery, and critically ill patient care 
departments[51].  

When local innate immunity is overwhelmed and microbial infection disseminates via the bloodstream, 
the sepsis syndrome results, characterized by hypotension, hypothermia, poor tissue perfusion, and 
multiorgan dysfunction. Several factors, such as immunosuppression and antibiotic resistance, have been 
implicated in the increase of sepsis. Despite the availability of an increasing array of potent antibiotics and 
intensive medical care, mortality due to sepsis remains high[52,53,54]. A myriad of investigational therapies 
has had little impact on outcomes of sepsis and novel approaches are required. 

Sepsis is a complex syndrome, defined as the presence, or presumed presence, of an infection 
accompanied by evidence of a systemic response called the systemic inflammatory response syndrome 
(SIRS)[55], which can develop into conditions of different severity ultimately represented by severe sepsis or 
septic shock[51]. Severe sepsis is defined as the presence of sepsis and one or more organ dysfunctions 
(acute lung injury; coagulation abnormalities; thrombocytopenia; altered mental status; renal, liver, or cardiac 
failure; hypoperfusion with lactic acidosis)[56,57], while septic shock is defined as the presence of sepsis and 
arterial hypotension (systolic blood pressure <90 mmHg, mean arterial pressure <70 mmHg, or systolic blood 
pressure decrease >40 mmHg)[55].  

Half of all cases of septic shock are caused by gram-negative microorganisms and half of these are 
associated with a positive blood culture[58]. Moreover, the earliest event in the inflammatory cascade seems 
to be the release of either a heat-stable endotoxin[59,60,61], which is part of the lipopolysaccharide (LPS) of 
the gram-negative membrane, or soluble peptidoglycans and lipoteichoic acid from gram-positive 
membranes[62,63,64]. These molecules use similar transduction pathways to induce macrophage activation 
and proinflammatory response[65]. LPS binds to LPS-binding protein produced by the liver and facilitates 
LPS binding to the macrophage receptor CD14. The activation of this receptor through a toll-like molecule 
(TLR4)[66] is responsible for initiating the transmembrane signaling. The initial responses to endotoxemia 
are detectable in the microcirculation as a microvascular inflammatory response characterized by activation 
of the endothelium stimulating these cells from their normal anticoagulant state to a procoagulant state with 
increased adhesiveness for leukocytes and platelets. The infiltration and accumulation of PMNs represent a 
crucial event for the development of secondary organ and tissue damage[67,68,69,70]. Moreover, 
leukocyte/endothelial cell interaction is also induced by the generation of proinflammatory mediators, such as 
LTs, which up-regulate adhesion molecule expression[71,72,73], as discussed below. 

The importance of 5-LO in the induction and development of shock has been established in in vitro and 
in vivo studies by the use of chemical inhibitors of 5-LO and genetically engineered mutant mice devoid of 
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the enzyme[47,74]. It is currently accepted that the action of 5-LO is central to immune response, as it is 
responsible for the generation of LTs, which are secreted and work in an autocrine or paracrine fashion to 
drive cellular and tissue components of innate immunity [75]. It has been demonstrated that mice lacking 5-
LO cannot produce LTs and have an impaired ability to clear bacterial infection[76]. In fact, in a model of 
Klebsiella pneumoniae pneumonia, 5-LOKO mice exhibit enhanced lethality and reduced pulmonary 
bacterial clearance in respect to wild-type (WT) mice[75]. Subsequent studies have demonstrated that both 
classes of LTs are necessary for optimal phagocytosis of IgG-opsonized microbes[75,77,78]. However, the 
overall results concerning the role of LTs in the immune response demonstrate that they have divergent 
effects during the induction and evolution of septic shock. Initially, they participate in local innate immune 
control. However, if the severity of infection overwhelms local immunity and microbial dissemination 
ensues, cys-LTs (but not LTB4) contribute to the deleterious effects on the vasculature, resulting in vascular 
leak, hypotension, and inadequate tissue perfusion[79]. In fact, in addition to their actions on airways, cys-
LTs have long been recognized to increase microvascular permeability in various organs[80,81,82,83]. It has 
been reported that intraperitoneal injection of LPS in rats leads to a strong increase of LTC4S messenger 
RNA (mRNA) levels after approximately 1 h, particularly in the heart, brain, adrenal glands, and liver. After 
6 h, LTC4S mRNA returns to basal levels, concomitant with a 4.9-, 4.0-, 2.9-, and 2.3-fold induction of 
LTC4S protein in brain, heart, liver, and adrenal gland, respectively. Hence, challenge with LPS in vivo 
causes an organ-selective, local priming for LTC4 synthesis[84]. Thus LTs, although initially playing a 
protective role during septic shock development, have a detrimental role as demonstrated by several 
experimental studies indicating salutary effects of LT inhibitors and antagonists in endotoxin shock[85]. In 
fact, it has been demonstrated by the use of 5-LO inhibitor, that LTs cause pulmonary hypertension, systemic 
hypotension[86], and hypothermia[87], and increase vascular permeability during bacteremia[86]. Moreover, 
in a model of endotoxic shock, the treatment with BW A137C, a 5-LO inhibitor, attenuated acute 
microvascular injury produced by LPS. Similarly, the administration of MK-886, LT biosynthesis inhibitor, 
attenuated the hypotension and partially reversed the impaired vascular responsiveness observed in a rabbit 
model of endotoxic shock[88]. 

In addition to LTs, the excessive formation of other inflammatory mediators, such as prostaglandins 
(PGs) and nitric oxide (NO), has been implicated in the pathogenesis of septic shock. An interesting aspect to 
be considered is the balance between the protective role of constitutive NO synthase (NOS) and the 
detrimental actions of 5-LO and its products in the maintenance of microvascular integrity in the early stage 
of sepsis[89]. This is not surprising since a cross-talk between these mediators has been described in several 
cell types. For example, a prolonged exposure to LPS inhibits macrophage 5-LO metabolism via induction of 
NO synthesis. In fact, it has been showen that pretreatment of macrophages with LPS causes time- and dose-
dependent induction of NOS and a suppression of LT synthesis. Inhibition of 5-LO by LPS was reproduced 
by the use of NO donors, and was abrogated by inhibitors of constitutive and inducible NOS[90,91]. 
Interestingly, the reactive oxygen species and peroxynitrite seem to be involved in this regulation[92]. 
Moreover, it has been demonstrated that the 5-LO pathway can be also regulated by PGs. In fact, PGE2, via 
its EP4 receptor, negatively regulates 5-LO translocation and activation through a complex series of 
events[93]. Recently, we have found that in in vitro models of inflammation, such as mouse-peritoneal 
macrophages activated with LPS and interferon-γ, the deletion of the gene encoding for 5-LO or the enzyme 
activity inhibition (zileuton) corresponded to a negative modulation of the cyclooxygenase (COX) pathway. 
Moreover, we have demonstrated that LTC4 is able to increase PG production by up-regulation of COX-2 
expression, an effect mediated by Erk-1/2 activation. The LT-induced increase in PG generation, as well as 
MAPK activation, was dependent by a specific ligand-receptor interaction[94]. Thus, the mutual interaction 
between LTs, PGs, and NO may further modulate the development of septic shock. 

As reported above, shock can develop into multiple organ dysfunction syndrome (MODS), also known as 
multiple organ failure (MOF), with the lung as the first organ involved. In particular, LTs have been 
implicated as possible mediators of endotoxin-induced acute lung injury. In fact, the presence of LTs in the 
bronchoalveolar lavage fluid of patients with sepsis, as well as increased cys-LT levels in the lung tissue of 
endotoxin-challenged rodents, has been reported[95,96]. Moreover, infusion of LTs into animals produces 
acute lung injury resembling the clinical presentation of endotoxemia including pulmonary hypertension and 
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increased vascular permeability, resulting in pulmonary edema and hypoxemia[97,98]. We have 
demonstrated in collaboration with Thiemermann and coworkers that lung, ileum, liver, renal, and pancreatic 
dysfunction and injury, caused by endotoxemia, as well as PMN infiltration [myeloperoxidase (MPO) 
activity] in the lung and ileum, were reduced in rats treated with 5-LO inhibitor zileuton and in 5-LOKO 
mice. Zileuton also reduced the LPS-induced expression of β2 integrins CD11b/CD18 on rat leukocytes. 
Thus, zileuton seems to protect organs against endotoxin-induced dysfunction and injury by inhibiting the LT 
synthesis, thereby reducing the LT-induced stimulation of β2-integrin–dependent adhesion and the 
subsequent recruitment of neutrophils. We propose that endogenous 5-LO metabolites enhance the degree of 
MOD and/or injury caused by severe endotoxemia by promoting the expression of these adhesion 
molecules[47].  

Altogether, all the data reported in the literature indicate that 5-LO plays pivotal role in response to 
endotoxic shock, and that inhibitors of 5-LO might be useful in the therapy of the organ dysfunction and/or 
injury associated with endotoxemia. 

5-LIPOXYGENASE AND LEUKOTRIENES IN NONSEPTIC MULTIPLE ORGAN 
DYSFUNCTION SYNDROME 

As reported above, MODS is defined as a cumulative sequence of function-progressive deterioration 
occurring in several organ systems, frequently seen after shock, multiple trauma, severe burns, or 
pancreatitis[99,100,101]. MODS remains a principal cause of death after severe shock or trauma, not only in 
the presence, but also in the absence, of sepsis[102,103,104,105,106,107,108]. Several animal models have 
been used to understand the pathophysiological mechanisms underlying nonseptic MODS. Among them, 
administration of zymosan, a nonbacterial and nonendotoxic agent, produces acute peritonitis and MODS in 
experimental animals, characterized by functional and structural changes in the lung, liver, intestine, and 
kidneys[109,110,111,112,113,114]. It has been reported that zymosan administration to mice causes signs of 
both peritonitis and organ injury within 18 h[115,116]. The onset of the inflammatory response is associated 
with systemic hypotension, maximal cellular infiltration, exudate formation, edema, and release of 
inflammatory mediators[115,116,117,118,119]. It has been demonstrated that intraperitoneal administration 
of zymosan to mice resulted in marked biosynthesis of LTC4 and LTB4. In particular, LTC4 increased 
between 30 and 60 min and sustained for several hours, whereas LTB4 increased in a biphasic manner with a 
peak between 2 to 3 h[120]. It has also been demonstrated that macrophage-depleted rats are protected from 
systemic toxicity and mortality after zymosan administration[121,122,123,124], indicating that macrophages 
play an important role in zymosan-induced inflammatory processes, probably by activating the synthesis of 
cytokines and proinflammatory mediators such as NO, PGs, and LTs[112,113,114,120,125].  

Other results support the pivotal role of LTs in the zymosan-induced peritonitis model. In fact, edema 
associated with zymosan-induced peritonitis was markedly reduced in animals lacking FLAP[126], and it has 
been reported that 5-LO inhibitors and LTB4 receptor antagonists are effective in preventing the development 
of organ failure since they reduce neutrophil infiltration[120]. Moreover, it has been demonstrated, by the use 
of LTA4 hydrolase-deficient mice, that LTB4 influences the cellular component of zymosan-induced 
peritonitis[127]. We have demonstrated that the absence of 5-LO (5-LOKO mice) attenuates the development 
of zymosan-induced peritonitis; the PMN infiltration of the lung and intestine (histology and MPO activity); 
the degree of liver, kidney, and pancreas organ dysfunction (biochemical markers); and the degree of lung 
and intestine injury (histology) caused by injection of zymosan[48]. The mechanisms of the anti-
inflammatory effect of the absence of functional 5-LO are not entirely clear. Our findings demonstrate that 5-
LO exerts a role in zymosan-induced nonseptic shock by the regulation of neutrophil recruitment, both at the 
rolling and firm adhesion phase. In fact, it appears that the genetic inhibition of 5-LO reduced the expression 
of adhesion molecules, such as P-selectin and ICAM-1. These endothelial adhesion molecules are major 
regulators of neutrophil trafficking, regulating the process of neutrophil chemoattraction, adhesion, and 
transmigration from the vascular bed to the injured tissue[128,129]. Thus, these results support the view that 
the overproduction of LTs contributes to the development of MODS and confirm the concept that 5-LO 
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regulates neutrophil trafficking also in conditions associated with nonseptic shock through the positive 
modulation of adhesion molecule expression.  

5-LIPOXYGENASE AND LEUKOTRIENES IN ISCHEMIA-REPERFUSION INJURY 

Intestinal Ischemia 

Intestinal ischemia is generally the result of arterial occlusion by thrombi or emboli and, more frequently, by 
nonocclusive processes, such as in situations of low mesenteric flow, which occurs in cardiac insufficiency, 
sepsis, and administration of alpha-adrenergic agents or digitalics[130,131]. The arteries most compromised 
by the obstruction are the celiac trunk (or celiac artery), superior mesenteric (or cranial) artery, and inferior 
mesenteric (or caudal) artery[132].  

Ischemia leads to hypoxia, which initiates a series of events primarily related to activation of platelets 
and release of their vasoconstrictor mediators (e.g., thromboxane A2 and 5-hydroxytryptamine) that further 
restrict blood flow to the ischemic area. If the ischemia is severe enough, the rate of metabolism is 
diminished and the generation of high-energy compounds (e.g., ATP) subsequently declines. The reduced-
energy metabolism eventually leads to a slow, but significant, degree of tissue injury and necrosis. The 
degree of tissue injury is further enhanced and accelerated by reperfusion. It is important to realize that 
reperfusion of an ischemic organ is not only associated with local changes. In fact, in some situations, 
reperfusion is also associated with systemic changes. For example, in a model of ischemia and reperfusion 
(I/R) of the intestine, local functional alterations include intestinal hyperpermeability as well as 
morphological changes, such as necrotic injury of the reperfused tissues[133,134]. On the other hand, 
systemic alterations characteristic of postreperfusion include a progressive fall in the mean arterial blood 
pressure, release of proinflammatory mediators from the reperfused tissues into the systemic circulation, and 
ultimately, a decreased survival[135]. A severe form of circulatory shock produced by I/R of the splanchnic 
organs is the splanchnic artery occlusion (SAO) shock. This type of shock is characterized by a decrease in 
systemic blood pressure on release of the splanchnic arteries, which leads to a fatal outcome[133,134]. An 
important component of SAO shock is the endothelial dysfunction[134,135] originally attributed to oxygen-
derived free radicals released from both the reperfused endothelium[136] and the activated adherent 
PMNs[137]. Ischemia-reperfusion is also a stimulus for leukocyte-endothelial cell interaction and migration 
into tissues. Moreover I/R induces an increase in intestinal P-selectin expression[138] and tissues subjected to 
I/R injury synthesize significant quantities of AA metabolites[139]. In particular, it has been demonstrated 
that intestinal mucosal LTB4 and LTC4 synthesis triples after ischemia and I/R[140], and the LTC4 regulates 
the splanchnic blood flow during ischemia[141], whereas LTB4 plays a pivotal role in endothelial 
dysfunction by chemoattraction and activation of neutrophils on the surface of vascular endothelial 
cells[142]. In a model of canine I/R injury, the inhibition of 5-LO with zileuton significantly improved 

reperfusion, intestinal blood flow, and VO2, and abolishes the I/R-induced increase in mucosal neutrophil 
infiltration in normothermic I/R injury[140]. Moreover, it has been demonstrated that the 5-LO pathway also 
plays a significant role in the pathophysiology of hypothermic intestinal I/R injury[143] and hypotension 
associated with I/R[144]. We have shown, using 5-LOKO mice, that 5-LO mediates leukocyte-endothelial 
interactions by regulating the expression of P-selectin, E-selectin, and ICAM-1 during I/R. In fact, in 5-
LOKO mice subjected to SAO shock, the up-regulation of P-selectin, E-selectin, and ICAM-1 in the intestine 
and lung was largely attenuated[49]. In particular, the genetic inhibition of 5-LO abolished the expression of 
P-selectin and E-selectin, and the up-regulation of ICAM-1, but did not affect the constitutive expression of 
ICAM-1 on endothelial cells. These results suggest, as demonstrated in septic and nonseptic shock, that the 
inhibition of 5-LO activity may interfere with the interaction of neutrophils and endothelial cells, both at the 
early rolling phase mediated by P-selectin and E-selectin, and at the late firm-adhesion phase mediated by 
ICAM-1. Besides, it is interesting to note that the early I/R-induced increase in intestinal P-selectin 
expression seems to be mediated by 5-LO–dependent NO-inhibitable mechanism[138]. In our experimental 
model, the absence of an increased expression of the adhesion molecules, in the intestine as well as in the 
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lung tissue of SAO-shocked 5-LOKO mice, was associated with the reduction of leukocyte infiltration, as 
assessed by the specific granulocyte enzyme MPO, and with the attenuation of tissue damage as evaluated by 
histological examination. It is noteworthy, however, that tissue MPO activity was not completely abolished. 
This result is consistent with previous studies demonstrating that constitutive levels of ICAM-1 seem to be 
sufficient to support a lower degree of CD11/CD18-dependent transendothelial migration of activated 
neutrophils[145]. Thus, as previously underlined, the concept that 5-LO regulates neutrophil trafficking 
through up-regulation of adhesion molecules may provide new insights into the interpretation of reports that 
demonstrate the protective effect of 5-LO inhibition in experimental models of I/R injury and inflammation.   

Cerebral Ischemia  

Transient cerebral ischemia initiates a complex series of metabolic events which ultimately lead to neuronal 
death. One critical event is the degradation of membrane lipids and subsequent accumulation of free fatty 
acids, particularly AA[146]. Accumulation of AA is greater in brain regions most susceptible to I/R 
injury[147] and is a index of ischemic damage[148,149]. Brain damage caused by I/R is due, in part, to 
secondary injury from inflammation[150,151] and the degree of inflammation is exacerbated by increased 
lipid peroxidation, which ultimately increases neuronal death[152]. The importance of 5-LO in stroke has 
been proven by several authors[153,154,155,156] who have demonstrated that 5-LO expression as well as LT 
levels are elevated in the ischemic brain[157,158,159,160], indicating an important role for 5-LO in cerebral 
ischemia. In particular, Zhou et al.[154] demonstrated that the expression of 5-LO, both mRNA and protein, 
increases in the ischemic core 12 to 24 h after reperfusion, whereas in the boundary zone adjacent to the 
ischemic core, the increase was observed after 7 to 14 days. The increased 5-LO expression was primarily 
localized in the ischemic core at 24 h; in the neurons and in the proliferated astrocytes, in the boundary zone, 
14 days after reperfusion. Moreover, the cys-LT levels in the ischemic brain were increased 3 to 24 h after 
reperfusion, declined to the control level after 3 days, and moderately increased again after 7 days, whereas 
the levels of LTB4 were increased mildly 3 h after reperfusion, but substantially after 7 to 14 days, at 3 h and 
7 days after reperfusion, respectively. The first peak (3 h) was earlier than that of 5-LO mRNA or protein 
expression (24 h) and the possible explanation for the difference is that 5-LO might be activated before its 
mRNA or protein expression[154]. Recently, it has been shown that the mRNA expression of cys-LT 
receptor-1 is increased in the brain after cerebral ischemia, in rats, and that cys-LT receptor 1 antagonists 
protect against cerebral ischemic injury[161]. In a gerbil model of transient forebrain, it has been reported 
that, during reperfusion, neurons exhibit dense 5-LO immunoreactivity and the enzyme is redistributed from 
cytosol to particulate fraction after 3-min reperfusion. The LTC4 levels were increased in all forebrain 
regions during reperfusion and postischemic increases were inhomogeneous; a greater increase was observed 
in the hippocampus than in cerebral cortex. Thus, Ohtsuki et al. suggested that reperfusion, which was 
associated with translocation of cytosolic 5-LO to membranes, induced the biosynthesis of LTC4 that may 
mediate irreversible reperfusion injury in the hippocampal neurons[157].  

Recently, 5-LO has been shown to be involved in ischemic-like injury in neuronal PC12 cells[162]. 
However, in an animal model of focal cerebral ischemia, no difference in cerebral infarct size has been found 
between 5-LOKO and wild-type mice[163].  

The overall data herein reported suggested that the involvement of 5-LO in cerebral ischemia needs to be 
further investigated. 

Renal Ischemia 

The temporary discontinuation of renal blood supply is encountered in many clinical situations, such as 
kidney transplantation[164], partial nephrectomy[165], renal artery angioplasty[166], cardiopulmonary 
bypass[167], aortic bypass surgery[168], accidental or iatrogenic trauma[169], sepsis[170], 
hydronephrosis[171], and elective urological operations[172]. Thus, renal ischemia is a major cause of acute 
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renal failure (ARF), which remains, despite significant advances in critical care medicine, a major clinical 
problem, producing grave morbidity and mortality that has not significantly decreased over the last 50 
years[173]. As observed in other ischemic organs, also when the return of blood flow to ischemic tissue 
results in the recovery of normal functions, the tissue may be paradoxically injured during the process of 
reperfusion[174]. I/R injury of the kidney is characterized by a series of events including changes in vascular 
tone, enhanced vascular permeability to plasma proteins, structural alterations in renal tubule, and 
accumulation of activated neutrophils[175] through the collective action of chemotactic mediators[176], such 
as chemokines and 5-LO metabolites[177,178]. Among 5-LO products, LTB4 seems to be a key mediator in 
the pathophysiology of the renal dysfunction caused by I/R of the kidney[179]. In fact, it has been 
demonstrated that the cys-LT1 receptor antagonist, montelukast, reverses I/R-induced oxidant responses and 
improves microscopic damage and renal function. It seems likely that montelukast protects kidney tissue by 
inhibiting neutrophil infiltration, balancing oxidant-antioxidant status, and regulating the generation of 
inflammatory mediators[180]. In collaboration with Thiemermann and coworkers, we have demonstrated for 
the first time that the inhibition of 5-LO activity with zileuton reduced the renal dysfunction and injury 
caused by bilateral occlusion and reperfusion of mouse kidneys[50]. Bilateral renal I/R in the mouse resulted 
in a significant increase in plasma levels of LTB4 that was almost abolished by treatment of wild-type mice 
with zileuton. To confirm that the reported beneficial effects of zileuton were indeed caused by inhibition of 
5-LO (rather than a nonspecific effect), we have subsequently compared the effects of bilateral renal artery 
occlusion and reperfusion in 5-LOKO with those obtained using their wild-type littermates. The degree of 
renal dysfunction, injury, and inflammation were reduced in 5-LOKO mice indicating, as observed with the 
inhibition of the enzyme activity, that 5-LO and its metabolites contribute to the pathophysiology of renal I/R 
injury. Moreover, we have demonstrated that zileuton reduced the expression of ICAM-1 caused by I/R of 
the kidney in wild-type mice, with a similar reduction in ICAM-1 expression in 5-LOKO mice. The 
accumulation of PMNs was also reduced in kidneys from 5-LOKO mice or in kidneys from wild-type mice 
treated with zileuton, which had been subjected to I/R. Thus, inhibition of 5-LO activity reduces PMN 
accumulation after I/R of the kidney. This is not entirely surprising given that the 5-LO metabolite, LTB4, is 
a potent chemokine. It should be noted that the renal dysfunction and injury observed in 5-LOKO or wild-
type mice treated with zileuton was not entirely abolished. In addition, the degree of inhibition of plasma urea 
and creatinine were not as complete as that of plasma aspartate aminotransferase. This could be due to many 
other pathophysiological mechanisms, independent of LTs and/or related to an enhanced inflammatory 
response, contributing to the observed injury during ischemia and/or reperfusion. These mechanisms may 
include (but are not limited to) the generation of reactive oxygen and nitrogen species[181], an enhanced 
formation of NO[182], modification of endogenous lipoxin generation[183], or the activation of the nuclear 
enzyme poly(ADP-ribose) polymerase[184].  

The role of 5-LO metabolites in renal I/R is supported by clinical data demonstrating that zileuton 
reduces the formation of LTB4 in rectal dialysates as well as the associated inflammatory response in patients 
with inflammatory bowel syndrome[185]. 

Myocardial Ischemia 

Ischemic heart disease is the leading cause of mortality in industrialized countries. Myocardial ischemia is 
most often due to atherosclerotic plaques that reduce the blood supply to a portion of myocardium. Initially, 
the plaques allow sufficient blood flow to match myocardial demand, however, when myocardial demand 
increases, the areas of narrowing may become clinically significant and precipitate angina. In particular, the 
acute coronary syndrome occurs when an unstable plaque ruptures and activates coagulation at the site, 
blocking blood flow and causing ischemic injury to the heart. 

Most of the treatments available for ischemic insults including myocardial infarction and angina are 
directed toward preventing the tissue damage inflicted at the time of reperfusion when the coronary flow is 
restored by releasing the occlusion. As reported for other organs, ischemia, with subsequent reperfusion of 
the myocardium, is associated with inflammation, and it is well known that inflammation and 
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proinflammatory mediators, such as AA metabolites, play a role in atherogenesis, atherosclerotic plaque 
progression, and acute coronary syndrome[186]. In fact, experimental cardiac ischemia results, in some 
animal models, in the activation of 5-LO and of proinflammatory LT production by the affected myocardium. 
It has been demonstrated that LTs are released during episodes of myocardial ischemia, supplying clinical 
evidence for involvement of their biosynthetic enzyme, 5-LO, during and after acute myocardial infarction 
and unstable angina attacks. In fact, the urinary excretion of LTE4, the major urinary metabolite of cys-LTs 
in humans[187], as well as LT levels in systemic artery blood, are considerably higher in patients with 
diagnosis of acute myocardial infarction (AMI). In particular, these levels are elevated during the acute stage 
of AMI and decreased to near-normal control levels by 1 month after the attack[188]. Thus, since LTC4 
levels are increased in acute cardiac syndrome, it has been suggested that the measurement of LTC4 levels 
might be useful in clinical diagnosis and management of acute coronary syndromes[189]. Besides, it has been 
suggested that LTC4 is involved more in prolonged than in transient myocardial ischemia[190], and that 
LTD4 has a negative inotropic and chronotropic effect in isolated rat hearts with chronic myocardial 
infarction[191]. Intravenous treatment with BAY X1005, LT synthesis inhibitor, reduced the mortality rate, 
protected against the marked electrocardiogram derangement, and abolished the significant increase in 
plasma creatinine phosphokinase activity and cardiac tissue MPO activity induced by coronary artery ligation 
in rabbit[192]. Moreover, as reported for other I/R models, LTB4 regulates neutrophil infiltration associated 
with myocardial infarction[193]. Evidence for the involvement of LTs in acute coronary syndrome derive 
also from their profound effects on cardiac function, which may be mediated through effects on both 
coronary blood flow and cardiac contractility. In fact, LTs are also capable of altering blood flow to several 
vascular beds and, when synthesized endogenously and released, may play an important role in the regulation 
of the peripheral circulation. In addition to their effects on vascular smooth muscle and myocardium, the LTs 
increase the permeability of blood vessels[194]. No more recent data are available concerning the role of 5-
LO on myocardial I/R injury. 

However, over the last few years, the attention on myocardial ischemic disease has been addressed to 
polyunsaturated fatty acids. It has been demonstrated that long-chain polyunsaturated fatty acids, such as 
eicosapentaenoic acid and AA, protect the heart against I/R-induced injury[195]. In particular, it has been 
recently recognized that another less-well-characterized metabolic pathway of AA, the cytochrome P450 
(CYP450) pathway, may have important cardiovascular effects. Several lines of data support the possibility 
that certain CYP metabolites resulting from the hydroxylation of AA, such as 20-HETE, are potent 
vasoconstrictors and may produce detrimental effects in the heart during ischemia and proinflammatory 
effects during reperfusion. On the other hand, a group of regioisomers resulting from the epoxidation of AA 
including 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid (EETs) have been shown to reduce ischemic 
and/or reperfusion injury in the heart and vasculature[196]. Thus, at the present time, research is mainly 
focused on these AA metabolites rather than LTs or other 5-LO metabolites. 

Hepatic and Pulmonary Ischemia 

Few results concerning the role of 5-LO in hepatic and pulmonary ischemia are present in the literature and 
are mainly related to their level measurement.  

A common consequence of major liver surgery and liver transplantation is I/R injury. In liver surgery, I/R 
injury (warm injury) follows hepatic inflow occlusion used to reduce blood loss. In a liver graft, I/R injury 
(after a combination of cold and warm ischemia) occurs after reperfusion of the graft, although the 
mechanisms responsible for liver I/R injury following cold and warm ischemia are somewhat different. 
However, the major damage observed in both warm and cold ischemic livers is caused by the reperfusion step 
when O2 and blood nutrients interact with hepatocytes and other cell types present in the liver. This leads to 
injury and, ultimately, the death of hepatocytes and loss of liver function. The hepatic I/R induces local 
(liver) as well as remote (lung) organ injuries, which are characterized, as reported for other models of I/R, 
by the accumulation of activated neutrophils and tissue edema resulting from increased vascular permeability 
during the reperfusion period[197,198]. It has been reported that LTs are associated with several liver 
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injuries, such as fulminant hepatitis[199], liver cirrhosis[200], and hepatic I/R injury[201]. Moreover, it has 
been demonstrated that cys-LT production in the liver is increased following hepatic I/R associated with the 
development of hepatic edema and dysfunction. In fact, in the hepatic tissue, after 12 and 24 h reperfusion, 
the cys-LT, but not LTB4, levels are increased four- to five fold compared to controls, and this is 
accompanied by the enhancement of hepatic edema and plasma alanine transferase (ALT) elevation. Thus, 
only cys-LTs seem to contribute to the inflammatory process associated with this condition and to exert 
hepatotoxicity[202]. However, in contrast, Matsui et al.[203] have demonstrated that the content of LTB4 in 
the liver increases during ischemia similarly to ALT levels and hepatic MPO activity. Therefore, the 
involvement of LTs needs further investigations. 

Lung transplantation is a widely accepted treatment of choice in patients with various end-stage 
pulmonary diseases. Recent progress in graft methods, surgical techniques, and postoperative management 
has improved the clinical outcome of such transplants. However, I/R lung injury occurs in up to 22% of 
patients after lung transplantation and is still the main cause of death during the first month after 
surgery[204]. It has been demonstrated that lower torso ischemia followed by reperfusion leads to respiratory 
failure associated with sequestration of neutrophils in the lung[205,206]. The accumulation and activation of 
these inflammatory cells is believed to be caused by chemotactic agents, such as LTB4, generated by the 
ischemic tissue and released into the circulation[207]. It has been demonstrated that overexpression of LTB4 
receptor in leukocytes of transgenic mice dramatically increased PMN trafficking to skin microabscesses and 
lungs after I/R, whereas mice deficient in 5-LO showed diminished PMN accumulation in reperfused 
lungs[208]. Moreover, the role of LT in I/R injury is suggested by reports showing that after limb ischemia-
induced lung injury[209], there is an increase in LTB4 plasma levels as well as in blood and bronchoalveolar 
lavage fluid LTC4 level[210]. Moreover, in the same model, it has been demonstrated that LTs mediate 
neutrophil sequestration and lung edema after hind-limb ischemia[207]. However, as mentioned for hepatic 
I/R, the role of 5-LO and LTs in I/R lung injury has not been completely understood. 

CONCLUSIONS 

The overall results reported in the literature support the view that 5-LO and its metabolites, particularly LTs, 
contribute to multiple organ injury and dysfunction, as well as systemic inflammatory response syndrome and 
MODS associated with septic and nonseptic shock. Both shock and I/R are characterized by a severe neutrophil 
infiltration and increased vascular permeability that give rise to tissue injury. The general role of 5-LO seems to 
be related mainly to the control of vascular permeability and, through an up-regulation of adhesion molecule 
expression, neutrophil trafficking (Fig. 1). However, conflicting opinions on the actual role of this AA pathway 
are present in the literature. Thus, the comprehension of the mechanism underlying the role of the enzyme and 
the relative contribute of its metabolites will improve the knowledge of the  
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FIGURE 1. Proposed scheme for the role of 5-LO in septic shock, nonseptic MODS, and I/R injury. 

etiopathogenesis of both shock and I/R, and consequently will open new perspective for the appropriate 
therapeutic intervention.  
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