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Abstract

The ability to simulate graphs with given properties is important for the analysis
of social networks. Sequential importance sampling has been shown to be particularly
effective in estimating the number of graphs adhering to fixed marginals and in estimating
the null distribution of graph statistics. This paper describes the networksis package for R
and how its simulate and simulate_sis functions can be used to address both of these
tasks as well as generate initial graphs for Markov chain Monte Carlo simulations.

Keywords: networks, social network analysis, R, statnet, bipartite network, Markov chain
Monte Carlo, graph counting.

1. Introduction

A bipartite graph is a graph for nodes of two distinct types with the relation defined to be
between nodes of different types. The set of nodes can be represented by two subsets R and
C for which nodes in R only have ties to nodes in C, and nodes in C only have ties to nodes
in R. One of the more common types of bipartite graphs is an affiliation network for which
the two types can be called “actor” and “event” and the relation indicates the affiliation of the
actor with the given event. As an example of an affiliation network, we will later examine
the occurrence of finch species on different islands. Bipartite graphs can be represented by
a matrix A = aij , where i ∈ R, j ∈ C, and aij = 1 if there is a relational tie from i to j
and 0 otherwise. In the case of an affiliation matrix, aij = 1 would correspond to actor i
being affiliated with event j. In this paper, we demonstrate how bipartite graphs with fixed
marginals can be simulated through sequential importance sampling, using the networksis
package for R (R Development Core Team 2007). By doing this, we can approximate the size
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of a graph space, estimate the null distribution of a graph statistic, or produce initial graphs
for Markov chain Monte Carlo simulations.

In the analysis of bipartite graphs, most research has focused on analytic methods of ana-
lyzing properties of the graph or calculating graph statistics. Where analytic methods are
impractical, research has generally turned to approximation methods. The approximation
method most commonly utilized is Markov chain Monte Carlo (MCMC), which often pro-
vides a means to representatively sample the graph space. The standard MCMC algorithm is
that developed by Snijders (1991) and extended by Rao, Jana, and Bandyopadhyay (1996).
While useful in solving many difficult problems, MCMC has its limitations, and alternative
Monte Carlo methods are of interest. Recent research has brought to light the effectiveness of
sequential importance sampling (SIS) in solving certain problems for which analytic methods
and current MCMC algorithms do not provide good solutions or any solution at all.

SIS has proved particularly useful in counting bipartite graphs with given marginals. For
many graphs, exact enumeration of all graphs adhering to marginal constraints simply is not
practical. To illustrate the issues, consider the bipartite graph in Table 1, which consists
of only 13 rows, 17 columns, and 122 ties. For this graph, a graph of moderate size, the
total number of unique graphs matching the row and column sums is more than 6.7 × 1016.
Several elaborate algorithms can perform such tasks of exact graph counting, but the amount
of time required to directly compute the number of graphs meeting the marginal constraints
generally makes such a computation impractical. One such algorithm was developed by Good
and Crook (1977). If we let r = (r1, r2, . . . , rm) represent the row sums and c = (c1, c2, . . . , cn)
represent the column sums, the coefficient of the generating function
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tables matching the row sums and column sums given by r and c.

Attempts to approximate the number of graphs meeting marginal constraints by means of
MCMC are more practical in terms of computing time, but, for graphs similar in size to
Table 1, they still require an exorbitant run time for a low degree of accuracy. SIS, on the
other hand, requires relatively few sampled graphs and minimal computing time to produce
a highly accurate estimate of the number of graphs meeting the marginal constraints. It
does this by sampling columns of the graph sequentially, ensuring that new graphs meet the
column and row sum constraints of the observed graph. In each column, sampling of rows to
receive 1’s is done according to specified inclusion probabilities to ensure that the new graph
comes from a distribution that is relative uniform (and known). Chen, Diaconis, Holmes, and
Liu (2005)(CDHL) provide details of the algorithm, which we expand on in the appendix.

Another application for which SIS has proved useful is in approximating the null distribution of
a graph statistic. Such capabilities are important in significance testing. Graphs produced by
sequential importance sampling constitute a probability sample, so, by weighting the graphs
according to the inverse graph probabilities, the null distribution is the uniform distribution
over all graphs. Weighting the graph statistics for each of these graphs according to the
inverse graph probabilities, we obtain the null distributions for the graph statistics of interest.
For the null distribution of most graph statistics for a graph of moderate size, there are no
known analytic approaches that can accurately approximate the distribution. This is primarily
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Island
Finch A B C D E F G H I J K L M N O P Q
Large ground finch 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
Medium ground finch 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0
Small ground finch 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
Sharp-beaked ground finch 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1
Cactus ground finch 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0
Large cactus ground finch 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
Large tree finch 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0
Medium tree finch 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Small tree finch 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0
Vegetarian finch 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0
Woodpecker finch 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0
Mangrove finch 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Warbler finch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 1: Darwin’s finch data.

because such algorithms must be modified for the graph statistic under consideration, leading
to even more complex algorithms than those used in the graph counting problem. MCMC
also appears to be an inferior approach, as Chen et al. (2005) provide numerous examples in
which MCMC algorithms are consistently less efficient than SIS. CDHL suggests that this is
to be expected, as the problems of counting graphs and approximating the null distribution of
a graph statistic are both easily solved when sampling graphs uniformly or nearly uniformly,
and this is exactly what SIS attempts to do. However, the validity of CDHL’s assessment is
an empirical question and will depend on the specifics of the problem addressed.

A third application for which SIS can be beneficial is in providing an initial graph from which
to start MCMC simulations. Since SIS can quickly generate graphs from different regions
of the graph space, it can assist in MCMC diagnostics by providing various starting points,
enabling the researcher to observe whether or not the Markov chains converge to the same
maximum likelihood estimators (MLEs) for the distributions of interest. This also removes
the need for a burn-in period.

In this paper, we describe the networksis package for R and how it can be used for each of the
three applications we have previously described. The simulate and simulate_sis functions
in the networksis package provide a means to simulate bipartite graphs with fixed marginals
through sequential importance sampling. They are intended to be used in conjunction with
the statnet (Handcock, Hunter, Butts, Goodreau, and Morris 2003b) suite of packages. These
allow users to create, manipulate, and perform inference on social network and bipartite
network objects.

In Section 2, we demonstrate how the simulate function in the networksis package can be
used to estimate the size of the graph space for a bipartite graph. In Section 3, we provide
examples of how simulate and simulate_sis can produce the null distribution of a graph
statistic. In Section 4, we describe how bipartite graphs produced by simulate can be used
by the ergm package (Handcock, Hunter, Butts, Goodreau, and Morris 2003a) as part of the
statnet suite of packages to provide initial graphs for MCMC simulations. Throughout, we
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1 1 0 0 2
0 0 1 1 2
1 1 1 0 3
2 2 2 1

Table 2: Example of a bipartite graph with three nodes of one type and four nodes of another.

Figure 1: Bipartite graph for our example. Black triangle are nodes corresponding to the
rows, and red square are nodes corresponding to the columns.

will use Darwin’s finch data to illustrate the varied uses of simulate and simulate_sis.

2. Enumerating a graph space

Estimating the size of a graph space is important not only in the field of statistics but also
other disciplines. For example, Sanderson (2000) recounts how a null space that a well-
known ecologist had thought consisted of ten graphs in fact consisted of thousands of graphs,
completely changing how the observed graph might be perceived in relation to other graphs
in the graph space. Of course, with the understanding that a graph space is much larger than
previously thought also comes the realization that the uniform probability of any particular
graph is substantially lower, meaning that the observed graph may have been far less likely
than originally thought.

We focus specifically on enumerating graph spaces where the marginals are to be held fixed.
To briefly illustrate why enumerating these graph spaces can be difficult, consider the bipartite
graph given in Table 2. To create a bipartite network object and plot it, we use the following
R code:

R> library("networksis")

R> bipartite.graph <- c(1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0)

R> bipartite.graph <- matrix(bipartite.graph, nrow = 3, byrow = TRUE)

R> example.net <- network(bipartite.graph)

R> example.net %v% "set" <- c(rep(1, 3), rep(2, 4))

R> color <- shape <- example.net %v% "set"

R> plot(example.net, vertex.col = color, vertex.sides = 2 + shape,

+ vertex.cex = 2.5)

The key function here is the network function, which, along with the other primary functions
in this code, is inherited from the network package (Butts, Handcock, and Hunter 2007).
This function receives as input the matrix corresponding to the bipartite graph, and produces
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Probability = 0.095
0 1 0 1 1 0 1 0 0 1 1 0
1 0 1 0 0 1 1 0 1 0 1 0
1 1 1 0 1 1 0 1 1 1 0 1

0 1 1 0 1 0 1 0 1 0 0 1
1 0 0 1 0 1 0 1 0 1 1 0
1 1 1 0 1 1 1 0 1 1 1 0

Probability = 0.071
1 1 0 0 0 0 1 1 1 1 0 0
1 0 1 0 1 1 0 0 0 0 1 1
0 1 1 1 1 1 1 0 1 1 1 0

0 1 1 0 1 0 1 0 1 1 0 0
1 1 0 0 1 1 0 0 0 1 1 0
1 0 1 1 0 1 1 1 1 0 1 1

Table 3: Graphs and corresponding probabilities for graphs matching the marginals of Table 2.

a network object. If the matrix is not square, the function infers the network is bipartite.
Otherwise, it presumes it is unipartite. You can ensure a bipartite network for square matrices
with the optional bipartite = TRUE argument. The plot of the bipartite graph is given in
Figure 1, where the black triangles are the nodes corresponding to the rows and the red
squares are the nodes corresponding to the columns.

For this graph, the number of graphs adhering to the same marginals is 12. The set of
possible graphs and corresponding graph probabilities are shown in Table 3. In attempting to
simulate these graphs adhering to the marginals, simply ensuring that the column constraints
are met is not sufficient, as sampling (1 1 0)> for each of the first two columns ensures that
the column marginals are satisfied but creates an inconsistency with the row marginals. This
should be clear in that the third row must sample three 1’s yet, but only two columns remain.
Thus, the number of graphs consistent with the marginals is not simply a function of the
number of graphs consistent with the column marginals or the number of graphs consistent
with the row marginals. While algorithms for computing the graph space size exactly are
not so impractical for bipartite graphs similar in dimension to the one given in Table 2, it
quickly becomes impractical to consider such algorithms as the size of the bipartite graph
grows. Consequently, simulation methods like MCMC or SIS become useful.

The advantage of SIS over MCMC in enumerating the graph space is that sampling prob-
abilities are known for each simulated graph, and graphs are generated independently, so
estimating the size of the graph space is easy. Let A be the graph space consisting of all
bipartite graphs with marginals consistent with the observed bipartite graph A. If we sample
N graphs from A with probabilities p1, p2, . . . , pN , then we can estimate the graph space size
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by the Hansen-Hurwitz estimator described in Thompson (2002), given by
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If we want to sample 1,000 graphs using SIS and estimate the graph space size and corre-
sponding standard error for the bipartite graph of Table 2, we use the following code:

R> sim <- simulate(example.net, nsim = 1000)

This code illustrates the two inputs required by the simulate function. The first input must
be a bipartite network object. The second input must be the number of graphs to sample.
To determine the (logarithm of the) size of the graph space and corresponding (log) standard
error, we need only extract the log.graphspace.size or log.graphspace.SE attributes of
the network object sim. Doing so produces the following estimate and standard error:

R> exp(sim %n% "log.graphspace.size")

[1] 11.9875

R> exp(sim %n% "log.graphspace.SE")

[1] 0.05474112

This provides a close approximation to the known graph space size of 12. Increasing the
number of sampled graphs will result in greater accuracy and precision.

For a more compelling example, we use Darwin’s finch data, data that have prompted much
discussion in the field of ecology in regard to evolution and competition between species. The
data can be found in Table 1. Charles Darwin compiled this data for thirteen finch species
found on the Galapagos Islands during the voyage of the H.M.S. Beagle from 1831–1836.
For each finch type, he recorded on which of seventeen islands that finch could be found.
Sulloway (1982) explains that the finch was of greater interest than other birds found on the
islands because the sheer quantity of finch species present in this set of islands far exceeded
that of any other type of bird. This suggests that these birds had a greater evolutionary
complexity and were probably one of the the earliest winged inhabitants of the island chain.
It is theorized that, due to prolonged isolation on the different islands, the thirteen finch
species developed. Later, some of the species began to migrate to different islands, leading
to competition among finch species that were similar and producing the groupings of finch
species that Darwin observed on these islands. These groupings represented in Table 1 can
also be seen in Figure 2, which was generated using the following code:
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Figure 2: Finch species and the Galapagos Islands they inhabit, as reported by Charles Darwin
on the voyage of the H.M.S. Beagle. (Islands are red, and finch species are green.)

R> data("finch")

R> plot(finch, vertex.col = c(rep(2, 13), rep(3, 17)), vertex.cex = 2.5)

In Figure 2, we notice that most of the finches and islands are clustered together, representing
those islands for which most of the finch species are present. On the outskirts of the graph
are those islands for which only several finch species may be found, and on the fringes of the
cluster of islands and finches are those finches which occupy those less-populated islands.

In examining island biogeography, Sanderson (2000) argues that it is important to condition
on the number of islands and species in order to sample from the appropriate null space,
so graphs sampled from the null distribution of the observed graph should have the same
marginals. CDHL report the number of graphs matching the marginal constraints of Darwin’s
finch data to be 67,149,106,137, 567,626. Using a sequential importance sample of size 10,000,
we can estimate the total number of such graphs using the following code:

R> sim <- simulate(finch, nsim = 10000)

R> exp(sim %n% "log.graphspace.size")

[1] 6.839628e+16

R> exp(sim %n% "log.graphspace.SE")

[1] 7.215396e+14

A sequential importance sample of size 10,000 estimates the total number of such graphs to
be 6.840× 1016 with a standard error of 7.2× 1014, estimates which closely match the results
from CDHL’s SIS algorithm. To observe the distribution of the importance weights, we plot
a histogram of the inverse graph probabilities. This can be done using the following code:

R> importance.weights <- 1 / exp(sim %n% "log.prob")

R> hist(importance.weights, breaks = 75,

+ xlab = "Inverse Graph Probability", main = "")
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Figure 3: Histogram of finch data importance weights (1, 000 weights).

This produces the histogram in Figure 3, which closely resembles CDHL’s histogram of im-
portance weights. Note the skewness of the weights. If SIS produced a simple random sample
from the space of graphs, the weights would be approximately equal (and equal to about
6.715 × 1016). Since SIS produces a probability sample, this is not the case, and we observe
a substantial proportion of graphs with weights more than three times this level. We note
that the sample weights are approximately log-normal and the expectation of the distribu-
tion is the size of the graph space. This suggests estimating the graph space size by the
UMVU estimator of the log-normal mean given by Finney (1941). The (log) estimate and
the corresponding (log) estimate of the SE are given by the the log.graphspace.size.lne
or log.graphspace.SE.lne attributes of the resultant network object. The efficiency of the
regular estimates are above 93% if the variance of the log probabilities is less than 0.7. It
decreases as the variance of the log probabilities increases.

3. Approximating the null distribution of a graph statistic

A second application for which SIS is useful is in approximating the null distribution of a graph
statistic. This can be done in two ways, using the simulate and simulate_sis functions.
The first way is to use simulate to generate new graphs and use those graphs to calculate the
statistics of interest. Since simulate only retains the last graph sampled, this requires the
user to specify the number of simulations to be ‘1’ and then extract the sampled graph using
the as.matrix.network command. This allows the user to save the graph in matrix form and
perform necessary operations on the matrix to compute the statistics of interest. The second
way is to use simulate_sis and pass to it as arguments bipartite graph statistics already
incorporated in the ergm package. This allows the user to sample the number of desired
graphs all at once and then extract the statistics using the samplestatistics attribute. In
order to do this, the user must specify the graph statistics of interest on the right-hand side
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of the Y ∼ X formula. Multiple graph statistics can be computed simultaneously, simply by
separating graph statistic names with a ‘+’. Of course, this second approach will only work if
the graph statistics of interest are ones included in the ergm package. Custom graph statistics
will require the first approach.

In considering approximations to the null distribution of a test statistic, CDHL again consider
Darwin’s finch data. In particular, they address the question of whether the observed grouping
of finch species on islands happened by random chance or if it was the result of a struggle in
which only species which depended on different food sources could coexist on an island. To
test this hypothesis, CDHL consider the test statistic proposed by Roberts and Stone (1990),
given by

S̄2 =
1

m(m− 1)

∑
i 6=j

s2ij ,

where m is the number of finch species, S = (sij) = AA>, and A = (aij) is the bipartite
graph in Table 1. Here, sij is simply the number of islands on which finch species i and j
coexist for i 6= j. The test statistic S̄2 gives one of many possible measures of finch species
coexistence, others of which have been touched on by Sanderson, Moulton, and Selfridge
(1998) and Sanderson (2000). For instance, Sanderson (2000) considered the relatively simple
graph statistic given by the number of instances where two different finch species live on the
same island. In the case of the graph statistic proposed by Roberts and Stone (1990), it may
seem natural to consider the first moment, S̄, but this will be the same for all graphs that
meet the marginal constraints of the observed graph. Consequently, they suggest considering
the second moment as a measure of coexistence. If there were no competition among the finch
species, we would expect finches to share nearly equal numbers of islands with each different
type of finch. If competition exists, however, we would expect that a finch will share a larger
number of islands with non-competitive finch species and a smaller number of islands with
competitive finch species. Since S̄2 is minimized for equal sij and maximized for values of
sij that are furthest from S̄, a large value of S̄2 would be consistent with competition among
certain finch species and cooperation among others.

For the finch data, S̄2 has a value of 53.115. We would expect that, if the observed pattern
happened by random chance, its value of S̄2 would not be an extreme value when compared
with the values of S̄2 produced by randomly sampled graphs. Since S̄2 is not a commonly
used graph statistic and is unavailable in the ergm package, we generate 100,000 graphs and
compute S̄2 separately for each of these graphs using the following code:

R> nsim <- 100000

R> prob.vec <- rep(0, nsim)

R> s.bar.squared.vec <- rep(0, nsim)

R> for(i in 1:nsim)

+ {

+ sim <- simulate(finch, nsim = 1)

+ new.graph <- as.matrix.network(sim)

+ s.bar.squared <- (sum((new.graph %*% t(new.graph)) ^ 2) -

+ sum(diag((new.graph %*% t(new.graph)) ^ 2))) /

+ (13 * 12)

+ s.bar.squared.vec[i] <- s.bar.squared
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Figure 4: Null distribution of the test statistic S̄2. The vertical line represents the observed
value of S2.

+ prob.vec[i] <- exp(sim %n% "log.prob")

+ }

It is important that we record not only the graph statistic but also the corresponding graph
probability for each generated graph. The reason for this is that the graphs are not a random
sample but a probability sample, as demonstrated in Figure 3. Consequently, we must consider
the weighted distribution of the statistics in order to determine the null distribution. To plot
the null distribution, we use the following code:

R> nbreaks <- 75

R> w <- (1 / prob.vec) / (sum(1 / prob.vec))

R> intervals <- cut(s.bar.squared.vec, nbreaks, include.lowest = TRUE)

R> weights <- sapply(split(w, f = intervals), sum)

R> x <- seq(min(s.bar.squared.vec), max(s.bar.squared.vec),

+ length.out = nbreaks)

R> plot(x, weights, type = "h", xlab = "", ylab = "Probability Density",

+ lwd = 2)

R> abline(v = 53.115)

This produces the null distribution seen in Figure 4. Only seven graphs produced values
of S̄2 larger than the observed value of 53.115 (represented by the vertical line), providing
strong evidence that it was unlikely that the grouping of finch species on islands was due to
random chance and making it plausible that what we observe is the result of competition and
cooperation among the finch species.

While S̄2 may prove useful in determining competition and cooperation among finch species,
simply comparing how many finch pairs share a specified number of islands for both the ob-
served graph and simulated graphs (in the vein of Sanderson (2000)) may better demonstrate
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the competition among certain species and cooperation among other species. We can do this
using the coincidences term included in the ergm package, which counts the number of nodes
of the first type (i.e., the row type) that are tied to the same node of the second type (i.e., the
column type). For instance, if we wanted to count the number of finches that shared exactly
one island in common, we would specify our formula to be finch ~ coincidences(1). If we
wanted to count the number of finches that shared exactly two islands in common, we would
specify our formula to be finch ~ coincidences(2). We are specifically interested in the
number of finches that share no islands in common (i.e., coincidences(0)), as these would
suggest that these finches are in direct competition with each other. However, we will consider
all possible coincidences terms to illustrate the ability of the package to easily calculate a
number of graph statistics for simulated graphs. The specification we described allows us
to simulate all graphs and statistics immediately without having to separately extract the
new graphs and compute the statistics ourselves. To do this for 10,000 graphs, we use the
simulate_sis function and the code:

R> sim <- simulate_sis(finch ~ coincidences(0:17), nsim = 10000)

This produces the distributions seen in Figure 5, which plots the mean number of finch pairs
sharing x islands, x = 0, 1, ..., 17, from 10,000 simulated graphs. These means are represented
by a circle, and the trend is represented by a dashed line. Vertical lines for each possible
value of x show the 95% confidence intervals for the mean number of finches sharing x islands,
x = 0, 1, ..., 17. For the sake of comparison, the number of finch pairs sharing x islands from
the observed graph are also represented in Figure 5 by a red ×, and the trend is represented
by a solid line. This plot was generated using the Hmisc package (Harrell Jr. 2007) and the
following code:

R> observed.stats <- summary(finch ~ coincidences(0:17))

R> sampled.stats <- sim %n% "samplestatistics"

R> library("Hmisc")

R> p <- exp(sim %n% "log.prob")

R> p <- p / sum(p)

R> maxs <- apply(sampled.stats, 2, wtd.quantile,

+ weights = p, probs = 0.975, normwt = TRUE)

R> mins <- apply(sampled.stats, 2, wtd.quantile,

+ weights = p, probs = 0.025, normwt = TRUE)

R> means <- apply(sampled.stats, 2, wtd.mean, weights = p)

R> plot(0:17, means, type = "b", ylim = c(0, 24.5), lwd = 3, lty = 3,

+ xlab = "Number of Islands", ylab = "Pairs of Finches")

R> for(i in 1:18)

+ {

+ points(rep(i - 1, 2), c(maxs[i], mins[i]), type = "l", lwd = 2)

+ }

R> points(0:17, observed.stats, type = "b", pch = 4, lwd = 3)

The mean trend for the simulated graphs is fairly similar to that of the observed graph,
possibly suggesting that the observed graph statistics are not extreme. However, the vertical
bars corresponding to the 95% confidence intervals tell a much different story. In particular,
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Figure 5: Number of pairs of finches sharing x islands, x = 0, 1, ..., 17. Black circles represent
the mean numbers of pairs of finches sharing x islands produced from the sampled graphs, and
vertical bars correspond to 95% confidence intervals. Red ×’s denote the observed numbers
of paris of finches sharing x islands.

it seems highly unlikely that the observed number of finches sharing 0 islands happened by
random chance. To determine the p-value corresponding to this observed value of interest,
we use the following code:

R> r0 <- (p %*% sweep(sampled.stats, 2, observed.stats, "<"))[1, ]

R> r1 <- (p %*% sweep(sampled.stats, 2, observed.stats, ">"))[1, ]

R> round(apply(cbind(r0, r1), 1, min), digits = 8)[1]

coincidences0

0.00083007

The p-value of less than 0.001 provides strong evidence that the observed value did not
happen randomly, so the claim of competition among certain finch species may possibly
explain what we observe. The user should note that, had we been interested in testing more
than one coincidences terms, a Bonferroni correction for multiple comparisons would have
been necessary to assess the significance of the p-value.

4. Generating initial graphs for MCMC simulations

The third application we consider for SIS consists of using SIS as a diagnostic tool for Monte
Carlo maximum likelihood estimation. The ergm function in the ergm package provides a
means by which parameters corresponding to graph statistics can be estimated through max-
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imum likelihood or maximum pseudo-likelihood techniques. This can be done for bipartite
graphs and social networks. In using MCMC to simulate graphs for the purpose of maxi-
mum likelihood estimation, it is possible that certain regions of the graph space will not be
sampled or that the chain will remain in certain regions of the space for extended periods of
time, leading to incorrect inference (Gelman 1996). Consequently, graph diagnostics may be
important to determine whether or not the MLE produced by the Markov chain is in fact
a global maximum and not strictly a local maximum. This is typically done by considering
multiple runs of a Markov chain, specifying different initial estimates of the parameters to
increase the likelihood that all regions of the graph space are explored.

In addition to or in place of changing the initial parameter estimates, we might consider using
SIS to allow us to freely move about the graph space and start a Markov chain in a region of
the graph space with low probability. To do this, we can sample bipartite graphs using SIS
until we obtain one with a probability below a certain threshold. Then this graph can be used
as the start graph for a Markov chain. In addition, for users who specify a burn-in phase for
the Markov chain, this serves as a substitute for the burn-in. If we again consider the graph
statistics represented by coincidences and consider a probability threshold of 10−18, we can
choose an appropriate start graph and implement it using the control option in the ergm
function. To do this, we use the following code:

R> threshold <- 10 ^ (-18)

R> breakloop <- 0

R> while(breakloop == 0)

+ {

+ sissim <- simulate(finch, nsim = 1)

+ if(sissim %n% "log.prob" < log(threshold)){breakloop <- 1}

+ }

R> sim <- ergm(finch ~ coincidences(0), constraints = ~degrees,

+ theta0 = 0.6108, MCMCsamplesize = 10000,

+ control = control.ergm(initial.network = sissim))

The user may not always be interested in choosing a start graph that is of low sampling
probability but may instead be interested in start graphs for which the graph statistics are
of certain values. In this case, the formula may take on significance, as this may be used to
produce graph statistics.

5. Discussion

The networksis package provides a means to simulate bipartite graphs with fixed marginals
through sequential importance sampling. It leverages the facilities of the statnet (Handcock
et al. 2003b) suite of packages to allow a range of significance tests for a wide range of network
hypotheses where the null distribution is the space of graphs with fixed marginals.

The package has been parallelized using the snow package to use either PVM or MPI (Tierney,
Rossini, Li, and Sevcikova 2007). This can be used by specifying the optional control
argument. For example,

R> sim <- simulate_sis(finch ~ coincidences(0:17),
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+ control = simulate.control(parallel = 4)),

+ nsim = 10000)

simulates 10,000 networks using 4 processors. This is particularly useful on a single machine
with a multi-core CPU where all cores can be used simultaneously.

It should be noted that the size of bipartite graphs for which sequential importance sampling
is effective is determined in part by the available memory in R and the sparsity of the bipartite
graph. Sparse graphs will typically require less memory and be much easier to simulate. It
should also be noted that this package cannot generate social networks or other 0–1 tables
with structural zeros. Chen (2007) provides a sequential importance sampling algorithm for
which this can be accomplished, but that algorithm is not implemented in the networksis
package.
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A. Sequential importance sampling for bipartite graphs

Let r = (r1, r2, ..., rm) denote the row sums and c = (c1, c2, ..., cn) the column sums of an
m × n bipartite graph. Then we will denote the space of all graphs with column sums c by
Ac, and we will denote the space of all graphs with row sums r and column sums c by Arc.
For most significance tests and for likelihood inference, we must generate new graphs that
have the same marginals as the observed graph. Consequently, our focus will be on generating
graphs in Arc. For the graph in Table 4, Ac is the space of all graphs with column sums
(3, 3, 3, 1), and Arc is the space of all graphs with row sums (3, 3, 2, 2) and column sums
(3, 3, 3, 1). Suppose we want to generate new graphs with the same row and column sums
as this graph. If we simply ensure that we sample according to the column sum constraints
and the algorithm samples (0 1 1 1)> for the first column, sampling (0 1 1 1)> for the second
column could produce a valid graph for Ac but not for Arc. This should be clear in that
only two columns remain to be sampled, and yet we still need to sample three 1’s for the first
row in order to obtain a valid graph in Arc. Since our goal is to sample new graphs in Arc,
we will need to address this problem.

A.1. Conjugate sequences

One possible remedy for this problem is to generate graphs in Ac and simply discard those
graphs that are not in Arc. This is highly inefficient, however, so we consider a different
approach and implement a forward-looking step to ensure that all sampled graphs are valid. To
do this, we define the conjugate sequence of column sums c1, c2, ..., cn by C(0)

i = #{cj : cj ≥ i},
i = 1, 2, ...,m, j = 1, 2, ..., n. Thus, for any given column sum cj , we will increment C(0)

i by
1 for each j satisfying 1 ≤ C

(0)
i ≤ cj . This means that C(0)

1 counts the number of non-zero
column sums, C(0)

2 counts the number of column sums that are at least two, C(0)
3 counts the

number of column sums that are at least three, and so on.

In general, we will let C(j) =
(
C

(j)
1 , ..., C

(j)
m

)
denote the conjugate sequence of cj+1, ..., cn.

This represents the conjugate sequence after the first j columns have been sampled. For
example, for the graph in Table 4, C(0) = (4, 3, 3, 0), C(1) = (3, 2, 2, 0), C(2) = (2, 1, 1, 0),
C(3) = (1, 0, 0, 0), and C(4) = (0, 0, 0, 0). By construction, C(0), C(1), ..., C(n), are indepen-
dent of the sampling mechanism for the columns, so all conjugate sequences can be computed
prior to sampling any of the n columns. Also by construction, C(0)

i ≥ C
(1)
i ≥ · · · ≥ C

(n)
i for

all i.

A.2. Knots and corresponding restrictions

For a given conjugate sequence, we can determine the maximum number of ones that can be

1 1 1 0 3
1 1 0 1 3
1 0 1 0 2
0 1 1 0 2
3 3 3 1

Table 4: First Example.
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sampled in a specified set of columns for a given number of rows by computing partial sums
from the conjugate sequence. In particular, C(j)

1 gives the maximum number of 1’s that can
be sampled in columns j + 1 to n for any one row,

∑2
i=1C

(j)
i gives the maximum number

of 1’s that can be sampled in columns j + 1 to n for any two rows, and
∑t

i=1C
(j)
i gives the

maximum number of 1’s that can be sampled in columns j + 1 to n for any t rows. Thus, for
the graph in Table 4, C(1) = (3, 2, 2, 0) tells us that, in the last three columns, we can sample
no more than three 1’s for any given row, no more than five 1’s for any two rows, no more
than seven 1’s for any three rows, and no more than seven 1’s for any four rows.
Likewise, the row sums tell us how many 1’s must be sampled for a specific set of rows. Since
rows with larger row sums will have greater restrictions in the sampling process, we rearrange
the rows so that row sums are ordered from largest to smallest. Then

∑t
i=1 ri tells us the total

number of 1’s that must be sampled for the first t rows. Note that
∑m

i=1C
(0)
i =

∑n
j=1 cj =∑m

i=1 ri. Then, since C(0)
i ≥ C

(1)
i for all i, we have

∑m
i=1 ri ≥

∑m
i=1C

(1)
i . In particular, if∑t

i=1 ri >
∑t

i=1C
(1)
i , then at least

∑t
i=1 ri−C

(1)
i ones must be sampled in rows 1 to t of the

first column. Failure to do so will result in a graph that fails to meet our marginal constraints,
as the first t rows of the graph will require more ones than afforded by the remaining column
sums of size t or less.

Motivation

To illustrate this, suppose C(1)
1 = 5, C(1)

2 = 4, and C
(1)
3 = 2; and suppose r1 = 4, r2 = 4, and

r3 = 4. Then
∑3

i=1 ri >
∑3

i=1C
(1)
i , and

∑3
i=1 ri − C

(1)
i = 1. Let x denote instances of a 1

being sampled for the first row, y denote instances of a 1 being sampled for the second row,
and z denote instances of a 1 being sampled for the third row. If we fail to sample a 1 in the
first column for any of these three rows, satisfying the row sum requirements for the first row
requires that we sample 1’s for four of the five remaining columns with non-zero column sums
(i.e. c2, c3, ..., cm), leaving unsampled only one of the columns with a non-zero column sum.

x x x x

Satisfying the row sum requirements for the second row requires that we sample four 1’s from
either the column with a non-zero column sum that has yet to be sampled or the columns
with column sums of at least two which have already been sampled once. This results in
all columns with non-zero column sums being sampled at least once and all but one of the
columns with column sums of at least two being sampled twice.

x x y x x

y y y

Finally, satisfying the row sum requirements for the third row requires that we sample four
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1’s for either the column with a column sum of at least two which has been sampled only
once or the columns with column sums of at least three which have already been sampled
twice. Here, we encounter a problem, as there are not enough column sums of at least three
to accommodate the number of 1’s required by this third row sum. Of course, we cannot
sample a column twice for the same row either, so it becomes clear that the only solution is
to sample a 1 for at least one of the first three rows in the first column.

x x y x x

y y z y

z z z

Determination of knots and corresponding restrictions

To determine how many 1’s must be sampled in certain rows for a given column, we record the
row number t whenever

∑t
i=1 ri >

∑t
i=1C

(1)
i , and we also record the corresponding difference∑t

i=1 ri − C
(1)
i . Let k1, k2, ... (which we will refer to as knots) take on the values of t for

instances where
∑t

i=1 ri >
∑t

i=1C
(1)
i , and let v1, v2, ... take on the corresponding differences∑t

i=1 ri − C
(1)
i . Thus, vi tells us how many ones must be sampled by row ki. If vj ≤ vi for

some j > i, we will remove kj and vj , as the restrictions placed on our sampling through
ki and vi ensure that the restrictions placed on our sampling through kj and vj are met.
Likewise, if vj − vi ≥ kj − ki for any j > i, then we will remove ki and vi, as the restrictions
placed on our sampling through kj and vj ensure that the restrictions placed on our sampling
through ki and vi are met.
For the first column of the graph given in Table 4, we initially record the knots and corre-
sponding restrictions However, k1 and v1 ensure that the restrictions stipulated by k2 and v2

k1 = 2, v1 = 1
k2 = 3, v2 = 1
k3 = 4, v3 = 3.

are met, and k3 and k2 ensure that the restrictions stipulated by k2 and v2 are met, so we
remove k1 and v1 and k2 and v2 and reorder all subsequent knots to obtain

k1 = 4, v1 = 3.

A.3. Sampling a column

After we have recorded the knots k = (k1, k2, ...) and corresponding restrictions v = (v1, v2, ...)
for a column, we can begin sampling for that column. Before providing a general rule for
sampling a column, we will first demonstrate how sampling is executed for a simple example.

Example

To sample the first column for the graph in Table 4, we record the knots and corresponding
restrictions for the first column. These are given by
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k1 = 4, v1 = 3.

With the knots and corresponding restrictions recorded, our first step is to sample 1’s for rows
1 to k1 = 4. Because v1 = 3, we know that we must sample at least three of these rows to
receive a 1. At the same time, we cannot sample more 1’s than what the column sum allows,
so we may not sample more than three rows to receive a 1 from the first two rows. Thus, we
know that we must sample exactly three of the four rows to receive a 1, and we randomly
select the three rows.

General column sampling procedure

In general, then, to sample column j we first determine d1, the total number of 1’s to be
sampled for the first k1 rows. As stated before, v1 denotes the number of ones that must be
sampled by row k1, so this is our lower bound for d1. At the same time, we cannot sample
more 1’s than rows, nor can we sample more 1’s than what the column sum allows, so we are
bounded above by the minimum of k1 and cj . Thus, we sample a value d1 uniformly from
{v1, ..., min{k1, cj}}. Once we have sampled a value for d1, we sample the rows that are to
receive a 1. The procedure for sampling the d1 rows to receive a 1 is described later. Next,
we uniformly sample a value d2 from {max{v2 − d1, 0}, min{k2 − k1, cj − d1}} to determine
the number of 1’s to be sampled for rows k1 + 1 to k2, and the row sampling procedure is
repeated. This continues until we have either sampled cj rows to receive ones or have reached
our last knot.

Each time we sample a value di for a knot ki, we compute inclusion probabilities for rows
ki−1 + 1 to ki, and then we randomly sample one of these rows to receive a 1 according to the
inclusion probabilities. The inclusion probabilities are then updated for the unsampled rows,
and we again randomly select one of these rows to receive a 1 according to the new inclusion
probabilities. The procedure is repeated until we have sampled di rows.

A.4. Updating

After we have sampled the first column, we decrement by one the row sums for each row that
was sampled and record these new row sums r(1). Then we consider the conjugate sequence
C(2) and the new row sums and repeat the procedure of ordering row sums in decreasing order,
determining knots, recording restrictions corresponding to each knot, and sampling according
to these restrictions. In essence, we are sampling the first column for a new m× n− 1 graph
with row sums equal to r(1).

A.5. Graph probability

As sampling is occurring, we update the probability of the new graph. Since sampling is not
uniform, it is vital that we know the probability of generating the new graph that we observe.
Columns are sampled sequentially and conditional on previous columns sampled, so the graph
probability is given by the product of the conditional probabilities of the columns. For each
column, this conditional probability is simply the product of the uniform probabilities used
to choose di for each knot ki and the probabilities of the rows that are sampled for each
of those knots. Let S represent the rows ki−1 + 1 to ki, the rows from which we will be
sampling di times, and Al (l = 0, ..., di) the rows in S that have been sampled after di draws.
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Then
∏di
l=1 P

(
sl, A

c
l−1

)
gives the probability of sampling row s1, then row s2, and so on.

According to the distribution that we will use in computing inclusion probabilities, however,∏di
l=1 P

(
sl, A

c
l−1

)
does not depend on the ordering of s1 to sdi

. Consequently, by computing
the probability of the permutation that we observe, we can easily compute the probability of
the combination of 1’s and 0’s that are sampled for a particular column, as this will simply
be di!

∏di
l=1 P

(
sl, A

c
l−1

)
.

A.6. Essential algorithmic considerations

Ideally, we would like to sample graphs uniformly. For SIS, this is rarely possible, but we
can often sample graphs from a distribution that is nearly uniform. As mentioned previously,
sampling graphs from a relative uniform distribution is vital in enabling us to accurately
estimate the number of graphs meeting marginal constraints and to approximate the null
distribution of a test statistic. Additionally, the effective sample size increases as the sampling
distribution approaches a uniform distribution. To ensure that graphs are sampled according
to a relative uniform distribution, columns should almost always be arranged in decreasing
order by column sum, and sampling of rows to receive a 1 should be done according to the
conditional Poisson distribution.

Effective sample size and squared coefficient of variation

The effective sample size gives a calculation of the equivalent uniform probability sample
for the sample under consideration. Thus, if we sample N graphs uniformly, our effective
sample size is simply N . Kong, Liu, and Wong (1994) show that, in the case of SIS, if we
sample N graphs, the effective sample size is N

1+cv2
, where cv2 is the square of the coefficient

of variation of the standardized graph weights. If the graph probabilities are p1, p2, ..., pN ,

then the standardized graph probabilities are given by
1

p1
NPN

i=1
1
pi

,
1

p2
NPN

i=1
1
pi

, ...,
1

pN
NPN

i=1
1
pi

, which have

mean µ = 1. Recall that the coefficient of variation is given by cv = σ
µ , so, in the case of SIS,

cv2 = σ2. This is approximated by the sample variance

s2

(
1
pi
N∑N

i=1
1
pi

)
=

(
N∑N
i=1

1
pi

)2

s2
(

1
pi

)

=
1

N−2

∑N
i=1

[
1
pi
− 1

N

∑N
j=1

1
pj

]2
[

1
N

∑N
j=1

1
pj

]2 .

In essence, cv2 provides a measure of the distance between a uniform distribution and the
SIS distribution, and 1 + cv2 measures the efficiency of the SIS distribution, relative to a
uniform sampling distribution. To maximize the effective sample size, it is clear that we must
minimize cv2. Chen et al. (2005) argue that, in the case of zero-one tables, cv2 is almost
always minimized by rearranging columns so that the column sums are in decreasing order
and by sampling rows to receive a 1 according to a conditional Poisson distribution.

Conditional Poisson distribution

The conditional Poisson distribution arises from the conditional distribution of a Poisson-
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binomial distribution. Borrowing from the notation of Chen et al. (2005), the Poisson-
binomial distribution is given by a random variable SZ = Z1 + · · ·+Zl, where Z = (Z1, ..., Zl)
denote Bernoulli trials with corresponding probability of success p = (p1, ..., pl). If we condi-
tion on SZ , the resulting distribution is the conditional Poisson distribution. Chen, Dempster,
and Liu (1994) argue that sampling rows according to such a distribution is much more ef-
ficient than sampling rows uniformly. With the conditional Poisson distribution, rows are
sampled without replacement with probabilities that are proportional to r/n. Let S again
represent the rows from which we will be sampling di times and Al (l = 0, ..., di) the rows in S
that have been sampled after l draws. Then row t will be sampled on draw l with probability

P
(
t, Acl−1

)
=

wtΨ
(
di − l, Acl−1\t

)
(di − l + 1) Ψ

(
di − l + 1, Acl−1

) ,
where wt = rt

n−rt and Ψ is given by the recursive formula

Ψ (z,A) =
∑

B⊂A,|B|=z

(∏
i∈B

wi

)
= Ψ (z,A\{z}) + wzΨ (z − 1, A\{z})

This distribution has the nice property that
∏di
l=1 P

(
sl, A

c
l−1

)
does not depend on the ordering

of s1 to sdi
, greatly simplifying the computation of the graph probability.
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