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ABSTRACT 

Microalgae have the potential to recycle and bioremediate CO2 and also produce chemical energy in the 

form of biomass. The potential production of renewable energy and high value products (i.e. carotenoid, 

antioxidants and polyunsaturated fatty acids) make large scale microalgal cultivation an attractive 

application. To achieve high productivity all microalgae cultures require CO2 addition. Various 

microalgae species have shown different capabilities to bioremediate CO2. This review article reports 

biomass concentrations, biomass productivities, and CO2 fixation rates of several microalgae and 

cyanobacteria species under different input CO2 concentrations. The effect of important factors such as 

photo-bioreactor, temperature, light intensity on CO2 removal have also been discussed. 
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1. Introduction 

Conventional power stations emit 344 to 941 kg of carbon dioxide (CO2) per MWh at capacities of 

400-1200 MW [1]. Power stations represents roughly 7% of total emitted CO2 into the atmosphere [2-4]. 

In general the power plant flue gases consist of 10-20% CO2 [2, 5], are largely alkaline, with an output 
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temperature of around 1200C [6, 7]. The CO2 remediation is accomplished in three main methods; (1) 

chemical reaction-based strategies including washing with alkaline solutions [8, 9], multi-walled carbon 

nanotubes [10], and amine coated activated carbon [11-13], (2) direct injection to underground [14], or to 

the ocean [15], and (3) biological CO2 mitigation, with CO2 being biologically converted to organic 

matters [16, 17]. 

Microalgae are now under investigation as one of the most promising bioremediation alternatives 

for many sources of CO2 emissions [18]. The authors have selected the term ‘bioremediation’ as we are 

discussing temporary fixation of CO2 in the microalgal biomass, akin to other bioremediation processes 

(usually soil-based mineral bioremediation). Microalgae have the capability to remove 10 to 50 times 

more CO2 from CO2 sources (such as flue gases) than terrestrial plants [2, 19], primarily due to more 

chlorophyll per unit area. Microalgae can utilize CO2 from different sources: i) atmospheric CO2; ii) 

industrial exhaust gases, and; iii) CO2 in the form of soluble carbonates (e.g NaHCO3 and Na2CO3) [20]. 

Bicarbonate (HCO3
-) is the predominant form of dissolved inorganic carbon (DIC) in seawater (pH = 8) 

[21], and the utilization of either CO2 or HCO3
- as the preferred carbon source for photosynthesis and as 

effective co-supplementation has been found to be species dependent [22]. For example, Hsueh et al., [23] 

and Su et al., [24] showed that growth rate of Thermosynechococcus sp increased with increasing DIC, 

while in Moheimani’s study [21] growth rate and lipid productivity of Chlorella sp and Tetraselmis 

suecica CS-187 were higher under pure CO2 or flue gas carbon sources as compared with NaHCO3. 

Comparing algae CO2 fixation rates under different carbon sources and experimental conditions is a 

challenging task, particularly for different carbon sources (direct CO2 or DIC), a wide pH range (5.5 to 

12), lighting regimes, and temperatures (18 to 400C) [21-24] . Furthermore, the differing objectives of 

present algae research (biomass, lipid and/or carbohydrate productivity, or CO2 bioremediation efficiency 

of different strains etc.) necessitate integrated projects that explore optimized conditions for various 

growth parameters and bioremediation efficacy. At present, algae is cultivated for different purposes such 

asvarious renewable fuels (bioethanol [16, 25-27], biodiesel [28], biomethane, biohydrogen [29-31], etc.) 

and nutrition [25, 27, 32-35] vitamins [27, 36, 37], minerals [25, 37], proteins [25, 27, 36, 38], fats [38, 
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39], sugars [38, 40], antioxidant [16, 41], animal feeds [16, 42, 43], cosmetics [27, 43-45], 

pharmaceuticals [16, 35, 36, 46-57], chemicals [16, 25, 27, 44], bioactive neutraceuticals [58-60], 

biofertilisers [27, 61] and bioremediation [5]. Some microalgae also produce useful carotenoids [36, 43], 

phycobilins [36], polyketides [43], mycosporine-like amino acids [43], glycerol [36], steroids [43], 

tocopherol [36], lectins [43], astaxanthin [36], canthaxanthin [36], functional sulphated polysaccharides 

[25, 36, 43], zeaxanthin [25], halogenated compounds [43], and some toxins [43]. It is clear that multi-

parameter optimization techniques are required to determine the most appropriate algae strains, growth 

conditions, and input parameters suitable to a broad range of industrial scale algae cultivation [62-65]. 

Yet, biomass productivity plays a significant role in any microalgae production system, and the 

production of many target constituents is dependent on primary biomass productivity (including the 

production of lipids, hydrocarbons, polysaccharides and other energy storage compounds). 

 

 

2. Photobioreactor cultivation systems and mass transfer 

Controlling microalgal production to a very high degree requires closed photobioreactor cultivation 

systems, and they offer significant productivity advantages including high production efficiency and 

biological contamination minimization [66-69]. However, their technical complexity generally results in 

relatively high CAPEX and OPEX [37, 69, 70]. Production aims using photobioreactors are generally to 

maximize biomass productivity and to minimize production costs per unit of output [37, 66, 71, 72]. As 

biomass productivity needs to remain high to offset high production costs, culture mass transfer must be 

efficient, and mass transfer limitations are a common issue in closed system photobioreactors [37, 70, 72, 

73]. The design of a photobioreactor should aim to maximize CO2 mass transfer rates, and the “two-film 

theory” states that CO2 mass transfer from the gas-phase to the cell-phase consists of different stages. The 

gas-liquid stage determines the mass transfer of CO2, and is given by: NCO2= kLα (CCO2 L*- CCO2 L), where 

kL is the liquid-phase mass transfer coefficient, α is the specific available area for mass transfer, CCO2 L* is 

the CO2 concentration in the liquor that equilibrates the partial pressure on the gas side, and CCO2 L is the 
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CO2 concentration in the liquor. Jacob-Lopes et al., [74] introduced several methods to increase NCO2 by 

raising kL and/or α such as microporous hollow-fiber membranes, air-lift bubble columns, stirring, gas 

injection methods and gas recirculation [75]. Fig. 1 illustrates three types of basic photobioreactors ; (i) 

without inner column (i.e. a bubble column), (ii) with a centric-tube column, and (iii) with a porous 

centric-tube column [76]. As shown in Table 1 the maximum biomass concentration  in photobioreactors 

without an inner column, with centric-tube column and with porous centric tube are 2.369, 2.534 and 

3.461g L-1, respectively. This result shows that maximum biomass concentration in the porous centric-

tube photo-bioreactor is greater by 46 % and 37 % in comparison with those in the bubble column PBR 

and in the centric-tube PBR, respectively. Furthermore, the specific growth rate of Chlorella sp. NCTU-2 

was also improved in the porous centric-tube. Additionally, the CO2 removal efficiency enhanced in the 

porous centric-tube photo-bioreactor by 45 and 52% compared to those in the bubble column and centric-

tube PBRs, respectively (Table 1) [76]. Better CO2 removal rate and biomass concentration of porous 

centric-tube indicate that this PBR provides a better mixing efficiency and higher photosynthetic rate due 

to perforation along the PBR [76]. Using membrane photobioreactors to enhance the CO2 fixation rate of  

C. vulgaris, the CO2 fixation rate of 6.6 gl-1d-1was achieved (Table 1) which was 0.95 times greater than 

those of conventional reactors [77]. Cheng et al., [78] used a photobioreactor with a hollow fiber 

membrane to remove CO2 from air using C.vulgaris and enhanced the CO2 removal rate from 1.92 to 6.24 

g L-1 d-1 relative to non-membrane photobioreactors (Table 1). Membrane photobioreactors produce more 

uniform gas bubbles, increase bubble retention times around an order of magnitude, and decrease 

dissolved oxygen levels by a factor of thirty [77, 78]. 
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Fig. 1. Schematic diagram of three different types of photobioreactor and visualization of the liquid flow 
patterns. (A) Bubble column-type photobioreactor, (B) centric-tube photobioreactor, (C) porous centric-
tube photobioreactor. (Unit of numbers is mm). (Reproduced from [76] with permission). 
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 Table 1. Photobioreactor designs (PBR) and CO2 removal rates. 

Photobioreactor 

Microalgae T 
(◦C) 

Supplied 
CO2 % 

Flow 
gas 
rate  

(L min -1)  

Growth 
rate  

(g d-1) 

Cell 
density    

Biomass 
concentration 

(g L-1)   

Light 
intensity 

(Lux) 

CO2 fixation 

Ref 
Type 

Vol 
(L) 

Rate  
(g L-1 d-

1) 

Efficiency 
(%) 

Bubble column 
(no inner 
column) 

4 (1) 26 5 1 0.180 1 g L-1 2.369 18750 - 24 [76] 

Centric tube 
column 

4 (1) 26 5 1 0.226 1 g L-1 2.534 18750 - 23 [76] 

Porous centric 
tube column 

4 (1) 26 5 1 0.252 1 g L-1 3.461 18750 - 35 [76] 

Membrane PBR - (2) 25 
(air & 
CO2) 

1.25  - 
5×107 

cell mL-

1 
- 10800  6.6  - [77] 

Hollow fiber 
membrane 

- (2) 25-30 1 3 - 
2×107  

cell mL-

1 
- 9800 6.24 70 [78] 

Hollow fiber 
membrane 

- (2) 25-30 0.04 3 - 
2×107  

cell mL-

1 
- 9800 - 67 [78] 

   

(1) Chlorella sp. NTCU2- (2) Chlorella vulgaris 
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3. CO2 concentration and CO2 bioremediation using microalgae 

 Both the carbon source and microalgae strains are important when seeking to achieve high-

productivity microalgae bioremediation of CO2 from input gases. The most extended method to capture 

CO2 from flue gases is absorption/desorption based on the utilization of alkanolamine solutions like 

monoethanolamine (MEA) or diethanolamine (DEA), etc. The CO2 capture from flue gases using 

MEA/DEA absorption units requires a minimum of 4.0MJ kg-1 CO2 for the regeneration of the solvent. 

The combustion heat of the microalgae biomass is around 20MJ kg-1 biomass and 1.8kg CO2 are 

stoichiometrically required to produce 1kg of biomass, therefore, microalgae are able to accumulate 

11.1MJ kg-1 CO2 [79]. Thus, the capture of CO2 represents a 36% (4.0 MJ kg-1) CO2 saving over 11.1 MJ 

kg-1 CO2 (bioremediated) of the energy stored as biomass if the CO2 was theoretically used at 100% 

efficiency. Experimental CO2 removal rates were determined by Douskova et al., [80] who used flue gas 

(10-13% CO2) and controlled gas (11% CO2) to cultivate Chlorella vulgaris. The higher CO2 fixation rate 

was achieved using flue gas (4.39g L-1 d-1) in comparison with the controlled gas (3g L-1 d-1). These results 

are likely due to other components of the flue gas (NOx and SOx) which increase microalgae biomass 

productivity [80]. Li et al., [81] used a mutant Scenedesmus obliquus WUST4 microalgae to capture CO2 

from flue gas and compared it with the original S. obliquus productivity when halving the CO2 input gas 

concentration. The mutant strain accumulated a higher biomass concentration (0.922 g L-1) than the non-

mutant S. obliquus (0.653 g L-1) even under 10% CO2 concentrations compared with the non-mutant 

concentration of 20% CO2. Furthermore,  Chiu et al., [3] determined the growth curves of Chlorella sp. 

(wild-type, WT) and Chlorella sp. MTF-7 mutant aerated with flue gas or CO2-enriched gas (2%, 10%, or 

25% CO2 aeration), finding the Chlorella sp. MTF-7 was significantly greater when aerated with flue gas 

or CO2 (Fig. 2). 
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Fig. 2. Growth profiles of Chlorella sp. (wild-type, WT) (A) and its mutant, Chlorella sp. MTF-7 (B), 
cultured in an indoor photo-bioreactor aerated with continuous flue gas or CO2-enriched gas (2 %, 10 %, 
or 25 %). The initial biomass concentration was approximately 0.2 g L-1. The microalgal cells were 
cultivated at 300 µmol m-2 s-1. The flue gas was provided at 0.05 vvm (volume of gas per volume of 
culture media per minutes). The cultures were grown for 6 days, and the microalgal cells were sampled 
every 24 h for growth determination.(Reproduced from [3] with permission). 

 

Most research on bioremediation of CO2 have been performed at the laboratory scale, and pilot 

scale experimentation is necessary to evaluate net CO2 bioremediation on a continuous basis over an 

extended period. Research by Chen et al., [82] on Spirulina platensis cultivated in a 30m3 photobioreactor 

utilizing CO2 from a power plant was able to capture 2234kg CO2 per annum. However, considering the 

cost and emissions of the required 130kWh of input electrical energy (1494 kg CO2 per year), a net 

bioremediation of only 740kg CO2 per annum was achieved [82]. Significant improvements of net CO2 

fixation rates ranging from 16.85g L-1 d-1 for S. obliquus to 40.32g L-1 d-1 for cyanobacterium 

Aphanothece microscopica N¨ageli was obtained by Francisco et al., [83], who investigated five 

microalgae species; S. obliquus, Dunaliella tertiolecta, C. vulgaris, Phormidium sp., and A. microscopica 

N¨ageli under 15% CO2. The research found that the CO2 fixation rates did not correspond exclusively to 

the biological assimilation of CO2, and also that A. microscopica N¨ageli which achieved the highest CO2 

fixation rate also released toxic components into the medium that influenced the final use of the biomass. 
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3.1. High CO2 tolerant microalgae species 

The limiting factor of CO2 fixation by microalgae is generally CO2 mass transfer [44], and in general 

increasing CO2 concentrations also leads to mass transfer enhancements. However, providing high levels 

of CO2 into culture mediums leads to acidification, whereas consumption of CO2 by microalgae through 

photosynthesis results in pH increase, and resultant changes may impact growth rates of some microalgae 

species [44]. When CO2 is dissolved in an aqueous solution with a pH <8 the main pathway is direct 

hydration (at 25 °C and 1 atm), while at a pH >10 the main pathway is by the attack of hydroxide ions, 

and at pH between 6 and 10 bicarbonate is the dominant carbonate species [75, 79]. The hydroxide ions 

are transported to outside the cell by the enzyme carbonic anhydrase during photosynthesis. The other 

mechanism of pH increase is due to activity of the enzyme ribulose 1,5-bisphosphate carboxylase whose 

activity considerably depends on pH, increasing at higher pH levels [83]. Therefore, supplying high CO2 

to the culture medium should be matched with the optimum pH growth of the microalgae. 

Fig. 3a and 3b shows the growth curve of Scenedesmus and Chlorella under high CO2 

concentration (10-80% CO2) with Scenedesmus tolerating very high CO2 concentrations to a greater 

extent than Chlorella, despite comparable growth rates of both microalgae in lower CO2 concentrations of 

10-30%. Fig. 4 indicates that the growth rate of Scenedesmus was inhibited under 100% CO2 

concentration, yet continued to grow when CO2 concentrations returned to 20% [7]. Similarly, Chlorella 

KR-1 was grown under elevated CO2 ranging from air levels to 70 % CO2, and Fig. 5 shows that the 

highest biomass concentration of 3.01g L-1 at a 10 % CO2 concentration, and only 0.71 g L-1 under 70% 

CO2 conditions [84]. Similarly, Tang et al., [85] assessed two microalgae strains, S. obliquus SJTU-3 and 

C. pyrenoidosa SJTU-2 at 50% CO2 and determined the maximum biomass concentration of S.obliquus 

SJTU-3 and C. C. pyrenoidosa SJTU-2 was 0.82g L-1 and 0.69g L-1, respectively. 
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Fig. 3. Effect of different input concentrations of CO2 on algal growth of (a) Scenedesmus, and (b) 
Chlorella.  The cultures were grown at 30 °C and a light intensity of 60 µEm-2s-1. (Reproduced from [7] 
with permission). 
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Supplying high CO2 concentrations with low gas flow rate leads to a low inorganic carbon loading 

in the liquid phase and a low concentration of DIC. Therefore, microalgae can tolerate high CO2 

concentrations with low gas flow rate. Using this method Olaizola et al., [86] was able to grow 

microalgae under 100% CO2, and concluded that acidification was the main inhibitor of microalgal 

growth. In contrast, Soletto et al., [87] suggested that osmotic pressure is the primary source of growth 

inhibition. Clearly additional research is required for microalgae cultivation under high CO2 

concentrations, as other research has found growth also depends on cell densities [88], nutrients and light 

[75], and also on the species [7, 85].  

 
 

Fig. 4. The effect of bubbling culture medium under different CO2 concentration on the growth rate of 
Scenedesmus. The experiment was carried out at 30°C and a light intensity of 60 µEm-2sec-1. (Reproduced 
from [7] with permission). 
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Fig. 5. Growth of Chlorella KR-1at different input concentrations of CO2. The cultures were grown at 
25°C and a light intensity of 110 µmol/m2 sec, pH of the medium was 4.1 at an initial stage. (Reproduced 
from [84] with permission).  
 

4. Temperature and CO2 bioremediation  

Temperature is another major factor in microalgal growth, particularly cell morphology and 

physiology, with metabolic rates generally rising and falling with changing temperatures. However, CO2 

solubility decreases in higher culture temperatures leading to lower CO2 availability. CO2 solubility also 

depends on culture pH, decreases with increasing salt concentration, and increases with higher pressures. 

Thus, to generally improve the solubility of CO2 the culture medium must be maintained at a cooler 

temperature [89], yet each microalgae species has its own optimal-growth temperature, and is generally 

within the range of 15-26 °C [20]. The use of thermo-tolerant microalgae species for CO2 removal from 

hot flue gases is a major advantage in reducing production system cooling demands. Thermo-tolerant 

microalgae species have the ability to grow at temperatures up to 55 °C in more than 40% CO2 input gas 

concentrations, making them highly prospective for CO2 bioremediation from power station flue gases 

[2]. Cyanidiwn caldarim, Galdieria partita and Cyanidioschyzonmelorae exhibit acceptable growth rates 
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at 50 ºC [90], and Thermo synechococcus elongatus (a unicellular cyanobacterium) grows in hot springs 

at temperatures of 48-55 ºC [91]. Two thermal-tolerant mutants of Chlorella sp. MT-7 and MT-15 were 

investigated in indoor cultivation by Ong et al., [92]. The specific growth rate of the mutants were 1.4 to 

1.8 times at 25ºC and 3.3 to 6.7 times at 40ºC higher than those of the wild type, with the mutant strains 

maximum growth rates at 30ºC. Table 2 also shows that mutant strains analysed exhibited significantly 

higher CO2 fixation rates than wild types at higher temperatures [92]. Hsueh et al., [23] examined two 

strains of Thermo synechococcus sp. CL-1 (TCL-1) and Nannochloropsis sp. oculta (NAO). For NAO, the 

maximum growth rate of about 1.6g d-1 and biomass concentration of 1.41g L-1 was obtained at 30°C 

under 8% CO2 [23]. As shown in Fig. 6a, the growth rate and maximum cell mass of NAO is practically 

the same at 30ºC and 40ºC at ~0.4g L-1. The TCL-1 strain growth rate and the maximum cell mass both 

increased as the temperature rose from 40 to 55ºC (Fig. 6b). For TCL-1, at 40, 50, and 55ºC, the CO2 

uptake rate was 0.069, 0.141 (Table 2) and 0.237g L-1 d-1, respectively [23]. Ono et al., [93] used 

Chlorogleopsis sp. (or SC2), a thermophile cyanobacterial species and found the maximum carbon uptake 

and cell concentration were 0.204g L-1 d-1 and 1.24g L-1, respectively at 5% CO2 level at 50ºC. 

In general at higher temperatures the available CO2 decreases because of lower solubility in the 

microalgal culture. At 30°C Henry’s Law constant of CO2 in water is 2.965×10-2  mol/atm, while it 

declines to 1.817×10-2 mol/atm at 50ºC [91], leading to higher CO2 availability and generally higher 

microalgae CO2 uptake [91]. This is balanced with the increasing metabolic rates at increasing 

temperatures. Detailed investigations of the dynamics two mechanisms together are yet to be explored 

fully in the available published literature. 
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Fig. 6. Growth curves at different temperatures. (a) NAO at pH 8.5. (b) TCL-1 at pH 9.5. (Light intensity: 
10 k lx). (Reproduced from [23] with permission).  
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Table 2. CO2 removal rate of microalgae species at high temperatures. 

Photobioreactor 

Microalgae 
Temp 
(◦C) 

Supplied 
CO2% 

Flow gas 
rate  

(L min -1)  

Growth 
rate  
(d-1) 

Cell 
density 
(g L-1) 

Biomass 
concentration 

(g L-1) 

Light 
intensity 

(Lux) 

CO2 fixation 

Ref 
Type 

Vol 
(L) 

Rate  
(g L-1 d-

1)   

Efficiency 
(%) 

Vertical 
bubble 
column 

40 3 40 5 20 - 

 
 
2 

 

- 1500  0.019 - [92] 

Vertical 
bubble 
column 

40 4 40 5 20 - 

 
 
2 - 1500 0.021 - [92] 

Bubble 
column 

- 5 30 8 1 1.6 
 
- 1.41 10000  - - [23] 

Bubble 
column 

- 6 50 10 - 2.7 
 
- - 10000 0.141  - [23] 

- - 7 50 5 0.002vvm 0.28 
 
- 1.24  12500 0.204  - [97] 

 

(3) Chlorella sp MT-7 - (4)  Chlorella sp MT-15 - (5) Nannochloropsis sp. Octula (NAO) - (6) Thermosynechococcus sp. CL-1 (TCL-1) – (7) 
Chlorogleopsis sp (SC2)    
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5. Lighting and CO2 bioremediation rates 

Light intensity controls photosynthetic growth in any algal system. Light intensity affects photosynthesis, 

CO2 removal rates, biomass concentrations, and overall growth rate. Research by Hulatt et al., [94] on 

CO2 removal rates for both C. vulgaris and D. tertiolecta under 4% CO2 with increasing light intensities 

(10, 20, and 50 W m-3 presented in Table 3 shows C. vulgaris and D. tertiolecta were 0.72, 0.83, 0.93g L-1 

and 0.9, 1.18, 1.31g L-1, respectively. Similar results were achieved in research by Takano et al., [95] 

found the CO2 fixation rate of the cyanobacterium Synechococcus sp. rose from 0.1 g L-1 to 0.4 g L-1 , and 

a 4.2 times biomass yield was observed by increasing the light intensity from 156 to 1250 lux (Fig. 7). 

While increasing light intensity is usually accompanied by increasing CO2 removal rates in microalgal 

systems, any photosynthetic system has a saturation point where further increasing light intensity will 

either produce no benefit or may decrease productivity. As shown in Fig. 8, CO2 fixation and O2 

evolution rates have a positive correlation with light intensity until the saturation point at 10800 lux [77]. 

Investigation by Li et al., [81] on S. obliquus WUST4 showed that with increasing light intensity from 

6000 lux to 15000 lux, CO2 removal rates increased with the highest CO2 removal ratio (67%) at 12000-

13000 lux. However, as the light intensity exceeded 13000 lux, the CO2 removal ratio decreased at high 

light intensities as microalgal photosynthesis was inhibited [81]. The characteristics of light can also play 

a significant role in CO2 fixation. The variable effects of sunlight, xenon lamps, and fluorescent lamps on 

CO2 fixation rates of Chlorella sp was investigated by Hirata et al., [96]. The research found that 

cultivation under white fluorescent lamps achieved the highest CO2 fixation rate (0.865g L-1 d-1), biomass 

concentration (0.842g L-1) and biomass productivity (0.437g L-1 d-1) [96]. (See Table 3). 

[Insert Table 3 and Fig 7 8 ] 
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Fig. 7. Effect of light intensity on CO2 removal and biomass concentration. (Reproduced from [95] with 
permission). 
 

 
Fig. 8. Effect of luminous intensity on CO2 fixation and O2 evolution of Chlorella vulgaris, (T = 25 °C, 
cell number = 5 · 107 cells mL–1, gas flow rate = 1.25 L min–1, red inner light source, PVDF-1membrane 
length = 30 cm and membrane number = 30). (Reproduced from [77] with permission). 
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Table 3. Effect of photobioreactor (PBR) light intensity on CO2 fixation rates. 

Photobioreactor 

Microalgae 
Temp 
(◦C) 

Supplied 
CO2 (%) 

Flow 
gas 
rate  

(L min -1

Cell 
density  
(g L-1)  

Biomass 
concentration 

(g L-1) 

Biomass 
productivity 

(g L-1 d-1)   

Light 
intensity 
(W m-3)  

CO2 fixation 

Ref 
Type 

Vol 
(L) 

Rate  
(g L-1 d-1

Efficiency 
(%) 

Bubble 
column 

1.4 2 26  4 0.001 
ms-1 - 2.7  0.41  10  0.72 14.6 [94] 

Bubble 
column 

1.4 2 26  4 
0.002 
ms-1 

- 3.18 0.42 20 0.83 8.5 [94] 

Bubble 
column 

1.4 2 26  4 
0.005 
ms-1 

- 3.62 0.47 50 0.93 3.8 [94] 

Bubble 
column 

1.4 8 26  4 
0.001 
ms-1 

- 3.03 0.51 10 0.9 18.4 [94] 

Bubble 
column 

1.4 8 26  4 
0.005 
ms-1 

- 3.33 0.66 20 1.18 12 [94] 

Bubble 
column 

1.4 8 26  4 0.005 
ms-1 

- 3.60 0.73 50 1.31 5.3 [94] 

PBR - 9 30 10 0.5  16  0.150  0.016  
Sunlight  
(0-15.7) 

0.031 - [90] 

Roux  
flask 

- 9 30 10 0.5  16  0.694 0.368 
Xenon 
lamp 
(59.9) 

0.728 - [90] 

Roux 
flask 

- 9 30 10 0.5  16  0.842 0.437 
Florescent 

lamp 
(71.4) 

0.865 - [90] 

(2) Chlorella vulgaris – (8) Dunaliella tertioleeta – (9)  Chlorella sp 
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6. Conclusions 

CO2 bioremediation by microalgae depends on photobioreactor geometry and mass flow, input 

CO2 concentrations, cell concentrations, the light intensity and temperatures. Results presented in this 

review article demonstrated that the type of photobioreactor impacts the efficiency of CO2 

bioremediation. Microalgae start the transport of electron reactions in the presence of light. The 

results showed that while increasing light intensity normally leads to CO2 removal enhancement by 

microalgae, further research is required to determine optimal light characteristics and intensities suited 

to each alga and culture system. Similarly, maintaining culture growth temperatures (normally 23-30 

ºC) influence CO2 fixation, particularly when employing exhaust flue gases is a promising strategy, 

yet requires local customization to each unique flue gas temperature and chemistry – particularly trace 

elements that can kill the microalgae. Using microalgae for CO2 bioremediation is more beneficial 

over chemical methods. Being environmentally friendly, saving ecosystem sustainability and 

producing useful products makes these species attractive. Furthermore, employing wastewater as 

nutrient and flue gas, containing 15-20 % CO2, as feed gas for microalgae is a promising strategy to 

produce sustainable energy such as biodiesel and biofuel while reducing pollutant from the 

environment. 
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