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The Bethe-Salpeter wave function X( q v + P v, q •) for two spin-l/2 quarks bound by the exchange of a scalar 
meson is examined in the ladder model. We seek the behavior <if X as the squared momentum, (q + P)2, on 
one leg becomes infinite while the squared momentum, q 2, on the other leg remains fixed. This behavior is 
investigated by making a Wick rotation, expanding x in partial-wave amplitudes x}(q 2) of the group 0(4), and 
then looking for the rightmost poles of x}(q 2) in the complex J plane. Our results verify (in the ladder model) 
the useful hypothesis that the locations of these poles are independent of q 2 and can thus be computed in the 
q 2-+ oo limit by using conformal in variance. 

I. INTRODUCTION 

In this paper we study the Bethe-Salpeter bound­
state wave function for a pion, considered as a 
bound state of two spin-!- quarks: 

(see Fig. 1). We adopt the Bethe-Salpeter ladder 
model with scalar-meson exchange as a model for 
the binding interaction between the quarks (see 
Sec. II). The ladder-model kernel is not expected 
to be a quantitatively close approximation to the 
full Bethe-Salpeter kernel in agij}lfJcp quantum field 
theory. However, we are interested only in the 
qualitative features of the wave function in certain 
large-momentum limits. For this purpose the 
ladder-model integral operator is a useful re­
placement for the full integral operator in the 
Bethe-Salpeter equation because (1) it is simple, 
and (2) it shares with the full integral operator 
the property of having physical (=canonical+ 
anomalous) dimension exactly zero in the large­
momentum limit.1 Thus one can reasonably hope 
that the ladder model gives qualitatively correct. 
information about large-momentum limits of the 
wave function in agijilfJcp theory and, more impor­
tant, that by studying the ladder model one can 
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FIG. 1. The Bethe-Salpeter wave function. 
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glean some hints about how to extract the desired 
limits from the full Bethe-Salpeter equation. (One 
might even hope to learn something about asymp­
totically free gauge theories, which are likely to 
prove more relevant to the real world than scalar­
exchange theories, but we restrict ourselves here 
to the scalar- exchange theory in order to avoid 
problems associated with gauge invariance.) We 
seek two pieces of information about x (q" +P ", q"). 
First, we wish to know how x behaves in the 
"short-distance" limit q2 -<Y:J, (q+P)2 -oo, q2 / 

(q +P)2 = 1. This short-distance limit was treated 
in some detail in a ladder model by two of the 
present authors2 and in model-independent anal­
yses by Callan and Gross3 (using the renormali­
zation group) and by the present authors4 (using 
the operator-product expansion). Thus we will 
give only a superficial treatment of this limit 
here. The second, and much more elusive, piece 
of information that we seek is the behavior of X as 
(q + P)2 - oo with q2 fixed. This information is im­
portant, for instance, in determining the behavior 
of the pion form factor F(Q2) for large Q2• 3• 4• 5 

The behavior of x when (q +P)2 and q2 are both 
large compared to the mass scale of the theory 
but (q + P)2 » q2 can be determined by using con­
formal invariance without resorting to the ladder 
model (see Callan and Gross,S Menotti5 and, for 
a more detailed treatment, Ref. 4). However, 
conformal-invariance arguments do not apply 
when q2 is not large. When faced with this diffi­
culty in a calculation of, say, the pion form fac­
tor ,S• 4 • 5 one has been forced to adopt the confor­
mal-invariance result even for finite q2 and hope 
that the dependence of x on (q + P)2 is the same 
for finite q2 as it is for large q2 • Our purpose 
here is to show that this hope is justified, at least 
in the ladder model. 

The limit (q + P)2 - <Y:J with q 2 fixed is difficult to 
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attack directly; even in the ladder model. The 
reason for· the difficulty is that in: this limit the 
vector q" must l::le.large and point very nearly 
along the light cone. However,·. one does not have 
very good control over the Bethe-Salpeter kernel 
when the momenta involved are nearly lightlike. 
Accordingly, it is found helpful to first make a 
Wick rotation of the momentum q" and the loop 
momentum in the Bethe-Salpeter equation. In the 
Wick-rotated, Euclidean world the momentum in­
tegration is well behaved. It is, of course, im­
possible to take the limit q • P - «> with q2 and 
P 2 (= -M2) fixed while remaining in the Euclidean 
world. However, one can learn about this limit 
by expanding x in certain functions G~ of cosO= q · P 
(see Sec. II): 

4 

X(qv +pv ,qv)= !: LX~(q2)G~(qv,P") . 
.T=O 1=1 

(These functions are appropriate represenbl.tion 
functions of the rotation group in the four-dimen­
sional Euclidean space.) One can analytically con­
tinue the Bethe- .... upeter equation into the complex 
J plane and thereby locate (Sec. ill) the rightmost 
poles in the J plane of the partial-wave amplitudes 
X~(q2). These poles determine the behavior of 
x(q" +P",q") when cosO= [(q+P)2- q2 - p 2 ]/ 

(2iMq)- co with q2 fixed, as one sees by perform­
ing a Sommerfeld-Watson transformation on the 
sum, as explained in Appendix A. 

One should perhaps note that this translation 
from the variables J,q 2 back to the momentum 
variables (q + P)2 , q2 is not necessary for the pion 
form-factor calculation of Ref. 4. In that calcula­
tion one also avoids evaluation of a Minkowski 
loop integration with large, nearly lightlike mo­
menta by making a Wick rotation and expanding 
in 0(4) eigenfunctions. The J-plane poles of the 
pion partial-wave amplitudes then emerge as 
directly relevant to the asymptotic behavior of 
the pion form factor. 

The paper is organized as follows. In Sec. II 
we introduce the 0(4) expansion of the wave func­
tion and rewrite the ladder-model Bethe-Salpeter 
equation using the variables J,q2• In Sec. Ill we 
use the Bethe-Salpeter equation to examine the be­
havior of the partial-wave amplitudes for large 
q2 , determining both the powers of q2 that occur 
and the locations J"'(oo) of the J-plane poles in the 
q2 - «> limit. In Sec. IV we turn to the more diffi­
cult problem of determining the J-plane structure 
of x~(q2) for finite q2• We find that x~(q2) still has 
poles for finite q2 and that the positions J .. (q2 ) of 
these poles are independent of q2 and are in fact 
the same as the pole locations J"'(oo) found in the 
q2 - co limit. We also find that the residues as­
sociated with these poles have a simple property 

that is needed in the form-factor calculation of 
Ref. 4. These conclusions are stated more fully 
in Sec. V. The connection between J-plane poles 
and large-(q-i-P)2 behavior, via the Sommerfeld­
Watson transformation, is explained in Appendix 
A. Certain technical details of the problem of 
locating poles are explained in Appendix B. 

II. THE LADDER EQUATION AND ITS 0(4) REDUCTION 

We consider a model in which the "pion" is a 
mass-M bound state of a spin-1- quark of type A 
and a spin-1- antiquark of type B. The object to 
be investigated is the Bethe-Salpeter wave func­
tion6 

Xas (q" +P" ,q") = J dxe1«•""(0 I T{I/J~>(o)iiJAB>(x)}jP"). 
(2.1) 

Here jP") is the one-pion state, withP 2=-M 2 • 

(Our notation7 is that of Ref. 4.) 
The wave function obeys the Bethe-Salpeter 

equation illustrated in Fig. 2, where S"1 is the 
full quark inverse propagator and K is the full 
two-particle-irreducible four-quark amputated 
Green's function in, say, agiiJI/Jcf> field theory. 
Of course, we are unable to deal with the full 
equation, so we adopt the ladder approximation 
in which S"1 and K are replaced by their lowest­
order forms in perturbation theory. The resulting 
equation is 

(ifi +if +m)x(q" +P" ,q")(irf +m) 

- 2 f d4k 1 (k" P" k") 
-g (27T)4 (q-k)2+1J.2x + , 

(2.2) 
as illustrated in Fig. 3. Here the vectors q" and 
k" have been Wick-rotated8 to Euclidean values 
q4 = iq0 and k4 = ik0 real. The vector P" has not 
been Wick-rotated since we must keep P 2 =- M 2 • 

Thus we take P4 =iM, P 1 =P2=P3 = o. 
Let us expand x in representation functions of 

the four-dimensional rotation group, 0(4), as ex-

FIG. 2. The full Bethe-Salpeter equation. 
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P+q 

q q 

FIG. 3. The ladder-model Bethe-Salpeter equation. 

plained in Refs. 4 and 2: 

"" 4 
x(q'~~+P'~~,q'~~),.B= 2: LX~(q2)GHq'~~),.B. 

J:O lol 

The functions G~ are 

G~= iy5(-2iM)"{q"1 • • • q~'.r}{P ,.1• • • P ,.) 
= iy5(-iM)"U ,(P· q), 

G~= -!i[y"', y 8)y5(- 2iM)"{q"1 • • • q".r-~"'} 

x{.P ••• fi .PJ 
~'1 I'J-1 

(2.3) 

= -!i [4,Ji]y5(-iM)" ~U~(P·q), (2.4) 

{... ... }{"" ... ... } G~=y"'y5(-2iM)" q~'1 •• •q".r-t P,. 1• ••P,.,_1Pa 

= (-iM)" ~ [fy5U',(P· q)- (i'Y5U',.1 (P. q)] , 

G~= -2y,.y5 (-2iM)"{q"t • • •q~'.rq"'}{P,. 1 • • •P,.) 
.r 1 r~ "" "" "' ...... ] =-(-iM) J+ 1 1§1'Y5Uj.1(P•q)-/%U',(P•q) . 

Here q'~~=qv /(q2 )11 2 and fiv= (P\P2,P3 ,fo!.) 
= (0, 0, 0, 1).17 The braces{} indicate that the 
traceless symmetric part of the tensor inside is 
to be taken. 9 The function U ,(cosO) is the Cheby­
shev polynomial10 

U ( O)-sin[(J+l)O] 
"cos - sin8 (2.5) 

and U'.,=dU,/dcosO. As explained in Ref. 2, these 
functions are eigenfunctions of the 0(4) Casimir 
operators (acting on q'~~ and the spinor indices) 
with eigenvalues (J1 ,J2)= (!J,!J). 

It is a straightforward exercise to transform the 
Bethe-Salpeter (BS) equation to the 0(4) angular 

1M2 2 q 
_!J+2M2q 
2 J 

1 J -1M2 1 (J -1)(J +2) M 2 

A,= 
-2J+1 q -2 J(J +1) q 

0 0 

1 J _!J+2M2rn 
2J+1M2rn 2 J+1 

momentum representation by inserting the 0(4) 
expansion of the wave functions into the momen­
tum- space BS equation and matching the coeffi­
cients of G~(q) on both sides of the equation. 

For the left-hand side of the BS equation,one 
needs to work out the matrices a,,b,,c, defined 
by 

(i(/+ if +m)G~(q)(irl. +m) 

4 

= L: [ G':,-.1 (q)a"j (q2) + G':,.(q)b"j (q2) + G':,-.1 (q)c"J (q2)]. 

~=1 

Notice that only G's with angular momentum J -1, 
J, and J + 1 appear here, since the inverse prop­
agators carry only one unit of angular momentum, 
that is, one factor of P". This is a special feature 
of the ladder model. 

For the right-hand side of the BS equation one 
needs to carry out the angular integration. The 
basic integral for this purpose is11 

f {k~'1•••k~'L} 
(21T)•4 d&"li (q- k)2+1J.2 

- 1 e•(L+llw{q~'1•••q~'L} 
- 81T 2qk(L + 1) ' 

where w=w(q,k) is defined by 

(2.6) 

Thus the functions G~ are eigenfunctions of the 
angular-integral operator with eigenvalues deter­
mined by the number L of q's in G~(q) (L=J+a, 
withll1 =1l2=0, tl3 =-1, fl4 =+1). Havingdonethe 
angular integration, we are left with an integral 
operator that acts on the partial-wave amplitudes 
x }(k2). Let us call this integral operator T L: 

[T h)(q2) (g/21f)2 ("" dkk2e•<L+1)wh(k2). (2.7) 
L 2(L+ 1) )0 q 

The resulting BS equation for the partial-wave 
amplitudes is 

4 

0 - ""(Ail I Bil I CJI I ) - L..J J"+1X.r•1 + .rX.r+ .r-tX.r-1 , 
1=1 

where 

J+1M2 -;r m 0 

J -1 2 
--;rM m 0 

0 0 

-M2q 0 

(2.8) 
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0 0 

0 m2 __ q2- TJ -2mq 

J+2 q2 
J+1mq m2-J+1-TJ-1 0 

0 mq - q2 

0 m 

1· 
0 m 

0 q 

0 0 
_j 

-~q ~q 

CJ= 
-~q iq 

im 
1 --zm 

0 0 

Notice that the integral operators T L have been 
incorporated into the matrix B J; T Lf means 
[T d](q 2 ) as specified in Eq. (2. 7). 

III. SOLUTION FOR LARGE q2 

The large-q2 behavior of x~(q2) can be investi­
gated by a simple heuristic method if one is will­
ing to accept as an ansatz certain information 
about the general structure of x ~{q 2) that is ob­
tained from a more thorough analysis. 2 This anal­
ysis shows that x ~(q2) is a linear combination of 
certain elementary amplitudes x ~(q2 , a) labelled 
by an index a: 

{3.1) 

The elementary amplitudes have the form 

N 

x~(q2' a)- L: L: a~(a 'N, l){lnq)l q-3-s(a)-J-N. 
N=O 1=0 

(3.2) 

The "- " in these equations indicates equality 
term by term in an asymptotic expansion about 
q2 =co. Each of the elementary amplitudes is an 
independent solution of the BS equation order by 
order in the large -q 2 expansion. The power 
s (a) is determined by a consistency condition, as 
we will see. The coefficients a~(a,N,l) for a 
given N=N0 and J=J0 are determined by the coef­
ficients forN:5N0 , 2J+N:S2J0 +N0 • Thus any 
given coefficient can be computed (in terms of a 
starting coefficient) with a finite amount of com­
putation; we will compute the coefficients 
a~(a, 0, 0) in closed form below. The large-q2 

analysis determines the elementary amplitudes 
to any desired order, but does not determine 
what linear combination of the elementary am­
plitudes occurs in the complete wave function 
x~(q2). The required coefficients c(a) in Eq. (3.1), 

0 

J 
-2--mq 

J+l 

J(J+ 2) 2 
- (J + 1)2q 

> 2 q2 
m + J +1- T J+l 

as well as the bound-state mass M, are pre­
sumably fixed by demanding suitable infrared be­
havior of x~(q2). 

We will be interested only in the leading be­
havior of each elementary amplitude as q2 - oo 

with J fixed, that is, theN= 0 term in Eq. (3.2). 
This leading part of x ~(a, q2) can be obtained by 
inserting the ansatz 

(3.3) 

into the BS equation and demanding that the equa­
tion be satisfied to leading order in q2 (that is, to 
order q·l·s·J). 

When the integral operator T L is applied to the 
functionj(k)=k"3"•-J, the leading behavior of the 
resulting function is 

[T f](q2)~ (g/2rr)2 J"" dkk2 [min(~ 1)JL+f(k2) 
.L 2{L+l) 0 q q'k 

(g/2rr )2 ·lMs-J 

=(L+1)2- (J+S)2q (3.4) 

(A subtle point connected with this integral is ex­
plained toward the end of Appendix B.) 

We now insert the ansatz (3.3) for x~(q2) into the 
BS equation (2.8) and use the result (3.4) for T LX· 
The leading terms are of order q·l-s-J; we demand 
that the coefficient of q·l·s-J vanish. (We are not 
concerned with the coefficients of nonleading pow­
ers of q since we wish to determine only the lead­
ing terms in the wave function.) Several terms of 
the matrices B J and C J-l can therefore be neg­
lected, as can the entire matrix AJ+l' The result 
is 

(3.5) 
1=1 

The matrices fi J and C J have a block diagonal 
form 
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0 ) 
b ' -." 

where 

( 

1 (g/21T)2 

b = - J+1- J2_ (J+s)2 
-," 

-1 

=(-i +i) c. ' 
1 1 

-2 +a 

c.=(: ~)· 

A. Eigenvalue condition for the exponent s 

The large-q2 BS equation has beenderived for 
J = 2, 3, . . • . For J = 0 and J = 1 there is a techni­
cal difficulty due to the fact that there are no basis 
functions G~ for J= -1 and also no basis functions 
G~, G~ for J = 0. Thus the partial-wave amplitudes 
X~v xg, and x~ are as yet undefined. Apparently, 
the BS equation (2.8) and its large-q2 form (3.5) 
remain true for J = 0 and J = 1 if we define X~1 = xg 
= x~= 0 and thus also a!1 =a~= a~= 0. 

Since a_1 = 0, Eq. {3. 5) for J = 0 implies that 
either a0 = 0 or B 0a0 = 0. In the case a0 = 0 the equa­
tion for J = 1 implies that either a1 = 0 or B1a1 = 0. 
Continuing this argument, we conclude that there 
must be some integer j 0 such that a_1 = a0 = • • • 
= a.r0 _ 1 = 0 but 

a~ of-0, 
0 

Bj1 a 1 = 0. "o "o 

(3.7) 

The eigenvalue condition (3. 7) implies that the 
exponent s must be chosen so that the determinant 
of B .r vanishes. As we will see, there are four 

0 

This recursion equation is evidently solved by a 
combination of four r functions. The solution of 
the equation for (a~, a;,) proceeds along similar 
lines. 

(3.6) 

solutions for s, and four corresponding indepen­
dent solutions of the large-q2 BS equation, for 
each choice of J 0 • 

B. Solution of the large-q2 BS equation 

The large-q2 BS equation (3.5) is a rather simple 
linear recursion equation and can be easily solved 
in closed form. To solve it, one first notes that 
because of the block-diagonal form of B .r and C .r-1 , 

the equation breaks up into two independent equa­
tions, one for the two-dimensional vector (a~, a~) 
and one for the two-dimensional vector (a~, a;,). 
(Chiral invariance as q2 - oo is responsible for this 
simplification.) Each two-dimensional equation 
can be further simplified by noting that the ma­
trices c,. are singular. Thus, for instance, the 
tw d. . al t ( 1 2)- <•> (b )•1c <•> o- 1mens1on vee or a.r,a.r =a.r =- .,.r .a.r.1 

must lie in a certain one-dimensional subspace: 

(+) ( {J+1)2- (J+S)2+(g/21T)2) 

a.r =a.r -(J+1)2+(J+S)2+(g/21T)2. 

The coefficients a .r are then seen to obey a certain 
(one-dimensional) linear recursion equation: 

Let us examine first the solution for a~ with 
(a~, a}) t- 0. One finds (after choosing a convenient 
normalization) 
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r(J +~s +i)r(J +~s +~) 
a~==r~(J~+~~-s-+~i---(~g-/r-2-~~)2~/r-2~(1~--s-)~)=rT(J~+'~s--+'~-+'(-g'/2~~~)~2/"2~(~1---s"))' 

r(J +~s +i)r(J +~s +~) 
a~=- r(J +~ +t -(g/2~)2/2(1-s)}r(J + ~ +!+ (g/2~)2/2(1- s})' 

(3.8) 

a~=O, 

~=0. 

The value of the exponent s can be chosen so that 
a' =a' = • • • = 0 by choosing s such that "o•l "o•2 

J0 +~S +~- (g/2~)2/2(1-s)=O (3.9) 

or 

(3.10) 

The first choice gives a~0 = const x (1, 0, O, 0), while 
the second choice gives a~0 = const x (0, 1, 0, 0). 

There is no 0(4) function G~, so the second 
choice is physically possible only for J 0 2:: 1, 
whereas the first choice is possible for J 0 2:: 0. [In 
addition, charge-conjugation invariance in the case 
of a ~0 or G parity in the case of a~= limits J 0 to 
the values 0, 2,4, ••• in the case of the (1, 0, O, 0) 
solution and to the values J 0 = 1, 3, 5, ••• in the case 
of the (O, 1, 0, 0) solution. 4 ] 

Equations (3.9) and (3.10) are quadratic equations 
for s. Each has one root that lies near s = 1 when 
g«1: 

s=[(Jo+1)2-(g/2~)2)1/2_Jo (3.11) 

for a, ex: (1,0,0,0) and 
0 

s = [(Jo+ 1)2 + (g/2~ )2)1/2- Jo (3.12) 

for a, ex: (0,1,0,0). Each of equations (3.9) and 
0 

(3.10) also has a root that lies nears= -1- 2J0• 

We reject this root as unphysical since it implies 
an unacceptably singular large-q2 behavior of the 
BS wave function. 2 [For instance, the unphysical 
root leads, using the methods of Ref. 4, to a pion 
form factor F(Q2)- (Q2) "o, with subtractions re­
quired to regularize the form-factor loop integra­
tion if J 0 2:: 1.] 

We now turn to the solution for a~ with (a~,~)* 0. 
One finds after a certain amount of algebra (and 
the choice of a convenient normalization) 

a~=O, 

a~=O, 

where 

(3.13) 

f,.,(s)=-!- ts 

± t{1 + [(g/2~)2 /s (2- s) ][4- (g/2~ )2]}1' 2. 

The value of the exponent s is to be chosen so that 
a' * 0· ai =a' = • • • = 0 where for G-parity "o ' "o•l .To•2 ' ' 
reasons, J 0 can be 1,3,5, ..•• Thus we choose 
s to be a solution of 

(3.14) 

There are four solutions to this equation, as shown 
in Fig. 4. As before, we reject the solutions with 
s < 0 as unphysical. This leaves two physical solu­
tions, one with s ~ 0 and the other with s ~ 2. We 
here record these roots in closed form for the 
sake of concreteness: 

s =H(J + 2)2 + tJ2 

± H [< J + 2>2 _ J2f _ 4(g/2 ~>2[4 _ (g/21T)2J}l'2>1'2 

-J. (3.15) 

It should be mentioned that, using the methods 
of Ref. 4, one also discovers elementary ampli­
tudes x ~(q2 , a) with certain integer values for the 
exponents s (a): s (a)= 5, 6, 7, • . • . The heuristic 
methods used in the present discussion are not 
sufficiently powerful to find these solutions easily. 
However, since these solutions fall off so quickly 
as q2 - oo, we will not need to be concerned with 
them. 

4 

FIG. 4. The functions f±(s). 
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C. Behavior of the solutions in the complex J plane 

In the next section we will discuss the amplitudes 
x~(q2) as analytic functions of J and will look for 
their poles in the complex J plane. As a prelimi­
nary step, let us notice that the explicit solutions 
for the large-q2 coefficients a~ are meromorphic 
functions of J, with poles at certain locations in 
the left-half J plane. 

The solution (3. B) with (a}, a~)* 0 has its leading 
(that is, rightmost) pole at 

J=-t-ts. (3.16) 

Since s ""1 for small coupling constant, this pole 
is approximately at J = -1. Further poles and 
double poles are located at J = -t- ts- N for N 
= 1,2, .... 

The solution (3.13) with (a~, a~)* 0 has its leading 
pole at 

J=-1-ts. (3.17) 

In the case of a solution with s ""0, this pole lies 
near J = -1. The case of a solution with s "" 2 will 
not be of much interest for us since the leading 
pole of such a solution a~ lies further to the left, 
near J = -2. Further poles and double poles are 
located at J = -1 - ts - N for N = 1, 2, . • • • It is also 
of interest to note that the pole at J = -1 - is is a 
simple pole of a;, but a double pole of a~. 

IV. POLES OF xj(q2 ) 

In the previous section we wrote a large-q2 as­
ymptotic expansion for the partial-wave ampli-

m2+q2- T .r -m2+q2+T .r 2mq 
J 

J+ 1 2mq 

E.r= 
-(J + 2)q (J + 2)q 0 (J+2)2m 

tm 
1 

-prt 0 q 

tudes. We found the leading powers of q2 that oc­
cur and, in ad~ition, discovered poles near J=-1 
in the coefficients a~ of the leading terms of the 
large-q2 expansion. Here we turn to the more dif­
ficult question of whether these poles persist in 
the full amplitudes x~(q2). 

A. Rearrangement of the BS equation 

We begin with the full ladder-model Bethe-Sal­
peter equation (2.8): 

4 

0 - "'(Ail I Bil I Cil I ) - L...J .T+tX.r+t + .rX.r+ .r-1X.r-1 · 
1=1 

This three-term recursion equation can be re­
duced to a two-term recursion equation because 
the matrices A and Care highly singular. We 
first multiply the equation by the vector ~{1) 
= (1, -1, 0, 0). This vector annihilates the matrix 
C .r-u so we obtain an equation involving only X J+l 

and X.r· Similarly, multiplication by ~{21 
= ( J ,J + 2, 0, 0), which annihilates A J+I> gives an 
equation involving only X.r and X.r.1 • Two more 
two-term equations follow by multiplication by 
~{31 = (0,0, 1,0) and by H41 = (0,0,0, 1). As a result 
we obtain four equations, which can be written in 
matrix form as (after some relabling of the indices 
J) 

4 

L (D~!1x ~.1 + E~'xP = o ' 
f=l 

where 

0 

(J+ 1)(J+ 3) 2 
- J+2 mq 

(J+1)(J+3) 2 

- (J + 2)2 q 

0 

(4.1) 

0 mq -q2 2 q2 
m + J +1- T J+1 

We will want to use the Bethe-Salpeter equation to compute Xn given X.r.t· Thus we rewrite Eq. (4.1) in 
the form 
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4 

i-" Fii i X.r- 4-J. " X.r. 1 , 
j =1 

(4.2) 

where 

F.,=-E.r" 1D.r. 1 • 

The matrix E., "1 , and thus F.,, can be calculated and written in closed form. This is a remarkable stroke 
of good fortune, since the matrix elements Eji contain the integral operators T., and T .,. t- Fortunately, 
however, E.,- 1 turns out to contain positive powers of these operators only.12 

When computing E"1 and then F = - E"1 D one must be careful of operator orderings. Let us write T L for 
the integral operator defined in Eq. (2.7) andf(q) for the operator that multiplies by the functionf(q). Thus, 
for instance, withj(q) = (q2+m 2)"1 we write T L(q2+m2)"1 for the combined operator 

[T _1_ h] (q) = (g/27T)2 J dk k2 e·<L+llw<k,al _1_h(k) . 
L q2+m2 2(L+ 1) q k2+m2 

With this notation, the matrix elements of F., are 

11 _ (J + 1) 1 [ 2 2 2 1 rf +2m2 1 ( ) 1 J 
F.r-2tJ 2)- q +m -M +-2--2. qT.,q- 2 2 T.,.t--2--2 qT.,q-mT.r.tm ~T.J+t' 

~ + q q +m q +m q +m 'I +m 

12 (J + 3) 1 [ 2 2 2 1 rf +2m2 1 ( ) 1 J F.r = .2(J 2)- q -m +M + - 2--2 qT.,q+ 2 2 T.,. 1 + - 2--2 qT.,q-mT.,. 1m ~ T.,. 1 , + q q +m q +m q +m '1 +m 

F1}= IJm 2) [- (J+3) -(J+2) ~T.,+ ~ .!_ T.,. 1 q+(J+2)~(T.,+ .!_ T.,. 1q)~ T.,], 
~ + q +m q +m q q +m q q +m 

14 (J+ 1)(J+3) ( 1 1 \ 
F.,= (J+2)2 m -l+q2+m2qT.,.1q)' 

7.'21- (J + 1) 1 [ 2 2 2 1 q2 - 2m2 1 ( ) 1 J EJ--21J 2)- q -m +M --2--2qT.,q- q2 2 T.r.t+-2--2 qT.,q-mT.,.tm -2--2T.J+1' 
~ + q q +m +m q +m q +m 

F2L (J + 3) 1 [ 2 2 M 2 1 T q2- 2m2 T 1 ( T T ) 1 T J 
.,-2(J+2)q q+m- -q2+m2q .,q+ q2+m2 .T+1-l+m2q .,q-m .T+tm q2+m2 .J+l, 

1 (J + 1) ( 1 \ 11 = 2(J+2)m -1+ rf+m2 T.,+l)' 

2 (J +3) ( 1 ) 11 = 2(J+2) m -1+ q2+m2T.T+t ' 

p,a = _q_ + __ q_ T 
"(J+2) q2+m2 "' 

p4,L (J + 1)(J + 3) 
.J- (J + 2)2 q. 
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B. Analytic continuation 

We have defined the partial-wave amplitudes x~ 
for positive integer values of J and have written the 
Bethe-Salpeter equation in a form in which it re­
lates X.r atJ=Nto X.r atJ=N+1: x,=F.rX.r+P 
However, the definition of the amplitudes X.r can 
be extended to include complex J by writing xHq2) 
as an integral over (q + P)2 of the discontinuity of 
x(qv+pv,qv) in the mass {q+P)2 of one leg.4 The 
amplitudes so defined are analytic functions of J 
in the right half plane and have singularities in the 
left half plane at locations determined by the rate 
of fall off of the discontinuity of x as {q+P)2-oo, 

One notices that the matrix F, in the Bethe­
Salpeter equation, as written in Eq. (4.3), is an 
analytic function of J. Thus it is sensible to as­
sume that the amplitudes x~ continue to obey the 
equation X.r =F .rXJ+ 1 for complex J. In principle 
one should rederive this equation for complex J, 
using the definition of x~ for complex J given in 
Ref. 4. We have not carried out this program in 
detail, but we have verified the crucial step: Let 
zfi(qv, qv + pv) be a scalar wave function that satisfies 
a dispersion relation in the variable (q +P)2 and 
define 

,1,1 ( v v Pv) _ 2 I d 4k 1 ,!.(kv v v) 
'~' q ,q + -g {21T)4 {q-k)2+f.J.2 '~' ,k +P • 

One can insert the dispersion integral for zfi on the 
right-hand side of this equation and calculate the 
(q + P)2 discontinuity of the output function zfi' as an 
integral over the discontinuity of the input func­
tion 1/J. If one then projects the partial-wave ampli­
tude zp~ for complex J according to the definition 
of Ref. 4, one finds 

z/!~(q2)=[ r.zp.]{q2)' 

where T" is precisely the integral operator that 
appears the Bethe-Salpeter equation [see Eq. 
{2.7)]o 

Also, the results of the previous section make 
it evident that the analytically continued x~ obeys 
the Bethe-Salpeter equation with the analytically 
continued F "' at least in the l- 00 limit. Recall 
that we solved the large-q2 version of the BS equa­
tion for integer J and obtained an explicit solu­
tion involving r functions for the amplitudes a~. 
The solutions are meromorphic functions of J and 
are bounded by powers of IJ I as IJ 1- oo in the 
right-half J plane. According to Carlson's 
theorem they are the unique functions of com­
plex J that continue the solutions for integer J 
into the complex J plane and share the good IJ I 
- 00 behavior of the amplitudes x~ defined in Ref. 
4. Finally we note that these analytically con­
tinued amplitudes do satisfy the large-q2 BS equa­
tion {3.5) for complex as well as integer J. 

C. Sources of poles 

We wish to locate the leading (i.e., rightmost) 
singularities of X~· As we will see, the singulari­
ties are poles and the leading poles occur near J 
= - 1. How do these poles arise? To see the basic 
mechanism, let us examine one term in the equa­
tion XJ =F JXJ+ 1: 

1 J+1 1 1 
X.r= 2(J+2) l+m2 T"qXJ+1+• • • 

In more detail, this term is 

l{q2)= {g/2rr)2 __ 1_J"" dk k2 e-<J+1>wkxl (k) 
" 4(J+ 2) l+m2 0 q J+t 

+ ••• 
' 

{4.4) 

where, we recall, coshw = {q2 + k2 + f.J.2)/2qk. There 
are four possible sources of poles evident in this 
equation. 

First, X~+t could have a pole. If X~+ 1 has a pole 
at J + 1 =J "'' then x~ will have a "daughter" pole 
at J =J"' -1. However, let us look for the leading 
poles of x~; that is, poles that are not daughters 
of other poles one unit to the right. 

The second evident source of a pole is the factor 
(J + 2t1 • This possible pole is too far to the left to 
be of concern to us, but in other terms in F JXJ+t 
one finds factors (J + 1t1 that could produce poles 
at J= -1. We will argue in Appendix B that these 
pole factors at J= -1 are canceled by zeros as­
sociated with the wave function at J=O. Thus 
there are no poles precisely at J = - 1. 

The third possible source of poles is the pos­
sible divergence of the integral at its k - 0 end. 
We show in Appendix B that no such infared poles 
occur near J= -1. 

Finally, we turn to a mechanism that does pro­
duce poles in x~: the k integration can diverge at 
the ultraviolet end. For large k, exp[- (J+1)w] 
behaves like (k/qt 1"+ll, In Sec. III we found how 
x~ + 1 (k2) behaves as k - oo: it is a sum of terms of 
the form 

where the smallest possible values of s lie near 
s = 1. Each such term in the asymptotic expansion 
of x~+ 1 leads to a pole term in the integral on the 
right-hand side of Eq. (4.4): 

{g/21T)2 __ 1_!."" dk k2(!!_)-CJ+1lka1 k-a-s-CJ+ll 
4(J+2)q2+m2 A q q .T+l 

1 q""' g2/(21T)2 . 
2J+s+1q2+m2 4{J"'+2) a~"'+l+analytlC' 

where J"' =- i- is is the pole location. With s ~ 1, 
we have J"' ~ - 1 . 

Let us consider one more example of how poles 
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arise from ultraviolet divergences in the BS equa­
tion. One term in x~(l) is 

X3=---1-T ·--q-T X3 +• •• 
J q2+m2 J+1 q2+m2 J J+1 

The integral operator!J= TJ+Jq/(q2 +m2 )]TJ has 
the kernel 

(g/21T)4 k2 
IAq,k)= 4(J+1)(J+2) q 

w (P10 P 2 ) is defined in Eq. (2.6). The limiting be­
havior of this kernel as k- 00 with q fixed as 

( k) (g/21T)4 J+lk1- J 1 k 
!Jq, -4(J+1)(J+2)q n 

+ a(J, q)k1 -J + O(k-") , 

where a(J, q) is a not very simple function of J and 
q. When I" is applied to a term in X~+ 1 that be­
haves like a~+ 1k- 3 -s-<J+ 1 > for large k, the result 
has a leading singularity at J=J., =-1- ~s. Be­
cause of the Ink factor in IAq, k), the singularity 
will consist of a double pole term plus a simple 
term: 

3 - 1 (g/21T)4 ""'+1 
IJXJ+ 1 - (2J + 2+ s)2 4(J., + 1)(J.,+ 2)q 

+ (2J + ~ + s) a(J.,, q) +analytic . 

As q -0, one would expect that x~(q2) behaves 
like qL where, for integer J, L is the number of 
q~''s in the basis function G~, that is, L =J + ~~ 
where ~1 =~2 =0, ~=-1, and ~4 =+1. Notice 
that the small-q behavior of the residues x~(q2) 
is q""'for i=1, 2 and q"a- 1 for i=3, as expected. 

As q-oo, the asymptotic form of the residue of 
x~ must be the same as the residue at J = J., of the 
asymptotic form a~q- 3- J-s of x~, as given in Sec. 
ill, Eqs. (3.8) and (3.16). It is. 

The full q2 dependence of Resx~ can be most 
simply understood by defining the Bethe-Salpeter 
amplitude with one leg amputated: 

x(q"+P", q") =x(q"+P",q")(ifi +m). (4.6) 

The partial-wave amplitudes of x are related to 
those of X by x~=G}ix~, where G 1i is a certain 
matrix given in Ref. 4. One finds that the residue 
of x~ at J =J"' has a pure power-law dependence on 
q2: 

Resx~(q2)=(0,0,q"a- 1 C,O). (4.7) 
J•J'a 

Thus the deviation at modest q2 of Resx~(q2) from 

It should by now be evident how the terms in the 
asymptotic expansion of x~ + 1 (q2) for q2 - oo act to 
produce poles in x~(q2), and how the locations of 
these poles and the associated Laurent coefficients 
can be calculated. We will spare the reader the 
details of this calculation, and simply state the 
results. 

D. Poles from asymptotic terms with (a1,a2) * 0 

Consider first one of the terms in the asymptotic 
expansion of x~(q2) with the form a~q- 3 -J-s with 
a~= (a~, a~, 0, 0) as given by Eq. (3.8) and with s 
~1, as given by Eqs. (3.11) and (3.12). Each such 
term induces a simple pole in x~(l) near J =- 1 at 
J =J., =-~-h. The residue at this pole is 

(4.5) 

Res x'}(q2 ) = 0 , 
J.J'., 

where 

its pure asymptotic power law dependence on q2 

is entirely due to the massive propagator on the 
q" leg of the wave function. 

E. Poles from asymptotic terms with (a3,a4 ) * 0 

Consider next one of the terms in the asymptotic 
expansion of x~(q2 ) with the form a~q- 3 - J- s, with 
a}= (0, 0, ~.a'}) as given by Eq. (3.13) and with 
s ~ 0 as given by Eq. (3.15). Each such term in­
duces a double pole13 nearJ=-1, atJ=J.,=-1 

1 -a-s. 
The coefficient of (J + 1 + ~s)-2 in the Laurent ex­

pansion of x~(q2) about J =J"' is 1/!1 (q2), where 

1_ ,,~ _ mq""' (g/21T)4(2J.,+ 3) «! 
1/J -'I' - q2 +m2 16(J04 + 1)2(J04 + 2) J'a+ 1 ' 

1/!3 _ J -1 (Ja + 1)q2 - (Ja + 2)m2 (g/2?T)4 
--q"' q2 +m2 16(J04 +1)2 (J"'+2) 

xa~a+l , (4.8) 
1/!4=0. 

The q- 3 -J'-s terms in X~(q2) also produce single 
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pole terms rt I (J + 1 + !s) in the Laurent expansion 
of X~ about J =- 1 - !s. The residues r 1 are cal­
culable, but we have not calculated them. 

F. Contribution from daughter asymptotic terms 

As we have seen, the q-s-.r-s terms in xHq2) 
with s ~ 0 produce poles and double poles at J 
= - 1 - !s. There is another source of (simple) 
pole terms at the same J. Recall from the dis­
cussion at the beginning of Sec. III that for each 
"parent" term a~q·s- .r-s in the asymptotic expan­
sion of x~(q2} there are "daughter" terms that 
fall off faster than the parent term by an integer 
number of powers of q (except for some possible 
factors of lnq}. A complete analysis of the daugh­
ter terms is given in Ref. 2, and we rely on that 
analysis for the details of the present discussion. 

Consider the amplitudes x~(q2} and x~(q2}. The 
large-l expansion of these amplitudes will contain 
terms a~q·s-.r-s-l that are daughters of the q·3-.r-s 
terms.14 According to our previous discussion of 
the effect of asymptotic terms with (a1 , a2) ;~oo, 
such a daughter term will produce a simple pole 
at J=-!- !(s+ 1} = -1- h. It is possible to cal­
culate the residue of this pole term by first cal­
culating the coefficients a~ of the daughter as­
ymptotic terms, then using Eq. (4.5), but we have 
not done so. 

No other daughter terms in the asymptotic ex­
pansion of x~(q2 ) fall off slowly enough to produce 
a pole near J= -1. 

V. CONCLUSION 

The behavior of the pion wave function x(q" + P" ,q"} t!!.B 

as (q + p )2- oo with q2 fixed is controlled by the 
rightmost singularities in the complex [ 0(4)] 
J plane of the partial-wave amplitudes x~(q2}. 
These rightmost singularities play an important 
role, for instance, in determining the behavior of 
the pion electromagnetic form factor as Qa- oo,4 

The J -plane singularities of x~(q2 ) can be studied 
in the limit l- oo by using the requirement of con­
formal invariance at short distances: in the q2 

- oo limit the leading singularities are poles near 
J = - 1 whose locations are determined by the 
anomalous dimensions of certain operators.4 

In order to apply this short-distance information 
to the pion form-factor problem, one is led to 
adopt a simple but unproven hypothesis3•4•5: 

(1} the rightmost singularities of x~(q2} are poles; 
(2) the positions of these poles are independent of 

q2; 
(3) the residues of x~(q2) at these poles have the 

same rates of fall-off as q2 - oo as do the leading 
terms in the large-q2 asymptotic expansion of 
x~(q2). 

On this hypothesis, the pole positions of x~(q2) 
at modest q2 are just those determined by the 
large-q2 analysis. 

The purpose of this paper has been to test this 
hypothesis in a model that is simple enough to 
permit calculation, namely, the ladder model with 
scalar gluon exchange. We have found that the 
hypothesis stated above has survived this ladder­
model test. 

(The short-distance analysis of Ref. 4 indicates 
that the J -plane poles should be simple poles. 
However, in a model like the ladder model in 
which the anomalous dimension of the quark field 
is zero, some of these poles are expected to 
coalesce into double poles. We do indeed find 
double poles as expected.) 

In the calculation of the pion form factor using 
the large-l, conformal-invariant limit of the pion 
wave function, it is found5• 4 that the contribution 
arising from one set of poles of the wave function 
vanishes. The poles involved are those at J=-! 
- !s with s ~ 1, as given in Eqs. {3.11} and (3.12). 
(In the analysis of Ref. 4, these poles are as­
sociated with odd chirality operators like 'i;jy5 l/J in 
the operator-product expansion of two spinor 
fields.) The contribution to the pion form factor 
from such a pole is proportional to an integral of 
the form 

1a .. dq2 )[~~= x~(q2)- ~~ x~(q2)] A(qa} 

+Res x~(q2)B(q2)} . 
J'=JOl 

When one replaces Resx~(q2 ) by its large-q2 limit 
r 1q·s-s-.rt!l., one finds a cancellation because rt 
- r 2 = r 4 = 0. One also finds that the exact residue 
will obey Resl-Resx2 =·Resx4 =0, thus giving an 
exact cancellation, provided that 

Res x~(q2) = Jiii(q2)riq·3- s- .rt!l.. 
.r • .rt!l. 

Here H11 is a matrix of a certain form4 such that 
multiplication of x~(q2) by H11 corresponds to 
mult~plication of x (q" + P", q"} t!!.B' on the right by 
[F(q )iff +G(l)] 8, 8 • (Thus only the leg of the wave 
function that carries modest momentum is modi­
fied.) We find that the residues of x~(q2) at the 
poles in question are related to their large-q2 
limits in the required way in the ladder model. 
[We did not investigate the behavior of the resi­
dues at the other set of singularities of x1 those 

1 • "' at J= -1- 2s wtth s~ 0 as given in Eq. (3.15}.] 
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APPENDIX A 

In this appendix we show briefly how the right­
most poles in the complex J plane of the partial­
wave amplitudes x~(q2) determine the large-(q+P)2 

behavior of the Bethe-Salpeter wave function 
x(qv+pv,qv). Many of the techniques used here are 
discussed more fully in Ref. 4. 

Begin with the part of X(qv + pv, qv) that is pro­
portional to y5 : 

XI(qv+pv,qv)= t X~(l)iY5 (-iM).rU,.(z), (A1) 
J=O 

where z = (j4 =ill=- iqu P u!M(q2)1 12• To begin with, 
z is real and - 1 < z < 1. We wish to rewrite the 
sum in a form in which the limit z-oo can be in­
vestigated. 

First let us break up U,. into two parts: 

U ,.(z) = V ,.(z)- V _ ,._ 2 (z) , 

where 

(A2) 

(A3) 

The function V ,.(z) is defined with a cut along the 
real-z axis from z =- oo to z = + 1. In Eq. (A1) we 
choose to evaluate v,.(z) and v_,._2(z} just below 
the cut. The crucial fact about V ,.(z) is its large­
z behavior: 

V ,.(z) - (2z).r as z-oo . (A4) 

Next, rewrite the sum involving V ,.(z) by means 
of a Sommerfeld-Watson transformation: 

(A5) 

Initially, the integration contour circles the posi­
tive real-J axis from J = oo -- iE. However, we have 
arranged our conventions so that the integrand 
falls off exponentially as IJ 1- 00 • Thus the con­
tour can be unfolded so that it runs just to the 
left of the imaginary-J axis from - E- ioo to 
-E+i00 • 

At this point we can let z be large and ask what 
happens as z- 00 • Thus the large-z behavior of the 
integral can be investigated by moving the integra­
tion contour to the left. When the contour has been 
moved past a pole in x~ at, say, J=J00 a contribu­
tion 

(A6) 

must be included in xr· Apparently the rightmost 

poles yield the leading terms in the (q + P)2 - oo 

limit. 
One must, of course, worry about the "sum" 

term in (A5) and also the terms that arise when 
the integral is moved past a pole of 1/ simrJ at 
J = -1, -2, . . . . These terms cancel against one 
another provided 

(A7) 

for N = -1, 0, 1, 2, . . . . These identities are called 
the Lorentz symmetry conditions for x~. They are 
discussed in more detail in Ref. 4. As we see 
here they are the translation into the language of 
partial-wave amplitudes of the statement that the 
asymptotic expansion of x1 (qv + pv, qv) does not 
contain terms that fall off like [ (q + P)2]- N- 2. 

In a realistic model in which all fields have 
anomalous dimensions, one would not expect 
[ (q + P)2]- N- 2 terms. Thus one would expect 
(A7) to hold for all N. In the ladder model one 
can have some doubti 6 about the validity of these 
relations for all No We prove the validity of some 
of the relations in the ladder model in Appendix B. 

We have seen how J-plane poles are related to 
large-(q+P)2 behavior in the part of the wave func­
tion proportional to y5. One can treat the other 
parts of the wave functions in an exactly analogous 
manner by defining invariant amplitudes F u F 2, 
F 3,F4 as in Ref. 4: 

x(qv + pv, qv) = iysFl + i[P,Jf] y5F2 + p YsF3 + ti YsF4. 

(A8) 

E<:-ch F; (q • P, q2 ) can be expanded in partial waves 
f j(q2): 

"" 
F;= ~ (-iV.6(q2)U,.(z). (A9) 

As before, the poles off~ determine the large-q• p 
behavior ofF;. The poles in the f~ can be deter­
mined from the poles in the x~ by using4 

x~=M-.rfr.,, 

2 - M1- .r( J !2 j2 ) X.r-- q J + 2 J+ 1 + .r- 1 , 

s- "-M·.r(M:ts J 4) X.r-- 2 .r- 1 - J + 1 qf .r , 

(AlO) 

APPENDIX B 

In Sec. IV we found that x~(q2 ) has poles on the 
real-J axis near J= -1. These poles arise when 
the integral operators T .r in the BS equation are 
applied to the wave functions: for certain values 
of J the integrations diverge at their ultraviolet 
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ends. We mentioned the possibility of divergences 
of the integrals at their infrared ends and men­
tioned the explicit factors of 1/(J + 1) that occur 
here and there in the Bethe-Salpeter equation. 
But we claimed that neither of these mechanisms 
produced poles of x~(q2) near or to the right of 
J= -1. In this appendix we verify that claim. 

First let us consider the possibility of a di­
vergence at the k- 0 end of one of the integrals 
in the BS equation. We first need to know how the 
wave functions xHq2 ) behave as q2 - 0. One natural­
ly expects that 

(Bl) 

asq2 -0, where~1 =~=0, ~3 =-1, and~4 =+1. 
(For integer J, J + ~~ is the number of factors of 
q,. that occur in the basis function G~.) This hy­
pothesis can easily be checked by inserting it on 
the right-hand side of the Bethe-Salpeter equation 
(4.2) and verifying that the same result is repro­
duced on the left-hand side. 

Let us now use this result in a typical integral 
from the BS equation: 

[ T JqX~+1] (q2) 

- (g/21T)a f"' dk k2 e·<J+r>w<q,k>kxr (k2) 
- 2(J+1) 0 q J+l 

The factor exp[- (J + 1)w] behaves like (k/ qV+1 
as k - 0 and X~ +l (k2) behaves like e +1. Thus the 
integral has a possible pole at J =-3 arising from 
an infrared divergence of the integration. When 
one examines all of the integrals in the BS equa­
tion (4.2) in this manner, one finds that the right­
most possible infrared poles are at J = -2. Thus 
these possible poles are not of concern to us. 

(We suspect that the residues of the possible 
infrared poles vanish, but we have not pursued 
this question.) 

There is one final source of poles near J = -1 
that we must dispose of. The integral operator TJ, 
which occurs in several places in the Bethe-Sal­
peter equation (4.2), contains an explicit factor of 
(J + 1t1 in its definition, Eq. (2.7). In addition, the 
BS equation contains a few more explicit factors 
of (J + 1)"1. We will show here that these factors 
do not produce poles in x~ at J = -1. 

Consider, for example, the term F)2 x~. 1 that 
occurs in the BS equation (4.2) for x). According 
to Eq. (4.3), FlJ contains the operator T., and thus 
has superficially a pole at J= -1. However, x~. 1 
must have a zero at J + 1 = 0. To see this, con-

sider the original form (2.8) of the BS equation 
for the partial-wave amplitudes. When one sets 
J = 1 in this equation, one notices that it contains 
terms C~2 ~· However, there is no basis function 
G~. For convenience in deriving Eq. (2.8} we have 
included a purely fictional term G~ ~ in the 0(4) 
expansion of x(q+P, q}, with the understanding that 
x~ is to be zero by definition. 

After deriving Eq. (2.8) for J= 0, 1, 2, .•. we 
assume that the analytically continued amplitudes 
x~ (defined as in Ref. 4) obeys the same equation 
for complex J. (This assumption was discussed 
in Sec. IV.) On this assumption the analytic func­
tion x~ must have a zero at J = 0 in order that the 
analytically continued BS equation match the in­
teger-J equation at J= 1. Using this method one 
finds 

x~=O, 

xg=o (B2) 

~r- X~1- (2m/q)x~ 1 =0 . 

The conditions (B2) help to cancel factors of 
(J + 1)" I, but they are not sufficient. Consider, 
for example, the following term in the BS equa­
tion (4.2) for x~: 

_!!!:_T --1-T 3 (B3) qa+m2 .r l+m2 JXJ+1 • 

Each operator T., contains a factor (J + 1t\ but we 
have no reason to believe that x~ + 1 (k2) has more 
than a first-order zero at J + 1 =0. 

In order to find the extra factor of zero needed 
in Eq. (B3) we now return to a significant technical 
point that was omitted from the discussion of the 
large-l behavior of x)(q2) in Sec. III. Recall that 
the Bethe-Salpeter equation (2.8) contains expres­
sions like T .r-rX~ or, more generally, 

[T .,. ll.;X~ ](q2 ) 

= {g/21T)a . ( .. dk ka e·<J+ ll.+1 >w<q, k>xl (k2) 
2(J + ~~ + 1)Jo q " ' 

(B4) 

where ~1 =~2 =0, ~=-1, and ~4 =+1. Suppose 
we wish to know how T J + ll.. x~ behaves as q- 00, 

given an input ansatz for the large-k behavior of 
x~. To do this we define the Mellin transform2 

of x~: 

X~(o)= Ia"' dkk5 • 2x~(k). {B5) 

Then, by adding and subtracting a term on the 
right-hand side of (B4) we can write 

[ T xi](qa)= {g/21T)a q·<J+Il.+a>xi(J+~·+1)+ {g/21T)a j"' dkka fe-<"•ll.;+1>w<q,k>_(g_)-<"•ll.;+r>tl(~). 
J+ll.; J 2(J+~;+1) " • 2(J+~;+1) 0 q t k ) " 

(B6) 
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As q- oo, the factor in braces in the integrand 
tends to 

[(k)·(J'+I>.j+1) (q)·(J'+I>;+1)] 
9(k -q) q - k . 

Thus the asymptotic form of the integral in (B6) 
depends only on the asymptotic form of x~(k2). 
If we insert xHk2) - a~k- s- s- J' into the integral we 
obtain 

(g/211")2 -1-8- J' 

(J +A+ 1)2 - (J +s)2 q 

as q- oo, This is the result recorded in Eq. (3.4). 
There remains the term proportional to the 

Mellin-transformed wave function x~(o) =J + a1 + 1. 
We demand that the Bethe-Salpeter equation be ' 
satisfied term by term in an asymptotic expan­
sion for large q2 • But there is no other term in 
the BS equation that behaves like q·<J'+~>+ 21 • Thus 
consistency requires that 

(B7) 

(Our discussion here has been heuristic. A rigor­
ous derivation valid for integer J is given in Ref. 
2.) 

The result (B7) provides the extra factor of zero 
needed in the expression (B3). Looking at Eq. (B4) 
we note that T J'+ 111X~ contains an explicit factor 
(J + a1 + 1}"1• However we see from the repre­
sentation (B6) that this factor does not produce 
a pole at J +a,+ 1 = 0 because the first term in 
(B6) is identically zero _and in the second term 
the pole is canceled by a zero of the integrand 
at J + a 1+ 1 = 0. Thus in the expression (B3) the 
rightmost operator T J' is not singular at J = -1 
(after we have rewritten it and thrown away the 
Mellin-transform term) and the pole of the left­
most operator T J' at J = - 1 is canceled by the zero 
of x~. 1 atJ+1=0. 

The reader is now in a position to verify, using 

*Work supported in part by the National Science Founda­
tion under Grant No. MPS 75-22514 and in part by the 
U. S. Energy Research and Development Administra­
tion. 

1The full kernel is an appropriate amputated four-point 
function, with dimension -2-41'1/J, times two fermion 
propagators, each with dimension -1 +2'Y¢, where 'Y¢ 
is the anomalous dimension of the Fermi field. Thus 
d 4p times the kernel is exactly zero dimension. 
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Eqs. (B2) and (B7), that all of the factors (J + 1)"1 
in the Bethe-Salpeter equation are canceled. 

One can also ask whether the Lorentz sym­
metry conditions on the wave function are satis­
fied in the ladder model. These conditions are4 

MJ'x~-(-1)J'M·J'· 2 x:J'_ 2 =0, 

(J + 2)MJ' X~ +J( -1 )J'M· J'· 2X~ J'- 2 = 0 , 

(J+1)MJ'x~+J(-1)dM·J'· 2x~J'- 2 =0, 

for J = 0, ± 1, ± 2, • . • • The first few conditions are 

O=~=x~=x~1=x~1=x~1 · 

We have already seen [ Eq. (B2)] that x~, ~. and 
the combination x~ 1 - x~ 1 - (2m/q}x~ 1 vanish. 

One can also show that x~ 1 =0. One uses the 
Bethe-Salpeter equation x~ =F:fx~. 1 and applies 
the same techniques that were used above to show 
that x~ has no poles at J = -1. Special care is 
needed with the term in~ proportional to TJX~+l· 
Although x~ + 1 vanishes at J = -1, T J' contains a 
factor (J + 1}"1 that would cancel this zero and give 
a finite value for x~ 1 if x~. 1 (k) were an arbitrary 
function of k. However, the Bethe-Salpeter equa­
tion supplies the extra dynamical information that 
the Mellin transform X~. 1(a) vanishes at a=J + 1, 
[See Eq. (B7)]. With this information one finds, 
using Eq. (B6), that X~ 1 =0. The information that 
x~+1 (J + 1) = 0 was missing in the perturbative cal­
culation15 of Menotti; this accounts for his ob­
taining a (Q2}"1 term in the pion form factor. 

One can easily check, using the results of Ref. 
4, that the Lorentz symmetry conditions derived 
here, namely x~=xg=x~ 1 - X~ 1 =x~ 1 =0 are suffi­
cient to guarantee that the ladder-model pion form 
factor does not have a (Q2)" 1 term in its asymptotic 
expansion for large Q2 • It remains an open ques­
tion whether the remaining Lorentz symmetry 
conditions are valid in the ladder model. 
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22. 
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the right-hand side. 
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