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Abstract 

This study investigated the effect of the coefficient of friction of a running surface on 

an athlete’s sprint time in a sled-towing exercise.  The coefficients of friction of four 

common sports surfaces (a synthetic athletics track, a natural grass rugby pitch, a 3G 

football pitch, and an artificial grass hockey pitch) were determined from the force 

required to tow a weighted sled across the surface.  Timing gates were then used to 

measure the 30-m sprint time for six rugby players when towing a sled of varied 

weight across the surfaces.  There were substantial differences between the 

coefficients of friction for the four surfaces ( = 0.21–0.58), and in the sled-towing 

exercise the athlete’s 30-m sprint time increased linearly with increasing sled weight. 

The hockey pitch (which had the lowest coefficient of friction) produced a 

substantially lower rate of increase in 30-m sprint time, but there were no significant 

differences between the other surfaces.  The results indicate that although an 

athlete’s sprint time in a sled-towing exercise is affected by the coefficient of friction 

of the surface, the relationship between the athlete’s rate of increase in 30-m sprint 

time and the coefficient of friction is more complex than expected. 



 

 

Introduction 

Sled-towing is a common training exercise for developing sprint-specific strength in 

track and field athletics and in field sports such as rugby league, rugby union, 

American football, Australian rules football, and soccer (Faccioni, 1994; Seagrave, 

1996; Sheppard, 2004; Spinks et al., 2007; Harrison & Bourke, 2009).  In a sled-

towing exercise, the load on the athlete arises mainly from the friction force between 

the base of the sled and the running surface (Cronin & Hansen, 2006).  The 

magnitude of this force is given by the product of the normal force of the sled and the 

coefficient of kinetic friction for the combination of sled and running surface (Halliday 

et al., 2001).  If the running surface is level and the tow cord is held at a constant 

angle, then the normal force of the sled is proportional to the weight of the sled.  

When using sled-towing exercises, many coaches set the weight of the sled as a 

percentage of the athlete’s body weight so as to account for the fact that larger 

athletes tend to have greater muscular strength and can generate greater muscular 

power.  Several studies have shown that towing a weighted sled reduces the 

athlete’s running velocity, stride length, and stride frequency; increases the ground 

contact time; increases the forward lean of the trunk; and produces changes in the 

configuration of the athlete’s lower limbs during the ground contact phase of the 

stride (Lockie et al., 2003; Murray et al., 2005; Alcaraz et al., 2008; Cronin et al., 

2008; Maulder et al., 2008).  The magnitudes of these changes tend to increase with 

increasing sled weight and some coaches recommend an upper limit to the weight of 

the sled so that the exercise does not induce excessive changes in the athlete’s 

sprinting technique (Jakalski, 1998; Mouchbahani et al., 2004; Cissik, 2005; Alcaraz 

et al., 2008; Maulder et al., 2008). 



 

 

 Although considerable work has been done on the biomechanics of sled-towing 

exercises, the influence of the coefficient of friction of the running surface on the 

athlete’s running velocity and sprint time has not received adequate attention.  If a 

sled-towing exercise is performed on different running surfaces (with different 

coefficients of friction), a substantially greater or lesser sled weight should be 

required in order to produce the same training stimulus.  However, the strength of the 

relationship between the coefficient of friction of a running surface and the athlete’s 

sprint time in a sled-towing exercise is currently not known.  Knowledge of this 

relationship could help coaches to evaluate the intensity of the exercise and so help 

determine the most appropriate sled weight for the athlete. 

 A simple energy argument suggests that as the coefficient of friction of the 

running surface increases the athlete’s sprint time in a sled-towing exercise should 

increase because more of the athlete’s muscular power is dissipated through sled 

friction.  Therefore, we expect that running surfaces with a higher coefficient of 

friction should produce a greater rate of increase in the athlete’s sprint time with 

increasing sled weight.  A complicating factor in any investigation of sled-towing 

exercises is that athletes can differ in their physical capacities and sprinting 

technique.  On any given running surface we might expect to observe inter-athlete 

differences in the strength of the relationship between sprint time and the weight of 

the sled, and when comparing running surfaces we might expect to observe inter-

athlete differences in the strength of the relationship between the athlete’s rate of 

increase in sprint time with increasing sled weight and the coefficient of friction of the 

running surface. 

 In the study reported here, we measured the coefficient of friction for a sled 

sliding across four common sports surfaces (a synthetic athletics track, a natural 



 

 

grass rugby pitch, a 3G football pitch, and an artificial grass hockey pitch).  We then 

measured the 30-m sprint times of six rugby players when towing a weighted sled on 

the four surfaces.  The main hypothesis of the study was that the strength of the 

relationship between 30-m sprint time and sled weight would show a steadily 

increasing trend as the coefficient of friction of the surface increased.  The two 

secondary hypotheses were that on any given sports surface there would be 

substantial inter-athlete differences in the strength of the relationship between 30-m 

sprint time and sled weight, and that there would be substantial inter-athlete 

differences in the strength of the relationship between the rate of increase in 30-m 

sprint time and the coefficient of friction of the sports surface. 

 

Methods 

Coefficient of friction of selected sports surfaces 

We used the ‘friction sled’ method of determining the coefficient of kinetic friction for 

a body sliding over a flat surface (Blau, 1996; Persson, 1998).  In this method, a 

normal force (N) is applied to the body and the tangential towing force (F) required to 

move the body at constant velocity across a (fixed) flat surface is measured.  The 

gradient of the (linear) relation between the normal force and the tangential towing 

force gives the coefficient of kinetic friction (i.e. F = N).  In the present study, we 

tested a sports training sled when sliding over four common sports surfaces: a 

Rekortan M99 athletics track (APT Corp., Harmony, PA, USA), a Top Blade 3G 

artificial grass football pitch (Blakedown, Banbury, Oxfordshire, UK), a Blakedown 

Elite artificial grass hockey pitch (Blakedown, Banbury, Oxfordshire, UK), and a 

natural grass rugby pitch.  The sled had a mass of 3.3 kg and a series of weights 

were added to the sled, giving a total mass of up to 55 kg.  The sled was towed by 



 

 

hand at a constant velocity of about 0.5 m/s while the towing force on the sled was 

measured with a spring balance.  The sled travelled on two parallel metal tubes about 

550 mm long and 25 mm in diameter, and the sliding surfaces of the base of the sled 

were smooth bare steel.  When towing the sled, the towing force and spring balance 

were horizontal to within about 5°.  The coefficient of friction () for the sled-surface 

combination was obtained from the gradient of a least-squares linear fit to a plot of 

the towing force against sled weight. 

 For many combinations of materials, the coefficient of kinetic friction has little or 

no dependence on the velocity of sliding, the area of contact between the surfaces, 

or the surface roughness of the materials (Blau, 1996; Persson, 1998).  However, in 

this study we tested for velocity dependence in the coefficient of friction by towing the 

sled across the Rekortan athletics track at various speeds.  The sled was loaded with 

a series of weights and five trials were conducted at each weight using velocities 

between about 0.5 m/s and 2.5 m/s.  Two timing gates with a time resolution of 0.001 

s were placed 2.0 m apart and the velocity of the sled was calculated from the 

elapsed time obtained from the two gates.  A multivariate linear regression analysis 

using the forced entry method was used to determine the relative contributions of the 

sled weight and towing velocity to the friction force.  The analysis was conducted 

using PASW Statistics 18 (IBM, Somers, NY, USA), the independent variables were 

the sled weight and the towing velocity, and the dependent variable was the friction 

force.   

 

Sled-towing sprint times on the sports surfaces 

We tested the four sports surfaces for differences in their effect on sprint time in a 30-

m sled-towing exercise.  Six male rugby players volunteered to participate in the 



 

 

study.  The participants were active players with a university rugby team, with an 

average age of 20 ± 2 years, height 1.82 ± 0.05 m, and body mass 85 ± 9 kg (mean 

± SD).  The study was approved by the Human Ethics Committee of Brunel 

University, the participants were informed of the procedures and inherent risks prior 

to their involvement, and written consent to participate was obtained. 

 The sprint trials were 30-m sprints at maximum intensity from a standing start.  

Two timing gates with a time resolution of 0.001 s were placed 30 m apart.  The 

participant commenced from a line 2 m behind the first gate so as to avoid early 

breaking of the beam of the first gate and his 30-m sprint time was taken as the 

elapsed time obtained from the two gates.  All tests were conducted in still air 

conditions in an outdoors sports facility, except for the test of the Rekortan athletics 

track, which was conducted in an indoor athletics stadium.  The participants wore 

their own athletic training clothes (shorts and tee-shirt) and the same shoes for every 

surface. 

 The weighted sled was attached to the participant by a 3 m cord and waist 

harness.  Weights were added to the 3.3 kg sled to give a total weight as a desired 

percentage of the participant’s body weight.  The sprint conditions were: no sled, 5%, 

10%, 15%, 20%, 25%, and 30% of the participant’s body weight.  Before testing each 

sports surface, the participant performed a standardized 15-min warm-up routine 

consisting of jogging, dynamic stretching, and five unloaded sprints over 30 m.  The 

participant also performed three sprints while towing 10%, 20%, and 30% of their 

body weight to become familiar with towing a sled on the test surface.  For the sled-

towing trials, the participant performed one trial at each condition and the order of the 

trials was randomized.  A 5-min rest period was given between trials to minimize the 



 

 

effects of fatigue on sprint performance.  This rest period is sufficient for full recovery 

from repeated maximal sprints of short duration (Harris et al., 1976). 

 In addition to affecting the friction force acting on the sled, the type of running 

surface was expected to affect the athlete’s 30-m sprint time through differences in 

the stiffness and energy loss of the surface (Stefanyshyn & Nigg, 2000; Brechue et 

al., 2005).  Tukey’s HSD test was used to make pairwise comparisons between the 

unloaded 30-m sprint times on the four sports surfaces ( = 0.05), and the size of the 

differences was expressed using Cohen’s d.  According to Cohen (1988), the 

thresholds for ‘small’, ‘medium’, and ‘large’ differences are 0.2, 0.5, and 0.8, 

respectively.  To account for any differences in the energy exchange characteristics 

of the four running surfaces, all further analysis of the 30-m sled-towing times used 

the participant’s time relative to their unloaded sprint time. 

 The participant’s (relative) sprint times were plotted against the weight of the 

sled (expressed as a fraction of the participant’s body weight), and then a linear 

regression curve (y = mx + c) and a quadratic regression curve (y = ax2 + bx + c) 

were fitted using the Levenberg-Marquardt algorithm.  For each model, a corrected 

Akaike Information Criterion (IACc) was calculated from the variance in the regression 

fit, and the model with the lowest IACc value (and hence the highest relative 

probability of being correct) was selected as the best fit.  Assuming that a straight line 

was confirmed as the best fit, the gradient (m) was taken as the rate of increase in 

30-m sprint time (in seconds per body weight) for the participant. 

 On any given running surface we might expect to observe inter-athlete 

differences in the rate of increase in 30-m sprint time due to differences in the 

athlete’s physical capacities and sprinting technique.  The magnitude of the inter-

athlete variation in the rate of increase in 30-m sprint time on a surface was 



 

 

quantified by calculating the coefficient of variation (CV) of the mean rate of increase 

in 30-m sprint time.  In addition, Tukey’s HSD test was used to make pairwise 

comparisons between the six participants and the size of the differences between the 

participants was expressed using Cohen’s d. 

 Differences in the coefficient of friction of the running surfaces were expected to 

be evident as differences in a participant’s rate of increase in 30-m sprint time (m).  

For each participant, pairwise comparisons between the four sports surfaces were 

made using Tukey’s HSD test and Cohen’s d. 

 The main aspect of this study was to investigate the form of the relationship 

between the rate of increase in 30-m sprint time and the coefficient of friction of the 

sports surface.  The participant’s rate of increase in 30-m sprint time was plotted 

against the coefficient of friction of the sports surface and a selection of regression 

curves were fitted using the Levenberg-Marquardt algorithm.  We tested a straight 

line, y = mx + c; an inverted u-shape, y = a - b(x - c)2; and an exponential rise to 

maximum, y = a {1 - Exp[-b(x - c)]}.  Because only four sports surfaces were tested, a 

calculation of Akaike’s Information Criterion could not be used to decide which of 

these models gave the best fit to the data.  Instead, we used a visual examination of 

the distribution of the residuals and a comparison of the sum of the square of the 

residuals in the regression fits to decide upon the best regression curve.  Inter-athlete 

differences in the strength of the relationship between the rate of increase in 30-m 

sprint time and the coefficient of friction of the sports surface were investigated by 

comparing the values of the fit variables.  Pairwise comparisons between the 

participants were made using Tukey’s HSD test and Cohen’s d. 

 

Results 



 

 

For all four sports surfaces, the friction force increased linearly with sled weight 

(Figure 1), and the four sports surfaces had substantially different coefficient of 

friction values (Table I). 

  [Insert Figure 1 about here] 

  [Insert Table I about here] 

 When towing a sled across the Rekortan athletics track, our measurements 

showed that the coefficient of friction was independent of the velocity of the sled, at 

least over the range of velocities that were tested (0.5–2.3 m/s).  The multivariate 

linear regression analysis showed that 98.3% of the variation in the friction force was 

explained by the weight of the sled (R2 = 0.983, p < 0.001), and only 0.1% was 

explained by the towing velocity (R2 = 0.001, p = 0.09). 

 

Sled-towing sprint times 

When sprinting without a sled, the participant’s 30-m sprint times were slightly 

different on each of the four sports surfaces.  The fastest unloaded sprint times were 

achieved on the Rekortan athletics track (mean = 3.91 s; s = 0.25 s), with times on 

the natural grass rugby pitch, artificial grass hockey pitch, and 3G football pitch about 

0.05 s, 0.10 s, and 0.37 s slower, respectively (rugby 3.96 ± 0.24 s; hockey 4.01 ± 

0.13 s; football 4.28 ± 0.11 s).  The results of the pairwise comparison tests are 

shown in Table II.  The unloaded sprint times on the 3G football pitch were 

significantly longer than those on the other three surfaces (d = 0.8–1.0), but the 

differences between the Rekortan athletics track, natural grass rugby pitch, and 

artificial grass hockey pitch were not statistically significant. 

  [Insert Table II about here] 



 

 

 For all combinations of participant and sports surface, the participant’s 30-m 

sprint time when towing a weighted sled tended to increase with increasing sled 

weight.  The relationship between 30-m sprint time and sled weight was almost 

always linear (Figure 2).  For 21 out of 24 combinations of participant and sports 

surface, a linear fit to the sprint time data gave a lower IACc value and a higher 

relative probability of being correct than a quadratic fit.  The three instances of 

quadratic relationships were produced by the same participant (participant 2; on the 

rugby pitch, 3G football pitch, and hockey pitch), but the deviation from linearity was 

not substantial (3–9%).  Therefore, in this study the gradient of the linear fit (m) was 

taken as the measure of the rate of increase in 30-m sprint time. 

  [Insert Figure 2 about here] 

 There was substantial variation among the six participants in their rate of 

increase in 30-m sprint time (m).  The coefficient of variation (CV) for the rate of 

increase in 30-m sprint time was 16%, 13%, 22%, and 24% for the Rekortan athletics 

track, natural grass rugby pitch, 3G football pitch, and artificial grass hockey pitch, 

respectively.  For the Rekortan athletics track, 11 of the 15 comparisons of pairs of 

participants showed large significant differences (d = 1.1–2.7).  Similar results were 

obtained for the natural grass rugby pitch (8 large significant differences, d = 1.0–

2.9), 3G football pitch (11 large significant differences, d = 1.2–4.8), and artificial 

grass hockey pitch (10 large significant differences, d = 1.5–4.4). 

 

Comparison of sports surfaces 

The mean rates of increase in 30-m sprint time (in seconds per body weight) were 

4.6 ± 1.4 (±95% confidence interval) for the Rekortan athletics track, 4.8 ± 1.2 for the 

natural grass rugby pitch, 4.2 ± 1.8 s for the 3G football pitch, and 1.9 ± 0.9 for the 



 

 

artificial grass hockey pitch (Figure 3).  The results of the pairwise comparison tests 

are shown in Table III.  The rate of increase in 30-m sprint time for the hockey pitch 

was substantially less than those for the other surfaces, but the differences between 

the Rekortan athletics track, grass rugby pitch, and 3G football pitch were not 

statistically significant. 

  [Insert Figure 3 about here] 

  [Insert Table III about here] 

 The participant’s rate of increase in 30-m sprint time did not show a steadily 

increasing trend as the coefficient of friction of the sports surface increased (Figure 

3).  Instead, the participant’s rate of increase in 30-m sprint time appeared to reach a 

plateau or maximum at about  = 0.4.  An exponential rise to maximum was the best 

fit for four out of the six participants (1, 2, 3, and 5), and an inverted u-shape was a 

slightly better fit than an exponential rise for two participants (4 and 6). Therefore, in 

this study the strength of the relationship between the rate of increase in 30-m sprint 

time and the coefficient of friction of the sports surface was indicated by the 

asymptotic maximum value (a) of the exponential rise fit for Participants 1, 2, 3, and 

5, and by the peak value (a) of the inverted u-shape fit for Participants 4 and 6. 

 Although on any given sports surface there were substantial differences 

between the participants in the rate of increase in 30-m sprint time, the differences 

were not random.  There was a systematic participant effect whereby participants 

who had a greater than average rate of increase in 30-m sprint time on one surface 

tended to have a greater than average rate of increase on the other surfaces (Figure 

3).  For the strength of the exponential rise relationship between the rate of increase 

in 30-m sprint time and the coefficient of friction of the sports surface, we obtained a 

= 5.66 ± 0.10, 5.26 ± 0.07, 4.66 ± 0.10, and 4.08 ± 0.03 seconds per body weight 



 

 

(±95% confidence interval) for Participants 1, 2, 3, and 5, respectively.  In the 

pairwise comparison tests, all six comparisons showed large significant differences (d 

= 2.7–13.0).  For the strength of the inverted u-shape relationship, we obtained a = 

4.46 ± 0.57 and 4.16 ± 0.53 seconds per body weight for Participants 4 and 6 

respectively.  However, the difference between the participants in these values was 

not significant (d = 0.6).   

 

Discussion and Implications 

The four sports surfaces that were tested in this study had substantially different 

values for the coefficient of friction ( = 0.21–0.58), and on all four surfaces the 

participant’s sprint time in a 30-m sled-towing exercise increased linearly with 

increasing sled weight, for a sled weight of up to at least 30% of the participant’s 

body weight.  This study confirmed the two secondary hypotheses, but only partly 

confirmed the primary hypothesis.  On each of the four sports surfaces we found 

substantial inter-athlete differences in the strength of the relationship between 30-m 

sprint time and sled weight, and we found substantial inter-athlete differences in the 

strength of the relationship between the rate of increase in 30-m sprint time and the 

coefficient of friction of the running surface.  However, the relationship between the 

rate of increase in 30-m sprint time and the coefficient of friction of the running 

surface was not a steadily increasing trend.  The hockey pitch (which had the lowest 

coefficient of friction) produced a substantially lower rate of increase in 30-m sprint 

time than the other sports surfaces, but there was no difference between the 

Rekortan athletics track, grass rugby pitch, and 3G football pitch, even though these 

surfaces had substantially different values of the coefficient of friction. 



 

 

 Our finding that 30-m sprint time increased linearly with increasing sled weight 

is consistent with the study by Murray et al. (2005).  However, in our study we 

confirmed that the relationship applied to the individual participants in the study, 

rather than to the mean of a group of participants, as was shown in the study by 

Murray et al. 

 In the present study, the participant’s rate of increase in 30-m sprint time 

reached a plateau or maximum value (at a coefficient of friction of about 0.4) rather 

than showing a steadily increasing trend (Figure 3).  This unexpected result might 

have been due to inaccurate measurements of the coefficient of friction for the 

natural grass rugby pitch and 3G football pitch.  The Rekortan athletics track and 

artificial grass hockey pitch were both very uniform surfaces and so we believe that 

the measured values of the coefficient of friction for these surfaces (Table I) were an 

accurate indicator of the energy losses induced by the sliding of the sled in the sled-

towing exercise.  In contrast, the natural grass rugby pitch and 3G football pitch were 

noticeably less even.  We suggest that irregularities in these surfaces might have 

induced vertical pitching of the sled, resulting in greater energy loss and hence a 

greater effective coefficient of friction.  If so, the data shown in Figure 3 need to be 

re-interpreted.  We suggest that the results from the Rekortan athletic track and 

artificial grass hockey pitch are accurate and show that an athlete’s rate of increase 

in 30-m sprint time steadily increases as the coefficient of friction of the running 

surface increases.  We also suggest that the data points for the natural grass rugby 

pitch and 3G football pitch are anomalous in that they have been shifted to the left 

because the measured coefficient of friction value underestimated the energy losses 

when performing a sled-towing exercise on these surfaces.  If this interpretation is 

correct, we estimate that the effective coefficients of friction for the sled when being 



 

 

towed over the natural grass rugby pitch and 3G football pitch were actually about 

0.6 (rather than the measured values of 0.45 and 0.35, respectively). 

 The friction sled method that was used in the present study is intended for 

obtaining the coefficient of kinetic friction for two flat surfaces (Blau, 1996).  However, 

the sled used in the present study travelled on two parallel tubes (rather than on a flat 

base) and two of the sports surfaces had an uneven surface.  Even so, if the lengths 

and curvatures of the sliding surfaces of the sled are large compared to the 

irregularities in the sports surface, we might expect the friction sled method to give an 

accurate measure of the coefficient of friction, at least at relatively slow velocities.  In 

the present study, the maximum velocity at which we were able to tow the sled at 

constant velocity across the sports surface while simultaneously measuring the 

towing force was about 2.5 m/s.  This is substantially lower than the maximum 

velocity achieved by an athlete in a sled-towing exercise (about 5–9 m/s).  If the 

coefficient of friction values from the natural grass rugby pitch and 3G football pitch in 

the present study are indeed anomalous, this would suggest that we needed a 

method of performing the coefficient of friction measurements that better simulated 

the conditions of the sled during a sled-towing exercise (i.e. fast-moving and possibly 

pitching up and down). 

 When towing a sled across the Rekortan athletics track, our measurements 

showed that the coefficient of friction was independent of the velocity of the sled.  

This finding agrees with many other studies of sliding friction, which have consistently 

found that the coefficient of friction of two sliding surfaces is almost independent of 

the sliding velocity (Blau, 1996; Persson, 1998).  However, in the present study we 

did not test the natural grass rugby pitch, 3G football pitch, or artificial grass hockey 



 

 

pitch and so we cannot exclude the possibility of a velocity dependence of the 

coefficient of friction for these sports surfaces. 

 The unexpected relationship between the rate of increase in 30-m sprint time 

and the coefficient of friction of the sports surface that was observed in this study 

(Figure 3) might also have been due to the different surfaces inducing changes in the 

participant’s sprint kinematics.  When sprinting without a sled, the participant’s 30-m 

sprint times were slightly different on each of the four sports surfaces.  The order of 

the surfaces (from fastest to slowest) were: Rekortan athletics track, natural grass 

rugby pitch, artificial grass hockey pitch, and 3G football pitch.  The time differences 

between the surfaces were probably due to differences in the stiffness and energy 

dissipation properties of the surfaces (Stefanyshyn & Nigg, 2000; Brechue et al., 

2005).  The Rekortan athletics track was the most firm surface and consisted of 

bonded rubber crumb overlaid on a solid base.  Likewise, the natural grass rugby 

pitch was relatively firm as it consisted of a short grass layer on hard ground.  The 

artificial grass hockey pitch and 3G football pitch were expected to dissipate more of 

the participant’s energy at each footfall due to movement of the participant’s foot in 

the base layer (Lejeune et al., 1998; Alcaraz et al., 2011).  Energy dissipation was 

expected to be more pronounced for the loose rubber crumb in the 3G football pitch 

than for the sand base in the hockey pitch.  Although differences in the stiffness and 

energy dissipation properties of the surfaces affected the participant’s unloaded 

sprint time, our initial assumption was that these differences would have no effect on 

the participant’s rate of increase in 30-m sprint time with increasing sled weight.  

However, we cannot exclude the possibility that the sports surfaces induced different 

sprinting kinematics in the participant and so influenced the relationship between sled 



 

 

weight and 30-m sprint time (in addition to that due to the frictional energy losses in 

the sled). 

 Because of the unexpected complex relationship between the measured 

coefficient of friction and the rate of increase in 30-m sprint time that was observed in 

the present study, we currently recommend that coaches use a trial-and-error 

approach to finding the most appropriate sled weight for an athlete to use on any 

given running surface.  The coach should determine the training intensity of the sled-

towing exercise by measuring the decrease in the athlete’s time from unloaded 

sprinting, and use their eye or slow-motion video to look for detrimental changes in 

the athlete’s sprinting technique.  We advise caution if using published equations to 

determine the sled weight for an athlete (Lockie et al., 2003; Alcaraz et al, 2009).  

Such equations were calculated from tests on a specific sled-surface combination.  

These equations might be useful as a starting point in choosing an appropriate sled 

weight for an athlete, as long as the sled-towing exercise is performed on a running 

surface that is similar to that used by the author of the equation. 

 In this study we observed inter-athlete differences of ±13–24% in the rate of 

increase in 30-m sprint time with increasing sled weight (on a given running surface).  

Some coaches recommend setting the weight of the sled to a certain percentage of 

the athlete’s body weight (Mouchbahani et al., 2004).  However, the results from the 

present study suggest that further ‘fine-tuning’ of sled weight will be necessary if the 

aim is to give the athletes a similar training intensity. 

 

Practical implications 

When selecting the sled weight to be used in a sled-towing exercise, the coach must 

take into account the coefficient of kinetic friction of the running surface.  We 



 

 

recommend a trial-and-error approach to selecting the sled weight for an athlete 

because performing a measurement of the coefficient of friction at low velocity using 

the sled friction method might not give an accurate indicator of the energy losses that 

occur during a sled-towing exercise on the running surface. 

 

Conclusion 

This study showed that an athlete’s sprint time in a sled-towing exercise is affected 

by the coefficient of friction of the running surface as well as by the weight of the 

sled.  We found substantial differences in the coefficient of friction for four common 

sports surfaces ( = 0.21–0.58), and the athlete’s rate of increase in 30-m sprint time 

with increasing sled weight was substantially different on the hockey pitch compared 

to the other three surfaces.  However, the rate of increase in 30-m sprint time did not 

increase in proportion to the increase in the coefficient of friction of the surface.  

Further studies should see if other methods of determining the coefficient of friction 

for a sled sliding over a sports surface give values similar to those obtained using the 

friction sled method.  A kinematic study would be useful to see whether the athlete’s 

sprinting mechanics during a sled-towing exercise are the same on different types of 

sports surfaces. 
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Tables 

 

Table I.  Coefficient of kinetic friction for a sled sliding over four sports surfaces (± 

95% confidence interval). 

Surface Coefficient of friction () 

Rekortan athletics track 0.58 ± 0.01 

Natural grass rugby pitch 0.45 ± 0.01 

Artificial grass 3G football pitch 0.35 ± 0.01 

Artificial grass hockey pitch 0.21 ± 0.01 

Note: Source data are plotted in Figure 1. 

 

 

Table II.  Results from pairwise comparison tests of the influence of four sports 

surfaces on unloaded 30-m sprint time. 

Comparison surfaces Mean difference (s) p Cohen’s d 

Athletics - rugby –0.05 0.15 0.1 

Athletics - football –0.37 0.02* 0.9 

Athletics - hockey –0.10 0.69 0.2 

Rugby - football –0.32 0.02* 0.8 

Rugby - hockey –0.05 0.99 0.1 

Football - hockey 0.27 <0.001* 1.0 

* p < 0.05 

 



 

 

Table III.  Results from pairwise comparison tests of the influence of four sports 

surfaces on the rate of increase in 30-m sprint time in a sled-towing exercise. 

Comparison surfaces Mean difference (s/BW) p Cohen’s d 

Athletics - rugby –0.2 0.99 0.3 

Athletics - football 0.3 0.71 0.5 

Athletics - hockey 2.6 <0.001* 4.9 

Rugby - football 0.5 0.24 0.8 

Rugby - hockey 2.8 <0.001* 5.7 

Football - hockey 2.3 0.005* 3.5 

Note: BW, body weight.  

* p < 0.05 



 

 

Figures 

 

 

Figure 1. This plot shows the increase in friction force with increasing sled weight 

for four common sports surfaces.  The gradient of the line of best fit 

gives the coefficient of friction () for the surface (Table I).  The selected 

sports surfaces show a wide range of coefficient of friction values ( = 

0.21–0.58). 



 

 

 

Figure 2. The 30-m sprint time when towing a weighted sled increased linearly 

with increasing sled weight.  Lines are for six male rugby players towing 

a sled on a Rekortan athletics track, but data points are shown for one 

player only (thick line). 



 

 

 

Figure 3. This plot shows the effect of the sports surface on the rate of increase in 

30-m sprint time with increasing sled weight.  Data for six male rugby 

players (Labels 1–6).  The rate of increase in 30-m sprint time for the 

hockey pitch was substantially less than for the other surfaces, but there 

was no significant difference between the Rekortan athletics track, 

rugby pitch, and 3G football pitch.  The rate of increase in 30-m sprint 

times on the sports surfaces did not show the expected steadily 

increasing trend as the coefficient of friction of the sports surface 

increased. 


