
IMA Journal of Management Mathematics Page 1 of 18
doi:10.1093/imaman/dpnxxx

Linear and nonlinear filtering in mathematical finance: a review

P. DATE AND K. PONOMAREVA

Department of Mathematical Sciences, Brunel University,
Uxbridge, UB8 3PH, UK.

This paper presents a review of time series filtering and its applications in mathematical finance. A
summary of results of recent empirical studies with market data are presented for yield curve modelling
and stochastic volatility modelling. The paper also outlines different approaches to filtering of nonlinear
time series.
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1. Introduction

The problem of estimating unobserved latent variables from observed market data arises frequently in
mathematical finance. Kalman filter, first proposed in Kalman (1960), and its generalizations have been
the main tools for estimating the unobserved variables from the observed ones in econometrics and in
engineering for several decades and their use is now becoming common in finance. Kalman filter is
a conditional moment estimator for linear Gaussian systems. It is used in calibration of time series
models, forecasting of variables and also in data smoothing applications.

The purpose of this paper is to provide an introductory and accessible exposition of applications
of filtering in finance to operational researchers. It gives a brief overview of Kalman filtering theory
and presents recent empirical results on two applications in finance. Some recent developments in
approximate nonlinear filtering are also reviewed. The rest of the paper is organized as follows. In sec-
tion 2, basic linear Gaussian filtering methodology is described, along with its application to maximum
likelihood-based calibration to time series models. Sections 3.1 and 3.2 present two case studies for
applications of Kalman filtering in mathematical finance. Section 4 outlines some recent approaches for
approximate filtering in nonlinear time series and also presents a brief overview of an empirical applica-
tion on calibration and forecasting using a nonlinear interest rate model. Finally, section 5 summarises
the contributions discussed in the paper and outlines promising directions for future research.

2. Basic linear filtering theory

2.1 The filtering problem

Consider a discrete stochastic system described by state space equations

dxt = a(xt , t)dt +Q(xt , t)dwt , (2.1)
yt = c(xt , t)+R(xt , t)zt , (2.2)

where yt is a variable observed in noise, xt is an unobservable or latent variable of interest, a,c
are deterministic vector-valued functions, Q, R are deterministic matrix valued functions and wt ,zt are
standard (vector-valued) Wiener processes. Boldface lowercase letters are used to denote vectors and
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m> denotes transpose of a vector m. Uppercase letters are used to denote matrix valued functions or
constant matrices. a,Q are assumed to be sufficiently regular to allow a unique t-continuous solution to
the stochastic differential equation (2.1) (see, e.g., Øksendal (2003), chapter 5). The interval between
successive sampling times ∆ = ti+1− ti is assumed to be constant. The filtering problem is the problem
of finding the conditional distribution of E(xti+∆ |xti ,yti) for ∆ > 0, or finding the samples of conditional
moments of this random variable corresponding to the observed values of y(ti) and estimated xti . In the
rest of the paper, the value of a variable z at time ti+k∆ is denoted as zi+k, k > 0. The equation (2.1)
is often referred to as the transition equation and (2.2) is referred to as the measurement equation.
This generic set-up covers a large variety of applications in signal processing, econometrics, weather
sciences and mathematical finance. For simplicity of exposition, we set aside the question of appropriate
discretization of (2.1) for the moment and we will start with a very special case of a discrete, linear state
space model in the next subsection. We will return to (2.1)-(2.2) when we discuss nonlinear filtering in
section 4.

2.2 The linear Kalman filter

Consider a discrete time, linear state space system:

xn+1 = Axn +b+Qwn+1, (2.3a)
yn = Cxn +d+Rzn, (2.3b)

where, wn,zn are zero mean, unit variance, Gaussian and uncorrelated random variables at each time tn.
A,b, C,d, Q > 0 and R > 0 are constants or are known functions of time. Only the real valued variable
yn is measured or is observable; the variable xn is of interest and needs to be estimated. One may arrive
at (2.3a) by Euler or Milnstein discretisation of (2.1), with appropriate choices of functions a and Q. We
denote the estimate of xn based on information up to time tn−i as x̂n|n−i for i > 0 and we assume that the
initial estimate x̂0|0 is known. The conditional variance of the estimate is correspondingly denoted by
Pn|n−i and P0|0 > 0 is assumed to be known. With this notation, the following set of recursive equations
is conventionally referred to as the Kalman filter:

vn = yn− (Cx̂n|n−1 +d), (2.4a)

Σn = CPn|n−1CT +RR>, (2.4b)

Kn = Pn|n−1CT Σ−1
n , (2.4c)

x̂n|n = x̂n|n−1 +Knvn, (2.4d)

x̂n+1|n = Ax̂n|n +b, (2.4e)

Pn+1|n = APn|n−1AT +QQ>−APn|n−1CT Σ−1
n CPn|n−1AT . (2.4f)

Here, vn in (2.4a) represent information which could not have been derived from data up to time tn−1 and
are called innovations. Σn represents the covariance matrix of innovations. x̂n+1|n is in fact the sample of
conditional expectation of xn+1 based on information up to time tn, determined by the realized value of
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yn. This set of equations can be derived from the following relationship between conditional moments
of jointly Gaussian variables (see, e.g. Grimmett & Stirzaker (2004)): if x, y are jointly Gaussian,

E(x|y) = E(x)+ΣxyΣ−1
yy (y−E(y)), (2.5)

E(x−E(x|y))(x−E(x|y))> = Σxx−ΣxyΣ−1
yy Σyx, (2.6)

where Σxy etc. are variance terms. This has to be interpreted with care since x̂n|n−1 is not unconditional
mean; the reader is referred to specialist textbooks such as Durbin & Koopman (2001) for more details.
Given yn, x̂n+1|n and (Cx̂n+1|n +d) serve as one-step ahead forecasts of xn+1 and yn+1 respectively.

2.3 Time series calibration using maximum likelihood

Given (possibly vector-valued) measurements y1,y2, . . . ,yN , one may use Kalman filter to calibrate a
time series model with latent variables such as the one described by (2.3a)-(2.3b) as follows. Let Fn
denote all the measurements available until and including time tn. The probability density p(yn+1|Fn)
is Gaussian with

E(yn+1|Fn) = Cx̂n+1|n +d and

Var(yn+1|Fn) = Σn+1.

We can write the likelihood function (i.e., the joint probability function) for the set of observations
Y = {y1,y2, . . . ,yN} as

L(Y ) = p(y1)
N

∏
i=2

p(yi|Fi−1).

It is usually simpler to work with the logarithm of likelihood, which is given by

logL(Y ) =
N

∑
i=1

log p(yi|Fi−1) = −1
2

N

∑
i=1

(
log |Σi|+v>i Σ−1

i vi
)
,

when the constant terms are ignored. Given time series data y1,y2, . . . ,yN , the quantities vi and Σi
are found through Kalman filter recursions outlined in the previous section. The above function can
then be maximized to find the parameter vectors b,d and matrices A,C,Q and R using an off-the-shelf
nonlinear solver such as fminsearch in MATLAB. The initial state x̂0|0 and its covariance P0|0 may
be independently parameterized or it can be expressed in terms of other parameters (as in section 3.2
below). The readers are referred to Harvey (1989) and Durbin & Koopman (2001) for more details
on maximum likelihood-based calibration, including parameter initialisation issues in Kalman filtering
framework.

3. Applications of linear filtering in finance

In mathematical finance, filters are useful in many applications, including estimation of underlying
volatility from observed intra-day stock prices as discussed in Barndorf-Nielsen & Shephard (2002),
estimation of underlying instantaneous interest rate (or short rate) from observed bond yields as explored
in several papers including Babbs & Nowman (1999) and estimation of spot prices from futures prices
for commodities, as reported in Schwartz (1997), Manoliu & Tompaidis (2002) and Lautier & Galli
(2004). Besides the estimation of latent factors which affect pricing described in these papers, linear
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filtering is used in Monoyios (2007) for updating the estimates of uncertain drift parameters in the price
process, in the context of hedging in incomplete markets.

We look at two specific application case studies of linear filtering as used in mathematical finance
next.

3.1 Linear Gaussian interest rate models

Exponential affine term structure models is one of the oldest and the most widely studied class of
dynamic interest rate models. The main advantage of these models is the fact that the yields can be
expressed as affine functions of the short rate (i.e. the instantaneously compounded interest rate). One
factor linear Gaussian model was introduced in Vasicek (1977). Multi-factor linear Gaussian models
under filtering framework are discussed in Jegadeesh & Pennachhi (1996), Babbs & Nowman (1999)
and De Rossi (2004), among others. Extensive treatment to theoretical properties and applications of
these models can be found in advanced graduate textbooks such as James & Webber (2000) and Brigo
& Mercurio (2006).

In the work presented here, we consider a n–factor, linear Gaussian short rate model of the form

it = µ−
n

∑
j=1

x j,t , (3.7a)

dx j,t =−α jx j,t +
n

∑
l=1

σ jldwl,t , (3.7b)

where it is the (unobservable) short rate, α j, σ jl , µ etc are constants and wl,t are independent standard
Wiener processes. The price of a zero coupon bond at time t with time to maturity τk is given by

P(t,τk) = E
[

exp
(
−

∫ t+τk

t
is ds

)]
,

where the expectation is assumed to be taken under appropriate risk neutral measure. The equivalent
continuously compounded interest rate for the same time to maturity τk is called spot rate and is denoted
by it(τk|θ). For the chosen dynamics, theoretical spot rates are affine functions of the instantaneous
interest rate rt :

it(τk|θ) = A0(τk|θ)+
n

∑
j=1

A j(τk|θ)x j,t , (3.8)

where A j(·|·) are known functions and θ is the vector of parameters of (3.7); see Babbs & Nowman
(1999) or Date & Wang (2009) for the exact form of A j.

From a commercial data provider such as Datastream in the UK, one may obtain the actual spot rates
for different times to maturities, each day. We assume that our model is imperfect and the actual spot
rates equal the corresponding theoretical spot rates plus a zero mean noise term:

yt,τk
= it(τk|θ)+ zt,k, (3.9)

with E(zt,k) = 0, E(z2
t,k) = h2

k and hk are constants. A discretised version of (3.7a)-(3.7b) gives us a
transition equation similar to (2.1) while the equations (3.8)-(3.9) give a measurement equation similar
to (2.2). This forms a linear state space system to which the methodology explained in section 2 can be
applied. In particular, given observed yt,τk

for various maturities at each t, we can use Kalman filtering
to calibrate this model and forecast spot rates.
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We provide a selective summary of numerical experiments reported in Date & Wang (2009). Two
different data sets were used in this paper; weekly data on 7 different UK government bond (i.e. gilt)
yields from January 2001 to June 2005 formed the first data set and weekly data on 7 different US
government bond (i.e. treasury) yields during a more volatile period from December 1997 to August
2001 was the second data set. Out of 232 observations for UK data, 180 were used for calibration
and 42 were used for validation. Through principal component analysis, it was found that over 97.8%
variation in the interest rates is explained by two factors and over 99.4% variation was explained by
three factors. This corroborates similar conclusions in Babbs & Nowman (1999). Accordingly, one,
two and three factor linear models were calibrated using Kalman filter and maximum likelihood method
described earlier. The parameter values after calibration of a 15 parameter, two factor model are reported
in table 1.

Table 1. Parameter values for two factor model (UK data)

α1 0.7036 α2 0.2807
σ11 0.0080 σ22 0.1806
λ1 0.4249 λ2 -0.0414
µ 0.2768 h1 0.0006
h2 0.0007 h3 0.0014
h4 0.0017 h5 0.0011
h6 0.0007 h7 0.0010
σ12 −0.0003

Here λi are prices of risk which relate the drifts implied by the time series data and those implied by
the cross sectional spot rate data at a particular point in time. These were assumed to be constant over
time, similar to the earlier empirical work in Babbs & Nowman (1999).

The intended use of the model after calibration was short and medium term forecasting. Hence we
consider the sample mean of the relative absolute error (MRAE) as our measure of error for each time
to maturity τk:

MRAE =
1
N

N

∑
j=1

|observed yield-predicted yield|
observed yield

.

This was computed over the relevant set of N observations (either in-sample or out-of sample), for one
step ahead prediction of yields. It was found that the maximum out-of-sample error (over 7 yields) is
only 2.31%, over a period of almost two years from calibration. The results are summarised in table 2,
where the first column indicates the time to maturity for which the MRAE is computed. Similar, if
less spectacular, results were obtained for US T-bill data for a more turbulent economic period of 1999-
2001. The maximum out-of-sample error for a two factor model calibrated with US data was 3.5%. The
findings in Date & Wang (2009) may be summarized as follows.

1. When comparing out-of-sample, one step ahead forecasting with latent variable linear Gaussian
models, a two factor model performs better than a single factor or a three factor model.

2. Over a restricted yield spectrum (i.e., only short dated or only the long dated yields are consid-
ered), a single factor model leads to a similar magnitude of errors as multi-factor models.

3. The performance of multi-step ahead forecasting of one factor and multi-factor models is compa-
rable, or in other words, additional factors do not make it easier to look further into the future.
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The reader is referred to Date & Wang (2009) for full numerical results.

Table 2. Mean relative absolute errors (UK data)

τk in-sample out-of-sample
3m 0.0111 0.0118
6m 0.0178 0.0081
1y 0.0331 0.0216
2y 0.0337 0.0229
4y 0.0262 0.0152
8y 0.0209 0.0231

10y 0.0161 0.0213

3.2 Stochastic volatility models

The second application reviewed here is that of modelling volatility of stock prices as a stochastic
process. For pricing complex financial derivatives, assuming that volatility of asset price is constant
is inadequate and, in the last two decades, a lot of effort has been directed towards modelling it as a
stochastic process which is both tractable and leads to consistent derivative prices. The landmark work
in this area was the closed-form European option pricing result in Heston (1993) for mean reverting
stochastic volatility. This was followed by research into multi-factor volatility models and models with
jump processes; the reader is referred to Javaheri (2005) and Gatheral (2006) for extensive reviews of
this topic. From a somewhat different point of view, the research in this area was also pursued by risk
practitioners for forecasting the future volatility and hence the risk of loss.

In the work reported here, we focus on the latter application and use intra-day stock prices to forecast
1-day ahead volatility using a Kalman filter. The return equation for the log-stock price sl is given by

dsl(t) = µdt +σ(t)dw̃(t),

where µ is the instantaneous drift, w̃(t) is the standard Wiener process and σ2(t) is the spot volatility or
instantaneous volatility. µ is assumed to be constant while σ 2(t) is assumed to be driven by a Wiener
process uncorrelated with w̃(t). σ2(t) is obviously unobservable. An integral of spot volatility over a
given period ∆ is called the actual volatility, σ 2

n :

σ2
n =

∫ n∆

0
σ(u)2du−

∫ (n−1)∆

0
σ(u)2du.

σ2
n is unobservable as well. The realised volatility ςn, given by

ςn = (1+ c)
M

∑
j=1

[
sl

{
(n−1)∆ +

∆ j
M

}
− sl

{
(n−1)∆ +

∆( j−1)
M

}]2

,

= σ2
n +un,

is a noisy estimate of σ2
n , where un is a zero mean i.i.d. sequence. This is a consistent estimate of σ2

n
as M → ∞ if c = 0 and is an unbiased estimate if c = µ = 0. µ is usually small for a small period ∆ ,
e.g. a one day stock price return is dominated by volatility rather than by drift. c is a scaling factor
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to account for overnight returns being much larger than the intra-day returns, see, e.g. Martens (2002).
Euler discretisation of a constant coefficient, linear, Gaussian and mean reverting stochastic process

dx(t) = a(b− x(t))dt +βdw(t), (3.10)

with x(t) = σ2(t) and w(t) a standard Wiener process uncorrelated to w̃(t), leads to a linear discrete
time state space system similar to the one in (2.3a)-(2.3b):

σ2
n+1 = φσ 2

n + γ +qwn+1,

ςn = σ2
n + rzn. (3.11)

Here, φ = 1−a∆ ,γ = ab∆ , q = β
√

∆ , a,b,β ,r are constants and wn, zn are standard normal i.i.d. ran-
dom variables. ∆ is the time step and the subscript n indicates the value of variable at time tn, as before.
Similar models are used in earlier, seminal work on realized volatility in Barndorf-Nielsen & Shephard
(2002). A more complex model where a,β above are functions of a finite state Markov chain is de-
scribed in Frey & Runggaldier (2001), although we focus on the exposition for the linear state space
model in this review. From this point onwards, we can use the calibration and forecasting procedures
mentioned in the earlier sections, along with the realised volatility ςn computed from intra-day asset
prices, to calibrate the model and to forecast future volatility. Extensive numerical experiments for cal-
ibration and forecasting with stochastic volatility models were reported in Hawkes (2007) and Hawkes
& Date (2007). We provide a selective summary of this work here.

For numerical experiments, we used 5 minutes intra-day data for IBM and Citigroup stocks from
August 1997 to January 2005 from commercial data provider PriceData. ∆ in both cases was one day
and M was 78, i.e. daily volatility is estimated based on 78 intra-day stock price readings. Both the
stocks were very liquid in this period and did not suffer from price discreteness (i.e. from intra-day
price changes being few and far between). Days which contained no data were ignored, as is a common
practice within econometrics. Any intra-day missing data was dealt with using standard methods for
stochastic interpolation. Log-price data was further scaled by a factor of 100 so that the returns are
expressed as percentage. We used maximum likelihood along with the output of the Kalman filter for
estimation of parameters, as outlined in section 2.3. For initialization, we take steady state values

σ̂2
0|0 = lim

n→∞
E(σ 2

n|0) =
γ

1−φ
and P0|0 = lim

n→∞
Var(σ2

n|0) =
q2

1−φ 2 .

In-built routine fminsearch from MATLAB were used for non-convex optimisation in calibration.
Single factor as well as two-factor state space models were calibrated using Kalman filter. The two

factor model has γ in (3.11) driven by a Gaussian stochastic process. The discussion of two-factor model
is omitted for brevity; see Hawkes & Date (2007) details. The forecasting performance of these models
was compared against GARCH type models calibrated from same data. GARCH (Generalized Auto
Regressive Conditional Heteroskedasticity) type models (first introduced in Bollerslev (1986)) are used
commonly in the finance industry for short term volatility forecasting. As a benchmark for comparison
with the latent state model, we use GJR GARCH model as proposed in Glosten et al (1993), but with
Student-t distributed returns as proposed in Bollerslev (1987). The volatility under this model can be
expressed as

σ2
n+1 = βσ2

n +ρ +αζ 2
n +λζ 2

n max(0,ζn), (3.12)

where ζn is the daily log-return which is assumed to have a Student-t distribution with ν degrees of free-
dom and β ,α,ρ ,λ are constants with α + β < 1. For more details on GARCH and modified GARCH
models, the reader is referred to Hansen & Lunde (2005) and references therein.
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Table 3 below shows the parameter values of single factor stochastic volatility models for the two
stocks.

Table 3. Parameter values

IBM Citigroup
φ 0.93 0.89
γ 0.31 0.71
q 1.38 3.32
r 3.68 5.7

The comparison of forecasting performance was based on the variance of k-step ahead forecasting er-
rors, i.e. on the sample mean of (σ̂2

n+k|n− ςn+k)2. For a given k > 1, the forecast σ2
n+k|n can be con-

structed in various ways. One ad-hoc, but industry-standard approach is scaling σ̂2
n+1|n by k. Table 4

below illustrates the variance of errors obtained by a single factor stochastic volatility (SV) model and
the GJR GARCH-t model (3.12) using this approach for forecasting, with k = 10. It can be seen that
Kalman filter based stochastic volatility model outperforms the modified GARCH model. The experi-
ments reported in Hawkes & Date (2007) indicate that the latent state based volatility models usually
outperform GARCH type models and provide a simple alternative to the established practice of using
GARCH models in short term forecasting.

Table 4. Variance of 10-step ahead forecasting errors for IBM and Citigroup stock.

IBM Citigroup
SV model 724.51 2101.75
GARCH-t 1142.25 3402.81

The reader is referred to Hawkes (2007) for statistical properties of data, calibration of multi-factor
models and detailed numerical results on forecasting.

4. Approximate nonlinear filtering

We now return to equations (2.1)-(2.2) and consider the filtering problem for more general nonlinear
systems. A typical example of a practically useful nonlinear latent variable model in finance is the square
root affine model first introduced in Cox et al. (1985) and extended to multi-factor case in Beaglehole
& Tenney (1991):

it =
n

∑
j=1

x j,t , (4.13a)

dx j,t = α j(µ j− x j,t)+
n

∑
l=1

σ jl
√

xl,tdwl,t , (4.13b)

it(τk|θ) = A0(τk|θ)+
n

∑
j=1

A j(τk|θ)x j,t , (4.13c)

yt,τk
= it(τk|θ)+ zt,k, k = 1,2, . . . ,s. (4.13d)
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Here, θ denotes the vector of parameters of the transition equation (4.13b). Detailed expressions for the
functions A0(τk|θ) and A j(τk|θ) will be given in section 4.5, where we discuss an empirical filtering
application with the above model. A similar, but more extensive empirical study was reported earlier
in Geyer & Pichler (1999). Typically, the measurements yt,τk

represent s different bond yields observable
in the market at time t, corresponding to times to maturity τk,k = 1,2, . . . ,s while it represents the
unobservable short rate at time t. The other parameters have the same meaning as in (3.7)-(3.9) in the
previous section, although the formulae for A j(τk|θ) are different from those in the linear Gaussian case.

In cases similar to (4.13) where a,Q in (2.1)-(2.2) are not affine, closed-form formulae are not avail-
able for computing the conditional moments E(xn|yn) and Var(xn|yn). In continuous time, the evolution
of conditional distribution is described by a stochastic partial differential equation (SPDE); interested
readers are referred to Kallianpur (1990) and Kushner (2000) for the exact solution to the continuous
time filtering problem. In Brigo et al. (1998), a finite dimensional approximation to exact nonlinear filter
is proposed using a differential geometric approach to statistics, which leads to an ordinary stochastic
differential equation instead of the SPDE mentioned above. This approach is rigorous, but is still com-
putationally very demanding; especially for multi-variable models. A similar geometric approach was
followed earlier in Kulhavý (1990) for stochastic difference equations (i.e. for variables evolving in
discrete time). In this review, we focus our attention to commonly employed approximate solutions to
nonlinear filtering problems. We will consider scalar systems in what follows, although most of the
results can easily be generalized to deal with multi-variable time series.

4.1 Extended Kalman filter

The first and obvious approach to filter xn is to use extended Kalman filters. For scalar versions of (2.1)-
(2.2), one can expand the dynamics in Taylor series about x̂n|n−1 as

a(xn, tn)≈ a(x̂n|n−1, tn)+
(

∂a
∂x

)
(xn− x̂n|n−1)+

(
∂a
∂ t

)
∆ , (4.14a)

c(xn, tn)≈ c(x̂n|n−1, tn)+
(

∂c
∂x

)
(xn− x̂n|n−1)+

(
∂c
∂ t

)
∆ , (4.14b)

Q(xn, tn)≈ Q(x̂n|n−1, tn), (4.14c)

R(xn, tn)≈ R(x̂n|n−1, tn), (4.14d)

where the partial derivatives are evaluated at (x̂n|n−1, tn−1) and ∆ = tn− tn−1, as before. (4.14) gives
a linear approximation to the original nonlinear state space system, which, in turn allows us to use
the techniques from sections 2.2 and 2.3 for model calibration and forecasting. This method works
reasonably well in systems with smooth nonlinearities. This filter is referred to as a local linearization
filter in Jimenez & Ozaki (2003) and a similar formulation has been used in parameter estimation for
forward rate models in Chiarella et al. (2009).

4.2 Particle filters

In most filtering applications, the aim is to compute either

µ =
∫

f (xn)p(xn|yn)dx

or µ =
∫

f (xn)p(xn|xn−1,yn−1)dx,
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where f (x) is such that µ represents conditional mean or conditional variance of xn. Apart from the
linear Gaussian case, a closed-form expression for µ is not available in general. In fact, it may not
be easy to sample from the conditional density p(xn|yn). One may instead choose to sample from
another density, say g, which is close in appropriate sense to the posterior density p(xn|yn) and is eas-
ier to draw samples from. g is then called the importance density. Given samples x(i)

n−1 drawn from

g(xn−1|xn−2,yn−1), choosing the corresponding probability weights w(i)
n−1, i = 1,2, . . . ,M such that

w(i)
n−1 ∝

p(x(i)
n−1|yn−1)

g(x(i)
n−1|yn−1)

ensures that

lim
M→∞

M

∑
i=1

w(i)
n−1h(x(i)

n−1) = Ep(h(xn−1))

holds for any measurable function h for which Ep(h(x)) exists, where Ep(·) is expectation with respect
to probability measure p(xn−1|yn−1). ∝ indicates equality up to a constant of proportionality. The idea
of particle filter (also called sequential Monte Carlo filter or sequential importance sampling filter) is to
generate a discrete distribution with support points x(i)

n and probability weights w(i)
n which approximate

the posterior density p(xn|yn) and update these recursively as new measurements become available. To
derive a recursive update formula, assume that the factorization

g(xn|yn) = g(xn|xn−1,yn)g(xn−1|yn−1) (4.15)

holds for the importance density. Let po(yn|xn) and pt(xn|xn−1) denote the observation density and the
state transition density respectively and note that

p(xn|yn) ∝ po(yn|xn)pt(xn|xn−1)p(xn−1|yn−1) (4.16)

holds due to Bayes rule, assuming that the state xn evolves according to a Markov process. Given x(i)
n−1

and p(i)
n−1, i = 1,2, · · · , M, x(i)

n and w(i)
n are generated as follows.

1. Draw samples x(i)
n from the importance density g(xn|xn−1,yn).

2. Choose new weights as

w(i)
n ∝ p(x(i)

n |yn)

g(x(i)
n |yn)

, (4.17)

which, after substituting from (4.15)-(4.16) yields the necessary recursive update formula:

w(i)
n ∝ w(i)

n−1

po

(
yn|x(i)

n

)
pt

(
x(i)

n |x(i)
n−1

)

g(x(i)
n |x(i)

n−1,yn)
(4.18)

The choice of density g(xn|xn−1,yn) is a crucial step in the design of particle filter. A common choice
is the Gaussian posterior density obtained by using the extended Kalman filter for the same system.
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Various heuristics exist to improve the performance of the filter in relation to the variance of state
estimate and numerical efficiency.

Methods of this type have been used in a variety of areas including speech recognition, image pro-
cessing, target tracking and financial modelling; see Doucet et al. (2001) for a review of applications
while Arulampalam et al. (2002) and Daum (2005) provide comprehensive tutorials on various types
of particle filters. One expects that the posterior density of the particle filter converges to the optimal
conditional density as the number of particles becomes large. Crisan & Doucet (2002) bring together
different asymptotic convergence results related to particle filters. Applications of particle filters in fi-
nancial time series have been reported in Pitt & Shepherd (1999), Javaheri et al (2003) and Fearnhead
(2005), among others.

These filters are difficult to calibrate due to the computation involved in computing the likelihood,
since a closed-form expression is rarely available. Some computationally efficient alternatives to particle
filters are discussed below.

4.3 Sigma point filters

An increasing popular alternative to particle filters for signal processing in real time is using unscented
or sigma point filters. Methods of this type have been developed independently in engineering (see,
e.g. Julier & Uhlmann (2004) and references therein for examples) and in weather sciences, where
they are referred to as ensemble Kalman filters (see, e.g. Evensen (1994) and Mitchell & Hotekamer
(1998) for examples). In contrast with the extended Kalman filters described earlier, sigma point filters
do not involve computation of derivatives. The basic methodology behind these filtering methods can
be explained as follows. As in the previous two subsections, scalar systems are considered here for
notational simplicity.

1. Given Pn|n−1, x̂n|n−1, generate sigma points x(i)
n and probability weights p(i)

n via a deterministic al-

gorithm or random sampling, such that ∑M
i=1 p(i)

n x(i)
n = x̂n|n−1 and ∑M

i=1 p(i)
n (x(i)

n − x̂n|n−1)2 = Pn|n−1.

2. Then use

x̂n+1|n =
M

∑
i=1

p(i)
n g(x(i)

n )+ΣxyΣ−1
yy

(
yn−

M

∑
i=1

p(i)
n h(x(i)

n )

)
,

with covariance matrices Σxy, Σyy defined using the probability weights p(i)
n . Pn+1|n is similarly

computed using (2.6).

It can be seen that the methods are based on constructing covariance matrices from the samples of dis-
tribution with correct first two moments, and then using the closed-form formulae (2.5)-(2.6) for the
state and the covariance update. The number of samples used tends to be significantly smaller than
in particle filters. Ensemble filters use sampling from a Gaussian distribution and match sample mean
and sample covariance, while sigma point filters use a deterministic algorithm to generate a discrete
distribution (support points as well as possibly unequal probability weights) matching the specified two
moments. A nonlinear filtering heuristic which combines the desirable features of both the ensemble
filters and sigma point filters has been reported in Date et al. (2008). This heuristic is based on a sam-
pling algorithm reported in a companion paper by the same authors (Date et al. (2008)). This sampling
algorithm leads to exact matching of specified moments while still randomly generating support points
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with unequal probability weights. The idea of this sampling method can be briefly explained as follows.
Let p(i)

n , i = 1,2, · · · ,m be any set of points such that ∑m
i=1 pi < 1

2 and let

p(m+1)
n = 1−2

m

∑
i=1

p(i)
n .

Let µ and σ2 be the target mean and target variance respectively. Define a discrete random variable xn
on a support of M = 2m+1 points by

P


xn = µ± σ√

2mp(i)
n


 = p(i)

n , i = 1,2, · · · ,m,

P(xn = µ) = p(m+1)
n .

Then it can easily be shown that

E(xn) = µ , E(xn−µ)2 = σ2

holds irrespective of exact values of p(i)
n . p(i)

n can either be generated by sampling a distribution on
non-negative support or they can be used for matching higher order moments. This can be generalized
to multi-variable case, as shown in Date et al. (2008).

Finally, sigma point filters are also frequently used to generate posterior importance densities in par-
ticle filters. Their potential for use in nonlinear multi-factor models in finance is yet not fully explored.

4.4 Optimisation based filters

Kalman filter and related methodologies are based on the premise that the optimal estimate is a con-
ditional mean of the unobserved variable, given the measurements. Different heuristic methods for
nonlinear filtering represent different ways of approximating this conditional mean. An entirely differ-
ent approach is followed in Cortazar & Schwartz (2003). To put the approach in Cortazar & Schwartz
(2003) in a slightly general setting, consider a set of discretised equations

xn+1 = a(xn, tn)+q(xn, tn)wn+1,

yn = c(x, tn)+ r(xn, tn)zn. (4.19)

Given yn, xn is found as a solution to the optimization problem of the following form:

min
x

J (yn− c(x, tn)) , (4.20)

where J(·) is a suitable non-negative cost function which is zero only at the origin. If x̂n is the argument
minimising J in (4.20), the prediction x̂n+1 is found using

x̂n+1 = a(x̂n, tn).

This does away entirely with the need for knowing the statistical properties of the ‘noise’ terms q(xn, tn)wn
and r(xn, tn)zn and can work well whenever the noise variances are not too large relative to the magni-
tude of the hidden states. A somewhat similar approach is followed in the partially linearised sigma
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point filter proposed in Date et al. (2009), where a set of linear programming problems are solved at
each tn to generate sigma points for a linearized measurement equation.

However, analysis of accuracy and convergence properties of optimisation-based filters is more dif-
ficult and needs to be explored further. The unknown-but-bounded noise framework used in system
identification may be useful for this purpose; see, e.g. Bravo et al (2006) and references therein.

4.5 Empirical application of nonlinear filters: CIR model

Here, we outline a small empirical study of nonlinear filtering algorithms applied to exponential affine
term structure model with a nonlinear transition equation. The system under consideration is a discreti-
sation of the multi-factor CIR model with the state evolution given by (4.13b):

x j,n+1 = (1− exp(−α j∆))µ j + exp(−α j∆)x j,n +Q j,nw j,n, (4.21)

for j = 1,2, where w j,n are zero mean, unit variance and uncorrelated Gaussian random variables. The
standard deviation Q depends on the latent state and is given by

Q j,n = σ j

√
( 1− exp(−α j∆))

α j
(0.5µ j( 1− exp(−α j∆))+ exp(−α j∆)x j,n−1), (4.22)

It can be shown that this discretisation preserves the first two conditional moments, i.e.,

E(x j, tn+∆ |x j, tn) = (1− exp(−α j∆))µ j + exp(−α j∆)x j, tn and

Var((x j, tn+∆ |x j,tn) = Q2
j,n,

see, e.g. Brigo & Mercurio (2006)) for details. The observable variables are exponential in the latent
states and are given by

Yi,n = Π 2
j=1

(
Ãi, j exp(−

2

∑
j=1

(Bi, jx j,n))

)
+ zi,n, (4.23)

where

Ãi, j =
(

2γ j exp((α j + γ j +λ j)Ti/2)
2γ j +(α j +λ j + γ j)(exp(Tiγ j)−1)

) 2α j µ j
σ2

j , (4.24)

Bi, j =
2(exp(Tiγ j)−1)

2γ j +(α j +λ j + γ j)(exp(Tiγ j)−1)
, (4.25)

γ j =
√

(α j +λ j)2 +2σ 2
j , (4.26)

zi,n is observational noise with zero mean and a constant variance h2 for each i. The terms Ãi, j,Bi, j
in (4.24)-(4.25) are related to A0(τi|θ), A j(τi|θ) in (4.13c) as

A0 =−
n

∑
j=1

log
(
Ãi, j

)

Ti
,

A j =
Bi, j

Ti
,
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and n = 2. In practice, Ti represents time to maturity and Yi,n represents the price of a zero coupon bond
with maturity Ti + tn, at time tn. Here we use three maturities, T1 = 1, T2 = 2 and T3 = 4. This gives
a two-state, three measurement state space system. Note that the logarithm of Yi,n is often available as
a measurement and is affine in the state variables; this logarithm is nothing but the spot rate employed
earlier in section 3.1. In this section, we choose to use nonlinear measurement equation with Yi,n as
measurements to illustrate performance of sigma point filter in comparison to extended Kalman filter.

For numerical experiments we use weekly data from January 2001 to June 2005 for 3 different UK
government bond yields. As in section 3.1, 180 observations were used for calibration and 42 were used
for validation. A 2-factor model was calibrated using the extended Kalman filter described in section 4.1
and the maximum likelihood method described in section 2.3. As before, in-built optimization routines
from MATLAB were used for calibration. Table 5 reports the parameter values obtained as a result of
calibration.

Table 5. Parameter values

µ1 0.0254
µ2 0.0175
σ1 0.0710
σ2 0.1870
α1 0.0978
α2 0.8035
λ1 −0.0350
λ2 −0.0490
h 0.001

Here λ1 and λ2 have the same interpretation as the corresponding parameters in table 1. After
calibration, we use the sigma point generation method described in Julier & Uhlmann (2004) to generate
sigma points at each tn, with initial values for mean x j,0 = µ j and diagonal elements of covariance as
µ jσ2

j
2α j

. Five sigma points are generated at each tn. Bearing in mind the nonnegativity restriction on state
variables x j,n > 0 we replace any negative element of state estimate xn|n−1 with zero. These points are
then used to construct x̂ j,n+1|n, j = 1,2 and the corresponding predictions of Yi,n+1, i = 1,2,3. As a
benchmark for comparison, we use the predictions made using the extended Kalman filter.

To compare the performance of sigma point filters and extended Kalman filters, we consider the
sample mean of the relative absolute error (MRAE) for each time to maturity, in the same way as in
section 3.1. MRAE is computed over in-sample and out-of-sample data separately. Table 6 lists the
errors computed for one step ahead prediction of yields, for both the extended Kalman filter (EKF) and
the sigma point filter (SPF). It can be seen that the sigma point filter outperforms the extended Kalman
filter, both in-sample and out-of-sample and for all yields. This complements a huge body of empirical
experience within engineering about the performance improvement obtainable with sigma point filters.
Given the ease of implementation (relative to particle filters) and improved performance (relative to the
extended Kalman filters), sigma point filter provides an attractive approximate solution for nonlinear
time series filtering within econometrics and finance.

Table 6. Relative absolute errors of 1-step ahead prediction for 2-factor model



REFERENCES 15 of 18

τk EKF in-sample EKF out-of-sample SPF in-sample SPF out-of-sample
1Y 0.00237 0.00411 0.00160 0.00144
2Y 0.00388 0.00683 0.00283 0.00265
4Y 0.00606 0.01132 0.00483 0.00412

5. Summary

A brief and introductory review of linear and nonlinear filtering methodology has been presented in this
paper, including results of three numerical studies on filtering of financial time series data. Filtering in
nonlinear financial time series is a very active area of research worldwide. Several problems of theoret-
ical and practical interest remain to be explored. Two specific challenges for operations researchers are
worth mentioning.

1. In multi-stage stochastic optimisation of fixed income or commodity portfolios, the use of latent
state based models can provide arbitrage-free evolution of prices while providing huge savings
in terms of number of nodes reached and number of decision variables (e.g. , price evolution for
a typical 20 or 30 government bond portfolio can be modelled with a reasonable accuracy by a
2 factor linear Gaussian model and can hence be described by a two dimensional re-combining
lattice). Empirical studies for stochastic portfolio optimisation using latent state based models
will be valuable to both industrial and academic researchers in the OR community.

2. While moment-matching based methods have been used in a static stochastic optimisation set-up
in Høyland et al (2003) and in subsequent work, the potential for dynamic moment matching for
latent factors in a multi-stage optimisation, using the same scenario (or sigma point) generation
methodology as in sigma point filters, has not yet been exploited.

It is hoped that this review will stimulate more interest in research on theory and applications of filtering
in mathematical finance.
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