
Sequential Importance Sampling for Bipartite
Graphs With Applications to Likelihood-Based

Inference 1

Ryan Admiraal
University of Washington, Seattle

Mark S. Handcock
University of Washington, Seattle

Technical Report No. 502
Department of Statistics
University of Washington

August 2006

1Ryan Admiraal is a graduate student, Department of Statistics, University of Wash-
ington, Box 354322, Seattle WA 98195-4332. E-mail: ryan@stat.washington.edu;
Web: http://www.stat.washington.edu/ryan. Mark S. Handcock is Professor of
Statistics and Sociology, Department of Statistics, University of Washington, Box
354322, Seattle WA 98195-4322. E-mail: handcock@stat.washington.edu; Web:
http://www.stat.washington.edu/handcock.



Abstract

The ability to simulate graphs with given properties is important for the analysis
of social networks. Sequential importance sampling has been shown to be particu-
larly effective in estimating the number of graphs adhering to fixed marginals and in
estimating the null distribution of test statistics. This paper builds on the work of
Chen et al. (2005), providing an intuitive explanation of the sequential importance
sampling algorithm as well as several examples to illustrate how the algorithm can
be implemented for bipartite graphs. We examine the performance of sequential im-
portance sampling for likelihood-based inference in comparison with Markov chain
Monte Carlo, and find little empirical evidence to suggest that sequential importance
sampling outperforms Markov chain Monte Carlo, even for sparse graphs or graphs
with skewed marginals.

KEY WORDS: Sequential importance sampling; bipartite graph; Markov chain
Monte Carlo; likelihood inference; graph counting;



1 Introduction

A bipartite graph is a graph for nodes of two distinct types with the relation defined

to be between nodes of different types. The set of nodes can be represented by two

subsets R and C for which nodes in R only have ties to nodes in C, and nodes in C
only have ties to nodes in R. One of the more common types of bipartite graphs is

an affiliation network for which the two types can be called “actor” and “event” and

the relation indicates the affiliation of the actor with the given event. As an example

of an affiliation network, we will later examine the occurrence of finch species on

different islands. Bipartite graphs can be represented by a matrix A = aij, where

i ∈ R, j ∈ C, and aij = 1 if there is a relational tie from i to j and 0 otherwise. In

the case of an affiliation matrix, aij = 1 would correspond to actor i being affiliated

with event j.

In the analysis of bipartite graphs, most research has focused on analytic methods

of analyzing properties of the graph or calculating graph statistics. Where analytic

methods are impractical, research has generally turned to approximation methods.

The approximation method most commonly utilized is Markov chain Monte Carlo

(MCMC), which often provides a means to representatively sample the graph space.

The standard MCMC algorithm is that developed by Snijders (1991), and extended

by Rao et al. (1996). While useful in solving many difficult problems, MCMC has its

limitations, and alternative Monte Carlo methods are of interest. Recent research

has brought to light the effectiveness of sequential importance sampling (SIS) in

solving certain problems for which analytic methods and current MCMC algorithms

do not provide good solutions or any solution at all.

SIS has proved particularly useful in counting bipartite graphs with given marginals.

For many graphs, exact enumeration of all graphs adhering to marginal constraints

simply is not practical. To illustrate the issues, consider the bipartite graph in Ta-

ble 1, which consists of only 13 rows, 17 columns, and 122 ties. For this graph, a

graph of moderate size, the total number of unique graphs matching the row and

column sums is more than 6.7×1016. While several elaborate algorithms can perform

such tasks of exact graph counting, the amount of time required to directly com-

pute the number of graphs meeting the marginal constraints generally makes such a

computation impractical. Attempts to approximate the number of graphs meeting

marginal constraints by means of MCMC are more practical in terms of computing

time, but, for graphs similar in size to Table 1, they still require an exorbitant run

time for a low degree of accuracy. SIS, on the other hand, requires relatively few

sampled graphs and minimal computing time to produce a highly accurate estimate

1



of the number of graphs meeting the marginal constraints. It does this by sampling

columns of the graph sequentially, ensuring that new graphs meet the column and

row sum constraints of the observed graph. In each column, sampling of rows to

receive 1’s is done according to specified inclusion probabilities to ensure that the

new graph comes from a distribution that is relative uniform (and known).

Island
Finch A B C D E F G H I J K L M N O P Q
Large ground finch 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
Medium ground finch 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0
Small ground finch 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
Sharp-beaked ground finch 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1
Cactus ground finch 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0
Large cactus ground finch 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
Large tree finch 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0
Medium tree finch 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Small tree finch 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0
Vegetarian finch 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0
Woodpecker finch 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0
Mangrove finch 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Warbler finch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 1: Darwin’s finch data

Another application for which SIS has proved useful is in approximating the null

distribution of a test statistic. Such capabilities are important in significance testing.

For the null distribution of most test statistics for a graph of moderate size, there

are no known analytic approaches that can accurately approximate the distribution.

This is primarily because such algorithms must be modified for the test statistic

under consideration, leading to even more complex algorithms than those used in

the graph counting problem. MCMC also appears to be an inferior approach, as

Chen et al. (2005) (CDHL) provide numerous examples in which MCMC algorithms

are consistently less efficient than SIS. CDHL suggests that this is to be expected,

as the problems of counting graphs and approximating the null distribution of a test

statistic are both easily solved when sampling graphs uniformly or nearly uniformly,

and this is exactly what SIS attempts to do. However, the validity of CDHL’s

assessment is an empirical question and will depend on the specifics of the problem

addressed.

With the apparent advantages of SIS over analytic methods and MCMC when

considering the problems of approximating the size of a graph space or the null

distribution of a test statistic, it seems plausible that SIS may also have a distinct

advantage in handling difficult likelihood inference problems. To the best of our

knowledge, this application of SIS has not been explored. In cases where direct

computation of the likelihood is impractical, research has focused on alternative es-

timators or approximations. One such alternative is pseudo-likelihood estimation,

2



which constructs a surrogate for the likelihood based on the product of the full condi-

tional distribution for each edge. Generally, this can be computed exactly. However,

Robins et al. (2006) argue that this method is intrinsically highly dependent on the

observed graph and, consequently, may result in substantial bias in the parameter

estimates for certain graphs. In addition, the näıve standard errors are often too

small. van Duijn et al. (2006) show that the maximum pseudo-likelihood estimate

(MPLE) performs substantially worse than the MLE in terms of efficiency and bias.

They show that the estimates of the standard errors of the MPLE can be both

higher and lower than their actual values depending on the observed graph. Be-

cause of these potential problems, we generally avoid pseudo-likelihood and consider

other approximations, such as MCMC. Unfortunately, in the case of MCMC there

can be strong dependence between graphs that are sampled successively, meaning

that a larger number of graphs must be sampled to obtain a desired effective sample

size. More problematic for MCMC is the possibility that certain regions of the graph

space will not be sampled or that the chain will remain in certain regions of the space

for extended periods of time, leading to incorrect inference (Gelman, 1996).

Although generally slower than MCMC in sampling valid graphs, SIS has the

advantage of sampling new graphs independently and with the goal of an approx-

imately uniform probability, meaning that a much smaller sample of graphs is re-

quired to obtain a specified effective sample size. Because it samples new graphs

independently, it is able to quickly sample from different regions of the space. This

means that it should be able to better avoid the problems that MCMC encounters

with failing to sample certain regions or occasionally remaining in certain regions of

the graph space for a large number of iterations. This leads us to believe that SIS

may be comparable to MCMC in maximum likelihood estimation and may actually

produce more accurate parameter estimates in certain instances.

In this paper we give a detailed exposition of the computational aspects of SIS,

following the structure and notation of Chen et al. (2005). After describing the

components of the algorithm in Section 2, we provide a simple example of how to

implement SIS in Section 3, guiding the reader through each of the steps. In Section

4 we show how SIS can be used in maximum likelihood estimation. In Section 5 we

discuss the results of our algorithm as they pertain to graph counting, approximating

the null distribution of a test statistic, and likelihood inference. Finally, in Section

6 we discuss the results in relation to other methods, paying particular attention to

the likelihood inference results.

3



2 Sequential Importance Sampling for Bipartite

Graphs

Let r = (r1, r2, ..., rm) denote the row sums and c = (c1, c2, ..., cn) the column sums

of an m × n bipartite graph. Then we will denote the space of all graphs with

column sums c by Ac, and we will denote the space of all graphs with row sums r

and column sums c by Arc. For most significance tests and for likelihood inference,

we must generate new graphs that have the same marginals as the observed graph.

Consequently, our focus will be on generating graphs in Arc.

For the graph in Table 2, Ac is the space of all graphs with column sums

(3, 3, 3, 1), and Arc is the space of all graphs with row sums (3, 3, 2, 2) and col-

umn sums (3, 3, 3, 1). Suppose we want to generate new graphs with the same row

and column sums as this graph. If we simply ensure that we sample according to the

column sum constraints and the algorithm samples (0 1 1 1)T for the first column,

sampling (0 1 1 1)T for the second column could produce a valid graph for Ac but

not for Arc. This should be clear in that only two columns remain to be sampled,

and yet we still need to sample three 1’s for the first row in order to obtain a valid

graph in Arc. Since our goal is to sample new graphs in Arc, we will need to

address this problem.

1 1 1 0 3
1 1 0 1 3
1 0 1 0 2
0 1 1 0 2
3 3 3 1

Table 2: First Example

2.1 Conjugate Sequences

One possible remedy for this problem is to generate graphs in Ac and simply discard

those graphs that are not inArc. This is highly inefficient, however, so we consider a

different approach and implement a forward-looking step to ensure that all sampled

graphs are valid. To do this, we define the conjugate sequence of column sums

c1, c2, ..., cn by C
(0)
i = #{cj : cj ≥ i}, i = 1, 2, ...,m, j = 1, 2, ..., n. Thus, for any

given column sum cj, we will increment C
(0)
i by 1 for each j satisfying 1 ≤ C

(0)
i ≤ cj.

This means that C
(0)
1 counts the number of non-zero column sums, C

(0)
2 counts the

number of column sums that are at least two, C
(0)
3 counts the number of column

sums that are at least three, and so on.

4



In general, we will let C(j) =
(
C

(j)
1 , ..., C

(j)
m

)
denote the conjugate sequence

of cj+1, ..., cn. This represents the conjugate sequence after the first j columns

have been sampled. For example, for the graph in Table 2, C(0) = (4, 3, 3, 0),

C(1) = (3, 2, 2, 0), C(2) = (2, 1, 1, 0), C(3) = (1, 0, 0, 0), and C(4) = (0, 0, 0, 0). By

construction, C(0), C(1), ..., C(n), are independent of the sampling mechanism for

the columns, so all conjugate sequences can be computed prior to sampling any of

the n columns. Also by construction, C
(0)
i ≥ C

(1)
i ≥ · · · ≥ C

(n)
i for all i. The

algorithm we implemented for computing the conjugate sequences can be found in

Algorithm 1 of the appendix.

2.2 Knots and Corresponding Restrictions

For a given conjugate sequence, we can determine the maximum number of ones

that can be sampled in a specified set of columns for a given number of rows by

computing partial sums from the conjugate sequence. In particular, C
(j)
1 gives the

maximum number of 1’s that can be sampled in columns j +1 to n for any one row,∑2
i=1 C

(j)
i gives the maximum number of 1’s that can be sampled in columns j + 1

to n for any two rows, and
∑t

i=1 C
(j)
i gives the maximum number of 1’s that can

be sampled in columns j + 1 to n for any t rows. Thus, for the graph in Table 2,

C(1) = (3, 2, 2, 0) tells us that, in the last three columns, we can sample no more

than three 1’s for any given row, no more than five 1’s for any two rows, no more

than seven 1’s for any three rows, and no more than seven 1’s for any four rows.

Likewise, the row sums tell us how many 1’s must be sampled for a specific set of

rows. Since rows with larger row sums will have greater restrictions in the sampling

process, we rearrange the rows so that row sums are ordered from largest to smallest.

Then
∑t

i=1 ri tells us the total number of 1’s that must be sampled for the first t

rows. Note that
∑m

i=1 C
(0)
i =

∑n
j=1 cj =

∑m
i=1 ri. Then, since C

(0)
i ≥ C

(1)
i for all i,

we have
∑m

i=1 ri ≥
∑m

i=1 C
(1)
i . In particular, if

∑t
i=1 ri >

∑t
i=1 C

(1)
i , then at least∑t

i=1 ri − C
(1)
i ones must be sampled in rows 1 to t of the first column. Failure to

do so will result in a graph that fails to meet our marginal constraints, as the first

t rows of the graph will require more ones than afforded by the remaining column

sums of size t or less.

2.2.1 Motivation

To illustrate this, suppose C
(1)
1 = 5, C

(1)
2 = 4, and C

(1)
3 = 2; and suppose r1 = 4,

r2 = 4, and r3 = 4. Then
∑3

i=1 ri >
∑3

i=1 C
(1)
i , and

∑3
i=1 ri − C

(1)
i = 1. Let x

denote instances of a 1 being sampled for the first row, y denote instances of a 1

being sampled for the second row, and z denote instances of a 1 being sampled for

5



the third row. If we fail to sample a 1 in the first column for any of these three rows,

satisfying the row sum requirements for the first row requires that we sample 1’s for

four of the five remaining columns with non-zero column sums (i.e. c2, c3, ..., cm),

leaving unsampled only one of the columns with a non-zero column sum.

x x x x

Satisfying the row sum requirements for the second row requires that we sample

four 1’s from either the column with a non-zero column sum that has yet to be

sampled or the columns with column sums of at least two which have already been

sampled once. This results in all columns with non-zero column sums being sampled

at least once and all but one of the columns with column sums of at least two being

sampled twice.

x x y x x

y y y

Finally, satisfying the row sum requirements for the third row requires that we

sample four 1’s for either the column with a column sum of at least two which has

been sampled only once or the columns with column sums of at least three which

have already been sampled twice. Here, we encounter a problem, as there are not

enough column sums of at least three to accommodate the number of 1’s required

by this third row sum. Of course, we cannot sample a column twice for the same

row either, so it becomes clear that the only solution is to sample a 1 for at least

one of the first three rows in the first column.

x x y x x

y y z y

z z z

2.2.2 Determination of Knots and Corresponding Restrictions

To determine how many 1’s must be sampled in certain rows for a given column,

we record the row number t whenever
∑t

i=1 ri >
∑t

i=1 C
(1)
i , and we also record the

6



corresponding difference
∑t

i=1 ri−C
(1)
i . Let k1, k2, ... (which we will refer to as knots)

take on the values of t for instances where
∑t

i=1 ri >
∑t

i=1 C
(1)
i , and let v1, v2, ... take

on the corresponding differences
∑t

i=1 ri − C
(1)
i . Thus, vi tells us how many ones

must be sampled by row ki. If vj ≤ vi for some j > i, we will remove kj and vj, as

the restrictions placed on our sampling through ki and vi ensure that the restrictions

placed on our sampling through kj and vj are met. Likewise, if vj − vi ≥ kj − ki for

any j > i, then we will remove ki and vi, as the restrictions placed on our sampling

through kj and vj ensure that the restrictions placed on our sampling through ki

and vi are met.

For the first column of the graph given in Table 2, we initially record the knots

and corresponding restrictions

k1 = 2, v1 = 1
k2 = 3, v2 = 1
k3 = 4, v3 = 3.

However, k1 and v1 ensure that the restrictions stipulated by k2 and v2 are met, so

we remove k2 and v2 and reorder all subsequent knots to obtain

k1 = 2, v1 = 1
k2 = 4, v2 = 3.

The algorithm we implemented for computing the knots and corresponding values

for a given column can be found in Algorithm 3 of the appendix.

2.3 Sampling a Column

After we have recorded the knots k = (k1, k2, ...) and corresponding restrictions v =

(v1, v2, ...) for a column, we can begin sampling for that column. Before providing

a general rule for sampling a column, we will first demonstrate how sampling is

executed for a simple example.

2.3.1 Example

To sample the first column for the graph in Table 2, we record the knots and corre-

sponding restrictions for the first column. These are given by

k1 = 2, v1 = 1
k2 = 4, v2 = 3.

With the knots and corresponding restrictions recorded, our first step is to sample

1’s for rows 1 to k1 = 2. Because v1 = 1, we know that we must sample at least one

7



of these rows to receive a 1. At the same time, we cannot sample more 1’s than what

the column sum allows, so we may not sample more than four rows to receive a 1

from the first two rows. Clearly, it is not possible to sample more 1’s than number

of rows, so we may not sample more than two of the first two rows to receive a 1.

Thus, we know that we must sample at least one but no more than two of the first

two rows to receive a 1, and we randomly select one of the two possibilities. Suppose

we randomly select one, so only one of the first two rows will receive a 1. We then

randomly choose one of the two rows based on some probability proportional to the

row sum. We will assume that the first row was chosen to receive the 1, so our

current sampling scheme for the first column is

1 3
0 3

2
2

3 3 3 1

The second knot k2 and its corresponding restriction v2 tell us that we must

sample at least three rows from the first four rows to receive a 1. We have already

sampled one row to receive a 1 from the first two rows, so we must sample two rows

from the third and fourth rows to receive a 1. Once again, we may not sample more

1’s than what the number of rows permits, so we may not sample more than two

rows to receive a 1. Consequently, we must sample both the third and fourth rows

to receive 1’s, so our sampling scheme for the first column will be

1 3
0 3
1 2
1 2
3 3 3 1

2.3.2 General Column Sampling Procedure

In general, then, to sample column j we first determine d1, the total number of 1’s

to be sampled for the first k1 rows. As stated before, v1 denotes the number of ones

that must be sampled by row k1, so this is our lower bound for d1. At the same time,

we cannot sample more 1’s than rows, nor can we sample more 1’s than what the

column sum allows, so we are bounded above by the minimum of k1 and cj. Thus,

we sample a value d1 uniformly from {v1, ..., min{k1, cj}}. Once we have sampled a

value for d1, we sample the rows that are to receive a 1. The procedure for sampling

8



the d1 rows to receive a 1 is described later. Next, we uniformly sample a value d2

from {max{v2 − d1, 0}, min{k2 − k1, cj − d1}} to determine the number of 1’s to be

sampled for rows k1 + 1 to k2, and the row sampling procedure is repeated. This

continues until we have either sampled cj rows to receive ones or have reached our

last knot.

Each time we sample a value di for a knot ki, we compute inclusion probabilities

for rows ki−1 + 1 to ki, and then we randomly sample one of these rows to receive

a 1 according to the inclusion probabilities. The inclusion probabilities are then

updated for the unsampled rows, and we again randomly select one of these rows to

receive a 1 according to the new inclusion probabilities. The procedure is repeated

until we have sampled di rows. The algorithm we implemented for sampling rows

to receive a 1 for a given column can be found in Algorithm 4 of the appendix.

2.4 Updating

After we have sampled the first column, we decrement by one the row sums for

each row that was sampled and record these new row sums r(1). Then we consider

the conjugate sequence C(2) and the new row sums and repeat the procedure of

ordering row sums in decreasing order, determining knots, recording restrictions

corresponding to each knot, and sampling according to these restrictions. In essence,

we are sampling the first column for a new m×n− 1 graph with row sums equal to

r(1).

2.5 Graph Probability

As sampling is occurring, we update the probability of the new graph. Since sam-

pling is not uniform, it is vital that we know the probability of generating the new

graph that we observe. Columns are sampled sequentially and conditional on pre-

vious columns sampled, so the graph probability is given by the product of the

conditional probabilities of the columns. For each column, this conditional proba-

bility is simply the product of the uniform probabilities used to choose di for each

knot ki and the probabilities of the rows that are sampled for each of those knots.

Let S represent the rows ki−1 + 1 to ki, the rows from which we will be sampling

di times, and Al (l = 0, ..., di) the rows in S that have been sampled after di draws.

Then
∏di

l=1 P
(
sl, A

c
l−1

)
gives the probability of sampling row s1, then row s2, and

so on. According to the distribution that we will use in computing inclusion prob-

abilities, however,
∏di

l=1 P
(
sl, A

c
l−1

)
does not depend on the ordering of s1 to sdi

.

Consequently, by computing the probability of the permutation that we observe,

9



we can easily compute the probability of the combination of 1’s and 0’s that are

sampled for a particular column, as this will simply be di!
∏di

l=1 P
(
sl, A

c
l−1

)
.

2.6 Essential Algorithmic Considerations

Ideally, we would like to sample graphs uniformly. For SIS, this is rarely possible, but

we can often sample graphs from a distribution that is nearly uniform. As mentioned

previously, sampling graphs from a relative uniform distribution is vital in enabling

us to accurately estimate the number of graphs meeting marginal constraints and

to approximate the null distribution of a test statistic. Additionally, the effective

sample size increases as the sampling distribution approaches a uniform distribution.

To ensure that graphs are sampled according to a relative uniform distribution,

columns should almost always be arranged in decreasing order by column sum, and

sampling of rows to receive a 1 should be done according to the conditional Poisson

distribution.

2.6.1 Effective Sample Size and Squared Coefficient of Variation

The effective sample size gives a calculation of the equivalent uniform probability

sample for the sample under consideration. Thus, if we sample N graphs uniformly,

our effective sample size is simply N . Kong et al. (1994) show that, in the case

of SIS, if we sample N graphs, the effective sample size is N
1+cv2 , where cv2 is the

square of the coefficient of variation of the standardized graph weights. If the graph

probabilities are p1, p2, ..., pN , then the standardized graph probabilities are given

by
1

p1
N

PN
i=1

1
pi

,
1

p2
N

PN
i=1

1
pi

, ...,
1

pN
N

PN
i=1

1
pi

, which have mean µ = 1. Recall that the coefficient of

variation is given by cv = σ
µ
, so, in the case of SIS, cv2 = σ2. This is approximated

by the sample variance

s2

(
1
pi

N∑N
i=1

1
pi

)
=

(
N∑N
i=1

1
pi

)2

s2

(
1

pi

)

=

1
N−2

∑N
i=1

[
1
pi
− 1

N

∑N
j=1

1
pj

]2
[

1
N

∑N
j=1

1
pj

]2 . (1)

In essence, cv2 provides a measure of the distance between a uniform distribution

and the SIS distribution, and 1+ cv2 measures the efficiency of the SIS distribution,

relative to a uniform sampling distribution. To maximize the effective sample size,

it is clear that we must minimize cv2. Chen et al. (2005) argue that, in the case of

zero-one tables, cv2 is almost always minimized by rearranging columns so that the

10



column sums are in decreasing order and by sampling rows to receive a 1 according

to a conditional Poisson distribution.

2.6.2 Conditional Poisson Distribution

The conditional Poisson distribution arises from the conditional distribution of a

Poisson-binomial distribution. Borrowing from the notation of Chen et al. (2005),

the Poisson-binomial distribution is given by a random variable SZ = Z1 + · · · +
Zl, where Z = (Z1, ..., Zl) denote Bernoulli trials with corresponding probability

of success p = (p1, ..., pl). If we condition on SZ , the resulting distribution is

the conditional Poisson distribution. Chen et al. (1994) argue that sampling rows

according to such a distribution is much more efficient than sampling rows uniformly.

With the conditional Poisson distribution, rows are sampled without replacement

with probabilities that are proportional to r/n. Let S again represent the rows from

which we will be sampling di times and Al (l = 0, ..., di) the rows in S that have

been sampled after l draws. Then row t will be sampled on draw l with probability

P
(
t, Ac

l−1

)
=

wtΨ
(
di − l, Ac

l−1\t
)

(di − l + 1) Ψ
(
di − l + 1, Ac

l−1

) , (2)

where wt = rt

n−rt
and Ψ is given by the recursive formula

Ψ (z, A) =
∑

B⊂A,|B|=z

(∏
i∈B

wi

)
= Ψ (z, A\{z}) + wzΨ (z − 1, A\{z}) (3)

This distribution has the nice property that
∏di

l=1 P
(
sl, A

c
l−1

)
does not depend on the

ordering of s1 to sdi
, greatly simplifying the computation of the graph probability.

The algorithm for the recursive probability computation can be found in Algorithm

7 of the appendix.

3 A Simple Illustration of Sequential Importance

Sampling

To illustrate the steps of sequential importance sampling for bipartite graphs, con-

sider the graph presented in Table 3. We will illustrate the sampling procedure for

the first column.

11



1 1 0 0 2
0 0 1 1 2
1 1 1 0 3
2 2 2 1

Table 3: Second example

• Reorder columns

The column sums c = (2, 2, 2, 1) are already in decreasing order, so there is no

need to reorder the column sums.

• Compute conjugate sequences

From the column sums, we calculate conjugate sequences C(1) = (3, 2, 0),

C(2) = (2, 1, 0), C(3) = (1, 0, 0), and C(4) = (0, 0, 0)

• Determine knots and corresponding restrictions

Before we determine the knots, we arrange the rows so that the row sums are

in decreasing order. Thus, the third row will now become the first row, and

the other rows will move down one to produce the following graph:

1 1 1 0 3
1 1 0 0 2
0 0 1 1 2
2 2 2 1

We record the ordered row sums rord = (3, 2, 2) and find that the smallest

value for t that produces
∑t

i=1 rord
i >

∑t
i=1 C

(1)
i is t = 3. Thus, k1 = 3, and

v1 =
∑3

i=1 rord
i − C

(1)
i = 2. Since this exhausts our rows, there are no other

knots to record.

• Sample rows to receive a 1

First, we determine the value of d1, the number of 1’s to sample from the first

three rows, by uniformly sampling from {v1, min{k1, c1}}={2, min{3, 2}}={2}.
Thus, d1 = 2 with probability 1. For each of the first three rows, we compute

the probability of being sampled to receive a 1 on the first draw. To do this, we

use the weights w = r
n−r = { 3

4−3
, 2

4−2
, 2

4−2
} = {3, 1, 1} and let Ac

0 = {1, 2, 3}
represent rows one to three. Then the probability that we sample the first row

to receive a 1 on our first draw is

P (1, Ac
0) =

w1Ψ (1, Ac
0\1)

2×Ψ (2, Ac
0)

.

12



Now Ψ (0, Ac
0) = 1, Ψ (1, Ac

0) =
∑

i∈Ac
0
wi and Ψ (2, Ac

0) =
∑

i6=j∈Ac
0
wiwj, so

P (1, Ac
0) =

3× (1 + 1)

2× (3× 1 + 3× 1 + 1× 1)
=

3

7
.

Similar computations produce P (2, Ac
0) = P (3, Ac

0) = 2
7
. Thus, the first row

is selected on the first draw with probability 3
7
, while the second and third row

are each selected on the first draw with probability 2
7
. If the second row is

selected first, then A1 = {2} and we recalculate inclusion probabilities on the

second draw for the first and third columns, obtaining P (1, Ac
1) = 3×1

1×(3+1)
= 3

4

and P (3, Ac
1) = 1

4
. Suppose we select the first row on the second draw. Then

our sample for the first column is (1 1 0)T . This is not quite right, however,

as we initially rearranged our rows to ensure that row sums were in decreasing

order, so we must reorder our sample accordingly. Thus, our sample for the

first column is in fact (1 0 1)T .

• Update row sums and repeat

Once we have sampled the first column, we need to decrement the row sums for

rows that were sampled. This means that our new row sums are r = (1, 2, 2).

Now we repeat the procedure, using the updated row sums and C(2) on the

3 × 3 graph that has yet to be sampled. This process is repeated until the

entire graph has been sampled.

• Compute graph probabilities

The probability for the graph we are sampling is updated as sampling occurs.

For the first column, we sampled d = 2 with probability 1, and we sampled

the first and third (reordered) rows with probability 2!P (1, Ac
0) P (3, Ac

1) =

2! × 2
7
× 3

4
= 3

7
, so the probability for our first column is 1 × 3

7
. Once we

have sampled all columns, we simply multiply the probabilities corresponding

to each column to obtain our graph probability. In practice, we consider log-

probabilities and sum the log-probabilities to ensure that we do not encounter

computational underflow problems in our calculations.

4 Estimation of the Likelihood Based on Sam-

pling

A simple statistical model for a network is to posit that it is equally likely to be

any member of a class of networks. Often the class of networks formed by all com-

binations of arcs is chosen. In our context the class could be all bipartite networks

13



with the same marginal totals as the observed network. More sophisticated models

allow the probabilities of class members to differ and model these probabilities in a

parsimonious manner. This allows researchers to statistically compare the observed

network to the patterns that might have been observed if the network had been

drawn with equal probability from the class.

Statistical models based on exponential families have a long history in social

network analysis (Holland and Leinhardt, 1981; Frank and Strauss, 1986). These

models allow complex social structure to be represented in an interpretable and

parsimonious manner. For example, in the case of Darwin’s finch data, we may

suspect that competition and cooperation among finch species may be important in

explaining the observed distribution of finches on the islands, so we would include

a statistic in our model that would measure frequency of coexistence for different

finch species.

Below we consider exponential random graph (ERG) models, although the frame-

work is broad enough to encompass other model classes. An ERG model for bipartite

graphs is an exponential family for which the sufficient statistics are a set of user-

defined functions Z(a) of the affiliation matrix a. The statistics Z(a) are chosen

to capture the hypothesized social structure of the bipartite network (Frank and

Strauss, 1986; Morris, 2003). Models take the form:

Pθ(A = a) =
exp (θ·Z (a))∑
b∈A exp (θ·Z (b))

, (4)

where A is our graph space, θ is our parameter vector and Z(a) is the vector of

sufficient statistics. In this form, it is easy to see that
∑

b∈A exp (θ·Z (b)) normalizes

our probabilities to ensure a valid distribution.

Inference for the model parameter θ can be based on the (logarithm of the)

likelihood function corresponding to the model (4):

l(θ; aobs) ≡ log {Pθ (A = aobs)} = − log

{∑
a∈A

exp (θ·[Z (a)− Z (aobs)])

}
. (5)

The instances where this can be computed easily are uncommon, so an alternative

approach is required. Here we apply the general approach proposed by Geyer and

Thompson (1992). Suppose we have an independent sample from A denoted by

{a1, . . . , aM}, where ak is selected from the set A with probability pk = exp(qk), and

Zk = Z (ak)− Z (aobs) and Zik = Zi (ak)− Zi (aobs) .

We can estimate the log-likelihood via

14



l̂(θ) = − log

{
M∑

k=1

1/pk∑M
j=1 1/pj

exp (θ·Zk)

}
. (6)

Note that the graphs are weighted according to the inverse probability of being

sampled, the importance or sample weight for the graph. Now suppose we sample

under the model with parameter θ0. Then for MCMC, the pk are of the form

pk = Pθ0 (A = ak) so

l̂(θ) = − log

{
M∑

k=1

1/pk∑M
j=1 1/pj

exp (θ·Zk)

}

= − log

{
M∑

k=1

exp (−θ0·Z (ak))
∑

a∈A exp (θ0·Z (a))∑M
j=1 exp (−θ0·Z (aj))

∑
a∈A exp (θ0·Z (a))

exp (θ· [Z (ak)− Z (aobs)])

}

= − log

{
exp (−θ·Z (aobs))∑M
j=1 exp (−θ0·Z (aj))

M∑
k=1

exp ((θ − θ0) ·Z (ak))

}
. (7)

This is simply a uniform weighting for each of the M sampled graphs.

Referring back to (6), if we ignore the constant shift in the log-likelihood, log(
∑M

j=1 1/pj),

we obtain

l̂(θ) = − log

{
M∑

k=1

exp (θ·Zk − qk)

}
. (8)

As equation (8) makes clear, the set {Zk, pk}Mk=1 implicitly forms a discrete expo-

nential family over the sample space {Zk}Mk=1 with probabilities {pk}Mk=1. Hence (8)

is concave and will have a unique maxima if, and only if, the convex hull of {Zk}Mk=1

has the zero vector in its interior (Handcock, 2003). Let θ̃ be the value of θ that

maximizes (8). Under these conditions, (8) is smooth as a function of θ and θ̃ can

be found by standard Newton-type algorithms (Handcock, 2003). Specifically, if we

define

w∗
k =

M exp (θ·Zk − qk)∑M
j=1 exp (θ·Zj − qj)

,

we obtain the partial derivatives

∂l̂(θ)

∂θi

= − exp
(
l̂(θ)
) M∑

k=1

Zik exp (θ·Zk − qk)

15



= −
∑M

k=1 Zik exp (θ·Zk − qk)∑M
k=1 exp (θ·Zk − qk)

= − 1

M

M∑
k=1

w∗
kZik (9)

∂2l̂(θ)

∂θiθj

=
∂l̂(θ)

∂θj

∂l̂(θ)

∂θi

− 1

M

M∑
k=1

w∗
kZikZjk,

=
1

M2

(
M∑

k=1

w∗
kZik

)(
M∑

k=1

w∗
kZjk

)
− 1

M

M∑
k=1

w∗
kZikZjk,

=
1

M

[
1

M

(
M∑

k=1

w∗
kZik

)(
M∑

k=1

w∗
kZjk

)
−

(
M∑

k=1

w∗
kZikZjk

)]
(10)

From the form of the log-likelihood and partials, it should be clear that, for each

graph ak ∈ A that we sample, we need only record the graph probability pk and

sufficient statistics Z(ak). We then use these probabilities, sufficient statistics and

formula to compute θ̃ using a Newton-Raphson algorithm.

Let θ̂ be the value of θ that maximizes the log-likelihood presented in (5). To

compute the Monte Carlo standard error, Geyer (1994) shows that

√
M

∂l̂(θ̂)

∂θ

L→ N(0, Ω)

and

√
M
(
θ̃ − θ̂

)
L→ N

(
0, I−1ΩI−1

)
.

Here, Ω is approximated by

V

(
√

M
∂l̂(θ̃)

∂θ

)
= M

M∑
k=1

1

M2
V (w∗

kZk) = V (w∗
1Z1) , (11)

where w∗
1Z1, . . . , w

∗
MZM are i.i.d. Hunter and Handcock (2006) show that the Fisher

information matrix, I, can be approximated by

Î(θ̃) =
1

M

[(
M∑

k=1

w∗
kZkZk

)
− 1

M

(
M∑

k=1

w∗
kZk

)(
M∑

k=1

w∗
kZk

)]
(12)

Thus,

16



V
(
θ̃ − θ̂

)
≈ 1

M

[
Î(θ̃)

]−1

V (w∗
1Z1)

[
Î(θ̃)

]−1

, (13)

and we obtain the Monte Carlo standard error through

1√
M

(
diag

{[
Î(θ̃)

]−1

V (w∗
1Z1)

[
Î(θ̃)

]−1
}) 1

2

. (14)

5 Implementation

We have implemented the SIS algorithm of Section 2 and the likelihood estimators

of Section 4. The core routines are coded in the C programming language because

of its speed and efficiency. The support routines are coded in the R language (R

Development Core Team, 2006) due to its flexibility and power. The MCMC algo-

rithm of Snijders (1991) and Rao et al. (1996) has also been implemented. Finally,

the code has been incorporated in to the R package statnet to provide access to

other network analysis tools (e.g., plotting, summarization, goodness-of-fit, and sim-

ulation)(Handcock et al., 2003). In addition this presents a consistent user-interface

for modeling and simulation of bipartite graphs using SIS. Both R and the stat-

net package are publicly available (See websites in the references for details). Code

written in the R language and using statnet will be made available along with the

data so that the analysis used in this paper can be reconstructed by the reader.

6 Applications and Comparison

In this section we apply the SIS sampling algorithm and likelihood framework to

a number of common application problems. It is also compared to the competing

MCMC algorithm.

6.1 Estimating Graph Space Size for Fixed Marginals

To establish the validity of the SIS algorithm and to apply it to a graph counting

problem, we used Darwin’s finch data, found in Table 1. Charles Darwin compiled

this data on thirteen finch species on a visit to the Galapagos Islands. For each finch

type, he recorded on which of seventeen islands that finch could be found. Sanderson

(2000) argues that, in examining island biogeography, it is important to condition

on the number of islands and species in order to sample from the appropriate null

space, so graphs sampled from the null distribution of the observed graph should

17



have the same marginals. Chen et al. (2005) report the number of graphs matching

the marginal constraints of Darwin’s finch data to be 67,149,106,137,567,626. A

sequential importance sample of size 10,000 estimated the total number of such

graphs to be 6.722×1016 with a standard error of 7.2×1014, estimates which closely

match the results from CDHL’s SIS algorithm. A separate sample of 1,000 graphs

produced the histogram of inverse graph probabilities shown in Figure 1, which

closely resembles CDHL’s histogram of importance weights. Note the skewness of

the weights. If SIS produced a simple random sample from the space of graphs, the

weights would be equal (and equal to about 0.671 × 1017). There are a substantial

proportion of graphs with weights more than three times this level.

Figure 1: Histogram of Finch Data Importance Weights (1,000 Weights)

6.2 Approximating the Null Distribution of a Statistic

In considering approximations to the null distribution of a test statistic, CDHL again

consider Darwin’s finch data. In particular, they address the question of whether

the observed grouping of finch species on islands happened by random chance or if it

was the result of a struggle in which only species which depended on different food

sources could coexist on an island. To test this hypothesis, CDHL consider the test

statistic

18



S̄2 =
1

m(m− 1)

∑
i6=j

s2
ij,

where m is the number of finch species, S = (sij) = AAT , and A = (aij) is the

bipartite graph in Table 1. This test statistic gives one of many possible measures

of finch species coexistence. Here, sij is simply the number of islands on which finch

species i and j coexist. At first glance, it may seem natural to consider the first

moment, S̄, but Roberts and Stone (1990) show that this will be the same for all

graphs that meet the marginal constraints of the observed graph. Consequently, they

suggest considering the second moment as a measure of coexistence. If there were

no competition among the finch species, we would expect finches to share nearly

equal numbers of islands with each different type of finch. If competition exists,

however, we would expect that a finch will share a larger number of islands with

non-competitive finch species and a smaller number of islands with competitive finch

species. Since S̄2 is minimized for equal sij and maximized for values of sij that are

furthest from S̄, a large value of S̄2 would be consistent with competition among

certain finch species and cooperation among others.

For the finch data, S̄2 has a value of 53.115. We would expect that, if the observed

pattern happened by random chance, its value of S̄2 would not be an extreme value

when compared with the values of S̄2 produced by randomly sampled graphs. Using

the method of Section 4 and using SIS to sample 100, 000 independent graphs, we

obtained the distribution of test statistics seen in Figure 2. Only one graph produced

a test statistic larger than 53.115, providing strong evidence that it was unlikely that

the grouping of finch species on islands was due to random chance and providing

greater validity to the claim that it is the result of competition and cooperation

among the species.

While S̄2 may prove useful in determining competition and cooperation among

finch species, simply comparing how many finch pairs share a specified number of

islands for both the observed graph and simulated graphs may better demonstrate

the competition among certain species and cooperation among other species. Figure

3 attempts to do this by plotting the mean number of finch pairs sharing x islands,

x = 0, 1, ..., 17, from 10,000 simulated graphs. These means are represented by a dot,

and the trend is represented by a dashed line. Vertical lines for each possible value

of x show the range of values represented in the simulated graphs for each of these

values of x. For the sake of comparison, the number of finch pairs sharing x islands

from the observed graph are also represented in Figure 3 by an ×, and the trend is

represented by a solid line. The trend for the simulated graphs is almost the exact

19



Figure 2: Null distribution of the test statistic S̄2

opposite of that for the observed graph, as valleys in the simulated graph primarily

correspond with peaks in the observed graph, and vice versa. In addition, we would

expect that, if competition were prevalent, the observed graph would produce larger

numbers of pairs of finches sharing few islands and larger numbers of pairs of finches

sharing many islands. This is what we observe, calling into question the hypothesis

that what Darwin observed was the result of random chance.

6.3 Likelihood Inference for a Model of Competition Among
Darwin’s Finches

For Darwin’s finch data, we could consider a number of statistical models to explain

the observed graph. In any relevant model, it seems important to consider measures

of competition and cooperation among finch species, as evidenced by Figures 2

and 3. Here, we considered an ERG model with a measure of competition that

simply counts the number of pairings of finch species for which the two species

share no islands in common. This measure, given by the sufficient statistic G =

# {(i, j) :
∑

k aikajk = 0} for aij as defined previously, is similar to that proposed by

Roberts and Stone in that it measures coexistence of finch species on islands, but it

combines all instances where there is coexistence into one case, providing a simpler

measure. If the coefficient θ for this term is not significantly different from 0, we will

20



Figure 3: Number of pairs of finches sharing x islands, x = 0, 1, ..., 17

have evidence contradicting the claim that the observed sequence of finch species on

islands is due to competition and cooperation among species.

For this measure, we obtained the histogram of sufficient statistics seen in Figure

4 for a sample of 10,000 graphs generated by SIS. As in the case of S̄2, the observed

value of G = 10 is an extreme value, consistent with competition among finch species.

Using the graphs generated by SIS, we estimated θ to be 0.835 with a standard error

of 0.401, p-value for the Wald test of 0.039, and MCSE of 0.040. We can conduct a

significance test of the null hypothesis that θ = 0 using exact testing (Besag, 2000).

The exact p-value of 6.25× 10−4 suggests that the estimate is significantly different

from 0, a result in line with competition existing among certain species.

These results are quite different from those produced by the MCMC algorithm.

Using the statnet package to simulate graphs by MCMC, we sampled 10,000 graphs,

using a burn-in of 10,000 and retaining only every hundredth graph sampled. The

generating value for the MCMC algorithm, θ0, was chosen to be the MLE. This

choice optimally reduces the MCSE. The choice of θ0 = 0 corresponds to equally

likely sampling of graphs that satisfy the marginal constraints. This choice will give

a MCSE close to that of the SIS algorithm with a similar number of draws. It

will be slightly worse if the interval for retaining graphs is small enough to induce

significant positive correlation between the statistics. The choice of θ0 equal to the

MPLE (here, 0.361) will typically lead to an improvement over θ0 = 0 as it will be

21



closer to the optimal value. The MCSE for this choice is 0.0037, close to the optimal

value.

The results for θ0 set to the MLE will be closer to the actual performance. This is

because a small initial run can be used (starting from the MPLE) to get an improved

estimate of θ. Then a longer run can be used based on this improved estimate as the

generating value. Thus typical implementations of the algorithm can use a simple

iteration to improve estimation (a procedure that is not open to the SIS algorithm).

We present the results from the chain starting with a generating value given by

the MLE, although the results from all three are nearly identical. The correlation

between successive samples was 0.052. From these 10,000 graphs, and the Newton-

Raphson estimate of Section 4, we estimated θ to be 0.609 with a standard error

of 0.340 and p-value for the Wald test of 0.0744. Hence for a significance level of

α = 0.05, the Wald test would lead to completely different conclusions for SIS and

MCMC. In the latter case, we would fail to conclude that there was evidence of

competition and cooperation among the finch species.

To ascertain if these discrepancies between SIS and MCMC were the result of

erroneous MCMC estimates, we considered a fourth Markov chain generated by

θ0 = 0.835, the estimate for θ produced by SIS. If this was the MLE, then we would

expect MCMC to produce an estimate of θ close to this. In fact, though, MCMC

estimated θ to be 0.610 with a standard error of 0.344, results that seem to verify

the results of our previous MCMC runs and discredit the SIS results. Increasing

the SIS sample to 100,000 graphs, our estimates actually became worse, as θ was

estimated to be 0.847 with a standard error of 0.387. Further increasing the sample

size to 1,000,000 again failed to show any significant improvement in the estimates

as θ was estimated to be 0.8261 with a standard error of 0.3659.

In addition to differences in the parameter estimate and standard error, another

substantial difference between the two Monte Carlo methods is the Monte Carlo

standard error (MCSE). For the sample of 10,000 graphs generated by SIS, the

MCSE is estimated to be 0.040, about 10 times larger than the MCSE of 0.004 pro-

duced by MCMC. Hence the the effective sample size of the 10, 000 graphs generated

by SIS is only slightly larger than 1,000 generated from the MCMC.

The MCMC intentionally generates graphs with sufficient statistics similar to

the observed graph, thereby producing a lower MCSE. This can be seen in Figure

5, which shows a greater propensity for MCMC to produce sufficient statistics close

to the observed value. SIS, on the other hand, samples from all graphs meeting the

marginal constraints of the observed graph without intentionally giving preference

to graphs with sufficient statistics similar to the observed graph. As a result, we

22



Figure 4: Null distribution of the test statistic G, as sampled by SIS

would expect a higher MCSE for SIS, as clearly evidenced when comparing Figure

4 and Figure 5.

We also remark that the increase in SIS sample size by a factor of ten decreased

the estimate of the MCSE by a factor of 2.30 (versus the expected 3.16) based

on (11). One possible explanation for this could be skewness in the distribution of

w∗Zk or a small number of extreme values of w∗Zk. In Figure 6, we see a histogram

of log (w∗Zk), which is rather symmetric, suggesting skewness in the distribution

of w∗Zk. Comparing the sample variance of w∗Zk with the variance assuming a

log-normal distribution, we obtain nearly identical estimates, so skewness does not

appear to be a fundamental problem. Overall this comparison also illustrates a little

appreciated aspect of SIS: despite being independent, the variation in the sample

weights of the SIS reduces the effective sample size below that of a simple random

sample.

Where we felt SIS would prove better than MCMC in likelihood inference was

sparse graphs and graphs with skewed marginals. We created two sparse graphs:

• a graph with 1,000 rows, 5,000 columns, and 500 ties. For the rows we had

608 row sums of 0, 300 row sums of 1, 79 row sums of 2, 10 row sums of 3,

and 3 row sums of 4; and for the columns we had 4,521 column sums of 0, 458

column sums of 1, and 21 column sums of 2;

23



Figure 5: Distribution of the test statistic G produced by MCMC

Figure 6: Distribution of log (w∗Zk)

24



• a graph with 50 rows, 100 columns, and 200 ties. All row sums were 4, and all

column sums were 2.

For the first graph, we considered an ERG model with a term that measured in-

stances where finches shared exactly one island. The sufficient statistic correspond-

ing to this term appeared to be bi-modal with one of the modes being rare. In this

case, MCMC was able to quickly sample from the entire distribution and produce

consistent parameter estimates. SIS, on the other hand, had difficulty in sampling

from regions of the graph space that corresponded to the rare mode, leading to ei-

ther highly variable parameter estimates or an inability to estimate the parameter

as a result of only the observed statistic being sampled.

For the second graph, we considered an ERG model which contained a term that

measured instances where finches shared no islands. A MCMC sample of 10,000

graphs for which we had a burn-in of 10,000 graphs and retained only every 100th

graph produced a parameter estimate of 1.385 with a standard error of 0.393 and

MCSE of 0.006. A SIS sample of 10,000 graphs estimated the parameter to be 1.232

with a standard error of 0.388 and MCSE of 0.112. Increasing the SIS sample to

100,000, we estimated the parameter to be 1.797 with a standard error of 0.672 and

MCSE of 0.089. Again, MCMC proved to be consistent in estimating the parameter,

as the three different generating values resulted in the same estimates. SIS, on the

other hand, proved wildly inconsistent, as an increase in the SIS sample size led

to far worse estimates. Results were similar when examining graphs with skewed

marginals.

7 Discussion

Unlike in the cases of the graph-counting problem and approximating the null distri-

bution of a test statistic, empirical evidence fails to show that SIS has any distinct

advantages over MCMC in likelihood inference problems. For Darwin’s finch data, a

graph with skewed marginals, and sparse graphs of large dimensions, MCMC proved

to be much more efficient, producing consistent parameter estimates in a short pe-

riod of time when compared with SIS. For instance, the SIS algorithm took nearly

the same amount of time to simulate 10,000 graphs and compute parameter esti-

mates as it took MCMC to do the same. However, considering that the effective

sample size of the 10,000 graphs simulated by SIS was roughly equivalent to 1,000

graphs simulated by MCMC, MCMC is approximately 10 times faster in producing

similar precision.

A more pressing matter is the inability of SIS to produce consistent parameter

25



estimates. This may be attributable to the observed statistic being near the edge

of the sample space of the statistic. Since the probability of producing statistics

exceeding the observed statistic is quite low, we might expect the SIS estimator to

be poor. In addition, the estimate of the MCSE given by (14) will also be poor in

these extreme cases.

Considering the struggles with obtaining consistent parameter estimates using

SIS, it may be useful to explore modifications to the current SIS algorithm that

will more frequently produce graphs with sufficient statistics similar to the observed

graph, much in the way that MCMC does. Such modifications would undoubtedly

affect the near-uniformity of the SIS sampling scheme, but it might help decrease the

MCSE as well as increase the number of instances in which SIS could produce a valid

parameter estimate, as there would be fewer instances where the observed sufficient

statistic is either smaller than or larger than all simulated sufficient statistics. More

importantly, it may better prevent the drastic fluctuation in parameter estimates,

as most easily seen for sparse graphs.

In the future, it may be worthwhile to see if extensions of SIS to social networks

and other graphs with structural zeros produce similar results when addressing graph

counting problems, tests on null distributions of test statistics, and likelihood infer-

ence problems. Such extensions of SIS have only recently been developed, and the

level of complexity of such algorithms is increased greatly because of the nature of

the structural zero constraints. Considering other constraints may also be of interest

in certain situations. For example, in the ongoing example of Darwin’s finch data,

Roberts and Stone (1990) suggest considering not only the marginal constraints but

also an additional constraint which stipulates that species which do not occur on

islands containing more than g species in the observed graph will not occur on is-

lands containing more than g species in any of the simulated graphs. Consequently,

it may be of use to explore how easily other constraints can be implemented.

References

Besag, J. (2000). Markov chain monte carlo for statistical inference. Working paper,

Center for Statistics and the Social Sciences, University of Washington.

Chen, X. H., A. P. Dempster, and J. S. Liu (1994). Weighted finite population

sampling to maximize entropy. Biometrika 81, 457–469.

Chen, Y., P. Diaconis, S. P. Holmes, and J. Liu (2005). Sequential monte carlo

26



methods for statistical analysis of tables. Journal of the American Statistical

Association 100, 109–120.

Frank, O. and D. Strauss (1986). Markov graphs. Journal of the American Statistical

Association 81 (395), 832–842.

Gelman, A. (1996). Inference and monitoring convergence. In W. R. Gilks,

S. Richardson, and D. J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in

Practice, pp. 131–144. New York: Chapman and Hall.

Geyer, C. J. (1994). On the convergence of monte carlo maximum likelihood calcu-

lations. Journal of the Royal Statistical Society, Series B 56, 261–274.

Geyer, C. J. and E. A. Thompson (1992). Constrained monte carlo maximum like-

lihood for dependent data. Journal of the Royal Statistical Society, Series B 54,

657–699.

Handcock, M. S. (2003). Assessing degeneracy in statistical models of social net-

works. Working paper, Center for Statistics and the Social Sciences, University

of Washington.

Handcock, M. S., D. R. Hunter, C. T. Butts, S. M. Goodreau, and M. Morris

(2003). statnet: An R package for the Statistical Modeling of Social Networks.

http://csde.washington.edu/statnet.

Holland, P. W. and S. Leinhardt (1981). An exponential family of probability dis-

tributions for directed graphs. with comments by Ronald L. Breiger, Stephen E.

Fienberg, Stanley S. Wasserman, Ove Frank and Shelby J. Haberman and a reply

by the authors. Journal of the American Statistical Association 76 (373), 33–65.

Hunter, D. R. and M. S. Handcock (2006). Inference in curved exponential family

models for networks. Journal of Computational and Graphical Statistics 15, to

appear.

Kong, A., J. Liu, and W. Wong (1994). Sequential imputations and bayesian missing

data problems. Journal of the American Statistical Association 89, 278–288.

Morris, M. (2003). Local rules and global properties: Modeling the emergence of

network structure. In R. Breiger, K. Carley, and P. Pattison (Eds.), Dynamic So-

cial Network Modeling and Analysis, pp. 174–186. Committee on Human Factors,

Board on Behavioral, Cognitive, and Sensory Sciences. National Academy Press:

Washington, DC.

27



R Development Core Team (2006). R: A Language and Environment for Statistical

Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN

3-900051-07-0.

Rao, A., R. Jana, and S. Bandyopadhyay (1996). A markov chain monte carlo

method for generating random (0, 1) matrices with given marginals. Sankhya,

Series A 58, 225–242.

Roberts, A. and L. Stone (1990). Island-sharing by archipelago species. Oecologia 83,

560–567.

Robins, G., P. Pattison, Y. Kalish, and D. Lusher (2006). A workshop on exponential

random graph (p∗) models for social networks. Submited to Social Networks,

University of Melbourne.

Sanderson, J. (2000). Testing ecological patterns. American Scientist 88, 332–339.

Snijders, T. (1991). Enumeration and simulation methods for 0-1 matrices with

given marginals. Psychometrika 56, 397–417.

van Duijn, M., K. Gile, and M. S. Handcock (2006). Comparison of maximum pseudo

likelihood and maximum likelihood estimation of exponential random graph mod-

els. Manuscript, Center for Statistics and the Social Sciences, University of Wash-

ington.

APPENDIX

Algorithm 1 Compute-Conjugate-Sequences

The following is executed once.

1. Initialize conjugate sequences vector c← 0

2. for i← 1 to ncol

3. for j ← i + 1 to ncol

4. for k ← 1 to colsum[j]

5. do c [nrow × (i− 1) + k]← c [nrow × (i− 1) + k] + 1

28



Algorithm 2 Sequential Importance Sampling

The following is executed for every iteration of SIS.

1. Sort-Rows {Order rows in decreasing order by row sum}
2. Compute-Knots {Determine ki and vi from row sums and conjugate se-

quence}
3. SIS-Sample {Compute valid sample and record probability}
4. Update-Rows {Update row sums and reverse ordering from Sort-Rows}

Algorithm 3 Compute-Knots

The following is executed for each column of a bipartite graph.

1. Initialize row sums partial rpart← 0 and conjugate partial cpart← 0

2. for i← 1 to nrow

3. do rpart← rpart + rowsum[i],

4. cpart← cpart + c[i]

5. if rpart > cpart

6. then knot[i]← i

7. value[i]← rpart− cpart

8. else remove knot[i], value[i]

9. for i← 1 to nrow

10. for j ← i + 1 to nrow

11. if value[j] ≤ value[i]

12. then remove knot[j], value[j]

13. if value[j]− value[i] ≥ knot[j]− knot[i]

14. then remove knot[j], value[j]

29



Algorithm 4 SIS-Sample

1. Initialize total number sampled total← 0

2. Generate random uniform(0,1) number rand

3. nsamp← value[0] +
⌊

rand

Min(knot[0],colsum)−value[0]+1

⌋
4. total← nsamp

5. for i← 1 to knot[0]

6. do weights[i]← rowsum[i]
ncol−rowsum[i]

7. for i← knot[0] to nrow

8. do weights[i]← 0

9. Sample-Without-Replacement(weights, nsamp)

10. for i← 1 to Length(knot)

11. do Generate new rand

12. nsamp← value[i]−total+
⌊

rand

Min(knot[i]−knot[i−1],colsum−total)−Max(value[i]−total,0)+1

⌋
13. total← total + nsamp

14. for i← 1 to knot[i− 1]

15. do weights[i]← 0

16. for i← knot[i− 1] to knot[i]

17. do weights [i− knot[i− 1] + 1]← rowsum[i]
ncol−rowsum[i]

18. for i← knot[i] to nrow

19. do weights[i]← 0

20. Sample-Without-Replacement(weights, nsamp)

Algorithm 5 Sample-Without-Replacement

1. Initialize total number sampled total← 0

2. Initialize inclusion probability vector prob← 0

3. Initialize permutation vector perm← {1, ...,Length(weights)}
4. for i← 1 to nsamp

5. for j ← 1 to Length(weights)− total

6. do probsum← 0

7. prob[j]← Compute-Inclusion-Probability(weights, j, nsamp-i+1)

8. Generate random uniform(0,1) number rand

9. for l← 1 to Length(weights)− total

10. do probsum← probsum + prob[l]

11. if probsum > rand

12. then break

13. Save perm[l]

14. Remove weights[l], perm[l]

15. total← total + 1

30



Algorithm 6 Compute-Inclusion-Probability

1. Initialize l← 0

2. for i← 1 to Length(weights)

3. if i 6= j

4. then rweights[l]← weights[i]

5. l← l + 1

6. numerator ← Recursive-Probability(rweights,Length(rweights), nsamp−
1)

7. denominator ← Recursive-Probability(weights,Length(weights), nsamp)

8. prob← numerator/denominator

Algorithm 7 Recursive-Probability

1. Initialize vector current← 0, previous← 0

2. current[1]← 1

3. for i← 1 to Length(rweights)

4. for j ← 1 to nsamp + 1

5. do previous[j]← current[j]

6. minim←Min(i + 1, nsamp)

7. for j ← 2 to minim

8. do current[j]← rweights[i]× previous[j − 1] + previous[j]

9. if i < nsamp

10. then current[minim]← rweights[i]× previous[minim− 1]

11. else current[minim]← rweights[i]×previous[minim−1]+previous[minim]

31


