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Abstract 

This paper examines the design and application of a baseline study for a comprehensive water, 
sanitation, and hygiene (WASH) intervention in Mozambique. The study was developed to investigate 
the relationships among key parameters of interest both for comparison to post-implementation data 
and to contribute to planning the WASH intervention itself. We use this study to discuss key issues 
surrounding baseline studies. This includes providing guidelines for designing a WASH baseline 
survey, determining an appropriate sample size, and highlighting key considerations in analysing the 
survey data, such as incorporating the study design in statistical analyses, post-stratifying and utilising 
geospatial data. We also show how statistical analyses from a baseline survey can be used to inform 
subsequent surveys. For example, results from this study suggest that in future WASH studies, self-
reporting by households should be supplemented by observational or population data to remove or 
quantify reporting bias, and care must be taken to reduce respondent fatigue.  

 

Introduction 

This article examines the design of a baseline study, including monitoring of non-target communities, 
for a comprehensive water, sanitation and hygiene (WASH) intervention program in Mozambique. It 
explains how the study itself was designed and implemented and discusses some of the potential 
improvements identified following data collection. It is not intended to report the results of this study 
but instead provides practical insights into the design and evaluation of future WASH baseline 
studies. 

This baseline study was conducted in Mozambique as part of the Nampula Province Water, Sanitation 
and Hygiene (NAMWASH) Programme. The Programme is aimed at accelerating the achievement of 
the WASH Millennium Development Goals (MDGs), particularly Goal 7c: “Halve, by 2015, the 
proportion of the population without sustainable access to safe drinking water and basic sanitation” 
(United Nations, 2013) in Nampula Province. The project aims to significantly increase access to safe 
drinking water and sanitation, the adoption of appropriate hygiene practices, improved water safety 
management and WASH facilities in schools between 2012 and 2016. The program also aims to 
strengthen the technical and managerial capacity of government, private sector and civil society in 
small towns and create a WASH intervention model for small towns that can be further applied 
throughout Mozambique. A baseline study was required to aid in the design of the WASH 
interventions as well as to provide information on the efficacy of the program post-intervention. It 
was also intended that the design and assessment of this baseline study would contribute to 
methodological knowledge on how to undertake impact evaluation of WASH activities in small towns 
across the globe. 

The baseline study consisted of seven towns, where five target towns are expected to receive WASH 
interventions as part of the NAMWASH program, and two non-target towns are not expected to 
receive WASH interventions within 3-5 years following the baseline year. Several key players were 
involved: 

• UNICEF Mozambique, who designed the baseline study as the first stage of a multi-year 
longitudinal study of WASH interventions in towns in Nampula province,  

• A national consultant who carried out data collection, 

• Nampula Provincial Directorate of Health, who spearheaded a multi-sectorial team collecting 
water quality data, and 

• Murdoch University, who carried out statistical analysis of data from the baseline study, 
including post-survey quality control. 

In total, the baseline study took five weeks to complete (early September to early October of 2012), 
and the impact study comprised approximately 2% of the total budget. 

 

Baseline studies and WASH interventions 



After several decades of water, sanitation and hygiene (WASH) interventions in developing 
communities, it has become apparent that the best results are achieved when technical and educational 
programs relating to each of the WASH subthemes are integrated (e.g. Aziz et al., 1990). It has also 
become apparent that progress towards individual MDGs is closely linked to, and may assist in the 
attainment of, other MDGs. As an example, several MDGs, including those related to WASH, have 
been shown to significantly contribute to the goal of reducing child mortality (Gakidou et al., 2007). 
As such, integrated WASH interventions are being implemented across the globe.  

The collection and analysis of community-level data can assist in the development of appropriate 
integrated WASH interventions (Huber and Mosler, 2013), and an appropriate baseline study can 
provide such useful data. A well-designed baseline study allows for the planning of an effective 
WASH intervention program by identifying areas of concern as well as allowing for the examination 
of relationships among various WASH indicators. For example, the World Bank’s Water and 
Sanitation Program has collected baseline data to inform designs for more effective hand washing 
interventions in various communities across the globe (Perez et al., 2011). 

It is inherently difficult to design a baseline study for a multi-arm intervention that will include not 
only aspects of the various WASH subthemes (water, sanitation and hygiene) but also range in 
methodology from infrastructural improvements to education programs. Such projects require 
investigators to monitor physical parameters (such as water quality), behavioural changes and 
attitudes towards WASH. It is thus important to design a baseline study that incorporates methods 
which will assess all of the indicators that will both contribute to WASH intervention design and 
determine its efficacy post-implementation. With sound statistical design and analysis, such baseline 
studies can uncover valuable relationships which can inform design of both the current and future 
WASH interventions. Guidelines for good WASH baseline studies are included in Table 1, and 
suggestions for good WASH follow up studies in Table 2.  

 
Table 1: Guidelines for good WASH baseline studies. 

Include non-target 
communities 

Despite Blum and Feachem’s seminal paper on the weaknesses of inferring health 
outcomes of WASH interventions from inadequate baseline studies (Blum and 
Feachem, 1983), many WASH studies do not include baseline sampling of 
communities not expected to receive interventions (non-target communities). 
However, monitoring non-target communities is important for post-implementation 
analysis. Their inclusion in both the baseline study and post-implementation 
monitoring allows for analysis of the efficacy of WASH interventions by measuring 
changes in WASH indicators which occurred without WASH interventions. (for a 
Bangladeshi example of a thorough WASH study including monitoring of non-
target communities see Aziz et al., 1990). 

Conduct pre-, post- 
and interim monitoring 
during similar 
timeframes or seasons 
of the year 

Many WASH baseline studies suffer the inherent flaw of temporal effects. Where 
studies cannot be performed over a long period (as is almost always the case), 
reporting of WASH factors may only represent their value at that point in time. For 
example, the volume of water collected may differ significantly between wet and 
dry seasons, and the incidence of diseases, such as the many which cause  diarrhea, 
may vary throughout the year (Alexander et al., 2013). Although it is likely 
impossible to increase the period of data collection, especially when conducting 
household surveys where data is collected at only a certain point in time, seasonal 
effects can be accounted for to some extent by keeping sound records of climate in 
the weeks or months prior to, and performing post-intervention monitoring during 
the same time of the year as, the baseline study. More useful would be to collect 
data on seasonally affected WASH variables in both the target and non-target 
clusters regularly throughout the intervention period to determine seasonal patterns 
and the overall change in the variables. Such patterns of variables may not be 
obvious from collecting data from single points in time pre- and post-intervention. 



Pay careful attention to 
the selection of impact 
variables 

Variables need to be chosen that can realistically be measured in the development 
context. Those which cannot be measured directly during monitoring and instead 
rely on government records may prove difficult or impossible to gain access to and 
may not be of the quality required to perform meaningful analyses. Additionally, 
some variables may be more accurate than others. For instance, using reported 
handwashing practices as a measure of hygiene may be a far less reliable measure 
than observed handwashing practices. 

Provide relevant 
information for sample 
size calculations for 
follow-up studies 

In determining an appropriate sample size for the baseline study in this work, the 
percentage of households using improved water supplies was used as the key 
indicator. Post-intervention studies will almost certainly be interested in a variety of 
other key indicators (e.g. prevalence of diarrhea, water quality at the source or 
household, percentage of people using soap when washing hands), and the baseline 
study can provide current measures of those key indicators that will inform 
appropriate sample sizes for the next study. 

 
 Table 2: Suggestions for good WASH follow-up studies. 

Where possible, using a 
randomized controlled 
trial 

When designed appropriately, these provide the best assessment of the effect of an 
intervention by essentially eliminating confounding. In the context of a WASH 
study, a truly randomized controlled trial at the household level would be difficult to 
implement across all sub-themes, especially water supply, where introduced 
improved water sources may in many cases be public standposts, not private taps. 
Additionally, Cairncross and Valdmanis (2006) argue that such a design at the 
household level poses potential ethical and political dilemmas. Such randomization 
is possible at the community level, though, provided that the geographic space is 
sufficient to lead to limited interaction among the various communities. Ethical and 
political considerations could still come into play in this context, but we note that, 
based on the NAMWASH baseline study, the proposed control communities 
actually had greater access to improved water sources than target communities (chi-
square test p-value < 0.001). Additionally, as previously mentioned, an external 
control (as opposed to internal control) can provide a measure of the shifts in the 
WASH subthemes that would naturally have occurred over time, and that allows us 
to better understand the true impact of the intervention(s). 

Investigate multiple 
intervention arms. 

Designs such as factorial designs provide a means to tease apart the individual 
effects of the WASH subthemes as well as any interactions among them. Simply 
providing all household with improved water sources, sanitation, and hygiene does 
not allow the researcher to understand the individual impacts of these components 
on health indicators, nor does it allow researcher to understand how these may be 
linked. For instance, as observed in the NAMWASH baseline study, water quality 
tends to deteriorate from source to home, so providing improved water sources in 
the absence of sanitation and/or hygiene education may have negligible (if any) 
impact on improved health outcomes. A study that included interventions for only 
individual WASH subthemes could possibly conclude that providing improved 
water, improved latrines, and better hygiene has no health impacts, while a study 
that has one intervention incorporating all three may fail to understand that the three 
work in tandem to improve health. 

 

   

Study Design 

The baseline study was designed by UNICEF Mozambique and the Government of Mozambique 
based upon the project Terms of Reference provided by the Programme team. The Programme was 
designed to be a longitudinal study, where both target and non-target towns would be monitored pre- 



and post-WASH project implementation. In order to assess the many facets of a WASH intervention, 
particular indicators were selected which would be investigated during the baseline study. The 
indicators were chosen based upon existing programme- and donor-specific indicators and AusAID’s 
Performance Assessment Framework criteria. The baseline study was designed to specifically 
investigate these indicators prior to WASH intervention, including relationships among parameters of 
interest which may inform the design of the intervention. (For example, is water quality better for 
households using improved water sources? Is there a difference in male and female use of school 
toilets?) The baseline study was designed such that similar monitoring could be conducted following 
the implementation of WASH interventions so as to determine their efficacy, thus meeting the 
reporting requirements of donors and informing future interventions.  

The sampling methodology was designed based upon the Rapid Assessment of Drinking Water 
Quality Approach (WHO and UNICEF, 2012) and that developed by Bennett et al. (1991).  

 

Baseline tools 

Tools were developed based upon the indicators selected for investigating WASH behaviours and 
practises. The primary tools developed were surveys, which included a mixture of qualitative and 
quantitative data collection methods. The surveys were designed to be conducted at households, 
schools and water points and included questions of the respondents and observations by the 
enumerator. Three different surveys were carried out, covering four different target populations. One 
survey was designed to be administered to a random selection of households and included not only 
household-level questions but also individual-level questions, a second survey to a subset of schools, 
and a third survey covered the primary water sources identified by survey respondents. 

 

Sample size determination 

Determining appropriate sample sizes for the four different target populations (households, 
individuals, schools, primary water sources) could have been done separately if these were distinct 
populations. The appropriate sample size for each target population depends in part on the particular 
variables that will be measured through the survey questionnaire as well as the statistical analyses that 
will be utilized, so a set of key indicators/variables and analyses are typically decided upon for which 
to calculate minimum required sample sizes. The largest of the resulting minimum required sample 
sizes is then used as the sample size for that target population. 

Such calculations first assume that a simple random sample will be drawn from the population, so 
typical sample size calculations for simple random samples hold. For example, in the case of point 
estimates for proportions, the sample size nSRS should satisfy 

 

 

 

where p is an estimated proportion for a binary variable of interest and z is the standard normal 
quantile corresponding to a desired significance level. When considering a proportion, the margin of 
error e is typically set at e = 0.1p. If the expected range of values of p is unknown, values close to 0.5 
produce more conservative estimates for the sample size, so, oftentimes, p = 0.5 (and e = 0.05) is used 
by default to produce a conservative estimate. 

In practice, simple random samples are often rejected in favour of stratified or cluster sampling due to 
monetary savings, the ability to reduce sample sizes and to address demographic or geographic 
heterogeneity. In these cases, the sample size is adjusted to account for the more complex sample 
design, and 



 

 

 

where deff is the design effect. The design effect is the ratio of the standard error for a variable under 
a complex sample design to the standard error for the same variable under simple random sampling. 
Many software packages now provide built-in functions to easily calculate design effects for variables 
from existing survey data. When design effects for relevant variables cannot be estimated from 
existing surveys with similar designs to the proposed survey, design effects can be estimated as 
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where nc is the proposed sample size for each cluster, and ρ is a measure of within-cluster correlation 
for the variable of interest (Lumley, 2010). 

Finally, non-response is likely in most surveys. If the minimum required sample size is used, then 
non-response may affect the ability to estimate key indicators to a certain level of precision or reduce 
the power of statistical tests, making them less likely to be able to detect significant differences. 
Consequently, it is important to inflate the minimum sample size to adjust for non-response. For 
example, if the required minimum sample size is 100 and there is 5% non-response, then the actual 
number of respondents when surveying 100 respondents would be expected to be 95. If we inflate the 
number of people to survey by 1/0.95 and survey 106 people, the resulting expected number of 
respondents is 106 × 0.95 = 100.7 people, ensuring that we achieve the minimum required sample 
size. This means that to achieve a specific number of respondents, it is necessary to divide the 
minimum required sample size by the expected response rate RR. Thus, if we wanted to estimate the 
required sample size for a complex sample design for, say, a point estimator for a proportion, this 
required sample size would be given by 
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For the NAMWASH study a minimum required sample size for households was calculated using (1) 
and 

 z = 1.96 (corresponding to a 5% significance level), 

 p = 0.431 (percentage using improved water sources, as estimated from the 2008 Multiple 
   Indicators Cluster Survey (MICS) (National Statistics Institute of Mozambique, 
2009)), 

 e = 0.05, 

 deff = 4 (standard for WASH surveys, where deff typically ranges from 2 to 10), 

 RR = 0.90 (i.e. 10% non-response). 

This produced a minimum sample size of n = 1,658, which was rounded to n = 1,660. An alternative 
calculation using a response rate of RR = 0.97 and p = 0.362 (the percentage of households using 
improved water sources in the seven towns included in the NAMWASH study as estimated by the 
2008 MICS) produced a lower minimum sample size of 1,462 households. Ultimately, 1,610 
households were randomly sampled, 7 from each of 230 clusters of approximately equal size. 70% of 
clusters were from target towns and 30% from non-target towns. This design was approved by INE 
(National Statistics Bureau). 



Such sample size calculations were not carried out for the other target populations. For the water 
points survey, all primary water sources used by sampled households were included in the survey, and 
for the schools survey, a total of forty schools were sampled with thirty located in target towns and ten 
in non-target towns. 

Non-target towns were selected based upon their similar size to target towns and because they were 
not expected to have WASH interventions within the 3-5 years following 2012. However, some 
clusters that were not expected to receive WASH interventions may do so during the implementation 
stage and vice versa.  

 

Data collection 

Data collection: Methods utilised in the NAMWASH study 

Local enumerators were recruited to conduct the surveys. They had each completed a minimum of 
secondary schooling and were fluent in the local language, Macua. The enumerators were trained over 
a one week period, including the pre-testing and adjustment of the survey tools. The enumerators were 
provided with field manuals and a survey protocol document before entering the field. They also 
carried with them a GPS manual and drawings of water point and latrine designs. 

The household and water point surveys were conducted by six enumerators working in teams of two, 
with the composition of these teams changed each day to minimise the enumerator effect. An 
additional enumerator completed the school surveys in each district. The household, water point and 
school surveys took approximately five weeks to complete. Two weeks following the completion of 
household surveys, water quality testing was conducted at 5% of households and their primary water 
source. At each of these households and water sources three replicates were collected and tested for 
microbiological (thermotolerant coliforms and coliform forming units) and physicochemical 
parameters (turbidity and pH). 

 

Data collection: Discussion 

Sources of bias 

Practitioners familiar with survey techniques will be aware of the many biases possible due to 
response effects. Those of particular concern when conducting baseline surveys include: 

• Non-response bias: Respondents may not answer some questions due to the nature of the 
question, and those who choose to respond may be fundamentally different from those who 
do not. In the case of the NAMWASH baseline study, no one declined to take part in the 
survey, and the rate of non-response was negligible for variables of interest. 

• Response bias: Respondents may answer a question in a certain way because they believe that 
a certain response is desirable, even if it is not true. 

• Respondent fatigue: Long surveys may lead to apathy or decreased attention to later items, 
increasing the likelihood of non-response or reporting errors. 

Response effects were observed during the NAMWASH study, particularly response bias due to self-
reporting. For example, nearly all primary caregivers of children reported washing their hands before 
eating or feeding children, after using the toilet and after cleaning up children’s faeces, yet only 
17.5% (15.5%, 19.7%) of households had handwashing facilities. At the same time, enumerators 
observed that, even where respondents identified that they washed their hands with soap or ash, only 
25% (11.5%, 43.4%) of these respondents actually used soap or ash when asked to demonstrate their 
handwashing regime. Both of these are classic examples of response bias where questions are 
answered based upon how respondents believe they are expected to respond. Another example in the 
NAMWASH study arose where households were asked to estimate their daily water usage, with some 
estimating up to 420L per day. Such an amount is very unlikely, given that in most cases this water 
must be manually collected and carried to households. Such overestimations of behaviour are 



commonly seen during WASH studies (e.g. Arnold et al., 2009), although it can be unclear as to 
whether this is due to respondents answering how they believe is appropriate, or difficulties in 
performing estimations themselves. Supplementing self-reporting data with observational and health 
data will assist in removing such effects. 

There has been some post-monitoring concern around the potential occurrence of respondent fatigue 
in the long household survey of the NAMWASH study. This was particularly observed in a series of 
agree/disagree questions towards the end of the household survey, where a response pattern emerged 
suggesting that respondents may have initially assumed that the questions were meant to be answered 
affirmatively before realising that this was not always the case and, subsequently, more carefully 
considering the questions. For studies where the potential for this is identified in advance, measures 
can be taken, such as randomising the order of questions between households, reducing the length of 
surveys, or reducing the difficulty of questions (Lee et al., 2004). 

 

Data analysis 

Data analysis: Methods utilised in the NAMWASH study 

Point estimation and statistical modelling for complex surveys 

In carrying out statistical analyses based on the resulting survey data, it is important that the 
researcher take into account the sample design. In the case of the NAMWASH household survey, 
exact cluster sizes were not known, but clusters were based on enumeration areas (provided by INE) 
and were assumed to be of roughly the same size. Equal sample sizes in each cluster would result in a 
PPS sample, in which case inclusion probabilities (and, hence, sample weights) would be the same 
across all households.  

For the schools survey, the number of schools randomly sampled from target and non-target towns 
was known, as was the total number of schools in each town. This latter information allowed us to 
post-stratify on town, producing differential sample weights depending on the town from which the 
school was sampled. For the water points survey, sampling of primary water sources was based on 
those used by sampled households. Without information as to the number of primary water sources 
and how many people use each water source, it was not possible to compute inclusion probabilities for 
the surveyed water sources, and sample weights were not incorporated in analyses for the water points 
survey. 

Based on the sample design and resulting sample weights, point estimates and standard errors can be 
calculated, as well as standard statistical models fit and most standard hypothesis tests performed. 
Point estimates and standard errors are typically obtained using the Horvitz-Thompson estimator and 
corresponding variance (Horvitz and Thompson, 1952), 

 

 

 

which gives the point estimate and variance for a population total, where X is the variable of interest, 
πk is the inclusion probability for individual k, and πij is the probability that both individuals i and j are 
sampled. Means and proportions are simply a function of the total, so they can be easily calculated 
from the Horvitz-Thompson estimator.  

Parametric tests (e.g. t-tests, chi-square tests), non-parametric tests (e.g. Wilcoxon tests), and other 
common statistical models (e.g. generalized linear models) are easily extended to more complex 
survey designs, but we leave the details of this to others (e.g. Lohr, 1999, Lumley, 2010), as it is not 



the intent of this article to provide a full exposition on such methods. Most major statistical software 
programs (including SAS, R, Stata, and SPSS) include functionality for such analyses for complex 
survey designs. 

 

Data analysis: Discussion 

Incorporating population totals 

Where available, census data or clinic records can be used to remove or reduce bias in estimates that 
are based upon survey data, assuming the catchment areas these records refer to are well defined. It 
was originally intended that the survey data collected in the NAMWASH study would be 
supplemented by health data from local clinics. Unfortunately, due to the way data is collected and 
stored by hospitals and district health authorities in Nampula Province, alongside the relatively short 
study timeline, such data could not be obtained. In future studies it would be highly beneficial to 
source this information, particularly for health data that could be biased by self-reporting. 

If census data are available and they coincide with variables reflected in a survey, they can be used for 
post-stratification. For instance, if the total number of males of type k in the population is known to be 
Nk and we post-stratify on the types for males, then the sum of the sample weights w1, w2, …, wnk 
(where wi = 1 / πi) of the nk sampled males of type k should satisfy 

 

€ 

wi
i=1

nk

∑ = Nk . 

 

Post-stratification consists of renormalizing the weights to ensure that this relationship holds. In the 
case of the schools survey, we post-stratified on town population. Post-stratification can also be used 
to adjust for non-response, provided that data are missing completely at random (Lohr, 1999). 

If census data or clinic data are available for a bivariate (or multivariate) relationship consisting of an 
outcome of interest and a variable (or variables) for which that outcome is measured, these can be 
used to reduce bias in the estimates and variances of regression parameters for generalised linear 
models (GLMs). For example, estimates of the relationship among mortality due to cholera, age, and 
the water source and latrine type used by the household from a logistic regression model can be 
improved by incorporating mortality rates due to cholera by age as derived from clinic data. 
Handcock et al. (2005) show how population totals (e.g. mortality rate due to cholera by age) can be 
incorporated as a set of constraints on the parameters corresponding to variables for which these 
population totals exist, and the likelihood for the GLM is then maximised subject to these constraints. 
Naturally, the parameter estimates subject to constraints (e.g. age of the person) are improved, but the 
resulting parameter estimates for those variables not subject to constraints (e.g. water source type, 
latrine type) are also improved. If data are not missing for any of the variables in the model, the 
maximum likelihood estimators for the parameters of this model are asymptotically unbiased, 
efficient, and Gaussian (so standard Wald tests can be used). This method can also be used in the 
presence of non-response and does not require the highly restrictive assumption that data be missing 
completely at random. In fact, Handcock et al. (2005) show that in cases where data are not missing 
completely at random, the approach still reduces bias in parameter estimates.  

 

Geospatial Data 

Increasingly, Global Positioning System (GPS) data are recorded with a variety of surveys. For 
instance, in the NAMWASH study GPS coordinates were recorded for both household locations and 
water points. These open up possibilities for both descriptive and inferential statistics. Plots of 
household locations and water points can reveal clustering of certain outcomes according to 
geographic area, allowing for more concentrated exploration of why these outcomes are occurring in 



specific locales. For instance, high levels of  diarrhea, cholera, or other water-borne diseases in 
households close to particular water sources (akin to John Snow's plot of cholera deaths (Snow, 
1855)) may reveal issues with specific water sources. Additionally, plots of household locations can 
reveal sampling anomalies that may otherwise go unnoticed, such as households sampled within a 
geographic cluster tending to lie in a concentrated area of the cluster. 

GPS data can also be useful in terms of distance measurements. This can be used to produce new 
variables related to distance or to measure reliability of distance measurements reported by 
respondents. For instance, respondents in the NAMWASH household study reported the distance to 
their primary water source. For those for whom the location of this water source is known, accurate 
distance measurements based on GPS coordinates can be used in place of such reported distances, and 
it can be used to detect under- or over-reporting of distances. If locations for all water sources are not 
known, systematic biases in reporting provide a sense of the reliability of analyses based on reported 
distances. Additionally, distance measurements can be used to model correlation among observations 
when evidence exists for such dependence (Cressie, 1993). 

The collection of GPS data can also play a role when examining relationships among individual 
households. In a multi-arm WASH program, the overall intervention will consist of many smaller 
interventions (e.g. educational campaigns, infrastructural improvements and microfinance programs), 
and it is highly unlikely that every target household will receive all of these. This has been identified 
as a potential issue in the NAMWASH study, particularly because it is expected that urban target 
households will receive more WASH interventions than rural target households. Knowledge of which 
households received each intervention, alongside their geospatial location, will allow for the 
examination of WASH variables at individual households compared to their distance from town 
centres, coupled to which WASH interventions they received. Similarly, GPS data will assist in 
assessing whether WASH interventions in some clusters influence the WASH variables of 
neighbouring clusters who did not receive interventions. 

 

Conclusion 

The results of WASH interventions are often reported, but it is uncommon for WASH practitioners to 
either share the methodologies used to determine the efficacy of said interventions or discuss ways in 
which the study might reasonably have been improved. Even comprehensive WASH baseline studies 
such as that developed for the NAMWASH study can be improved with hindsight. Analysis of the 
study post-data collection has suggested multiple additions which could be incorporated into future 
studies so as to enhance our understanding of relationships between WASH parameters. For example: 

a) Self-reporting data can be supplemented with observational or health data to remove bias; 

b) Surveys can be designed to prevent respondent fatigue; 

c) Population totals can contribute further information on specific parameters and remove some 
sources of bias from survey results; 

d) Geospatial data can be used for distance measures, pinpointing sampling anomalies and 
accounting for spatial correlation. 

In order to improve the efficacy of WASH interventions across the globe, thus contributing to the 
achievement of the MDGs, it is crucial that the WASH community of practice share their experiences 
with both pre- and post-implementation studies, admitting where weaknesses lie and suggesting future 
improvements for both their own projects and those of others. 
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