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Soil disturbance by terrrestrial vertebrates when foraging for food and shelter is not only a sign of activity but an 9 
ecosystem function required for soil health. Many forests and woodlands worldwide are currently showing signs 10 
of a decline in condition due to various causes. Eucalyptus wandoo, endemic to south-west Western Australia, 11 
has undergone a decline in condition over the last decade. This paper explores the influence of E. wandoo 12 
condition (e.g. loss of canopy) and the associated changes in the habitat (e.g. changes in leaf litter and bare 13 
ground cover) on the foraging activities and soil disturbance by vertebrates. The number of diggings and scats, a 14 
representation of the foraging effort by some vertebrates, were recorded in Dryandra Woodland and Wandoo 15 
Conservation Park, Western Australia. Mixed-model ANOVAs were used to explore the relationships between 16 
the number of scats and diggings with tree and habitat characteristics. More vertebrate diggings and scats were 17 
recorded beneath healthier E. wandoo trees. Diggings and scats were also correlated with time since last fire and 18 
seasonal differences, with more time since last fire and wetter months related to more diggings and scats. 19 
Changes in foraging effort, or turnover of soil by verterbates, could be a result modification of the level of soil 20 
turnover and alter many ecosystem services such as tree recruitment and nutrient cycling, in turn altering the 21 
habitat quality and even tree condition itself. 22 

Soil is disturbed by terrestrial vertebrates when searching for food. Changes in soil disturbance can influence 23 
ecosystem processes such as soil turnover, potentially altering habitat quality and tree condition. Forest and 24 
woodland declines in condition are occurring worldwide. This study linked Eucalyptus wandoo decline in the 25 
south-west of Western Australia to changes in soil disturbance. 26 

Additional keywords: diggings, ecosystem function, Eucalyptus wandoo, foraging resources, scats, time since 27 
last fire. 28 

 

 

 

 

 



Introduction 29 

Diggings, bioturbation, pedturbation or simply ‘soil disturbance’ by vertebrates is often caused by the foraging 30 
activity of animals in their search for subterranean food (Whitford and Kay 1999; Garkaklis et al. 2004). 31 
Digging vertebrates often create very distinctive foraging pits; for example, the open, deep diggings of 32 
Bettongia pencillata (Garkaklis et al. 1998) differ from the conical pits of Isoodon obesulus (Braithwaite 1995; 33 
FitzGibbon and Jones 2006; Long 2009; Valentine et al. 2013) and the bulldozing tracks of Tachyglossus 34 
aculeatus, the short-beaked echidna (Travers et al. 2012). Diggings can therefore be used to provide an index of 35 
foraging activity of particular species (e.g. James and Eldridge 2007). 36 

In their search for food or shelter, vertebrates can leave other signs of their foraging activity, scats. Using scats 37 
to monitor signs of animals is a passive sampling technique that can estimate the presence of particular species. 38 
Scat sampling is especially effective for species that are rare or difficult to survey (Southgate et al. 2005). 39 
Monitoring scats in the present study is to determine the presence of a species and in addition to the measure for 40 
foraging activity of vertebrates, diggings. 41 

Many woodlands and forests in the south-west of Western Australia are showing signs of a decline in condition 42 
and even mortality (Reid and Landsberg 2000; Yates and Hobbs 2000; Armistead 2008; Robinson 2008; Allen 43 
et al. 2010; Wentzel 2010). Eucalyptus wandoo, a smooth-barked tree endemic to Western Australia, has been 44 
undergoing declines in condition since the 1970s and more recently in the 2000s (Wandoo Recovery Group 45 
2006). Symptoms of decline in E. wandoo include the retraction, or loss, of canopy foliage, which increases the 46 
amount of sunlight reaching the understorey. The proportion of dead branches within a canopy of a declining E. 47 
wandoo tree also increases, followed by a recovery phase where the growth of epicormics in the canopy are 48 
evident. On the forest floor, increases in the leaf litter cover and a decrease in bare ground cover as a result of 49 
the canopy foliage loss is evident (Moore et al. 2013a, 2013b). 50 

Changes in tree condition and the surrounding habitat have the potential to alter foraging resources for arboreal 51 
and terrestrial vertebrates. For example, the soil disturbance created by digging mammals such as B. penicillata 52 
and I. obesulus when seeking subterranean food resources such as invertebrates, truffles, roots, tubers and fungi 53 
(Taylor 1993; Braithwaite 1995; Pizzuto et al. 2007) could be altered by the changes in the canopy and the leaf 54 
litter layer. This, in turn, might alter vital ecosystem services provided by soil disturbance and alter the habitat 55 
and tree condition of E. wandoo woodland. We examine whether there are changes in foraging activities 56 
(diggings and scats) of vertebrates that can be linked to condition in E. wandoo, and to associated habitat 57 
changes. Specifically, we explore: (1) whether the foraging activity of vertebrates is higher beneath healthier E. 58 
wandoo trees, (2) whether the foraging activity of vertebrates is related to habitat variables, and (3) whether the 59 
number of diggings and scats recorded differ spatially and temporally. 60 

Methods 61 

Site description 62 

Study sites were located in E. wandoo woodlands at Dryandra Woodland (32°48′33″S, 116°53′08″E), located 63 

160 km south-east of Perth, Western Australia, and Wandoo Conservation Park (31°54′36″S, 116°27′42″E), 64 



located 75 km east of Perth. E. wandoo stands are open-canopy woodlands (~30% canopy cover) with an 65 
understorey of small shrubs (<1 m high) including Gastrolobium spp., Macrozamia riedlei, Acacia pulchella 66 
and Xanthorrhoea preissii (Yates and Hobbs 1997). Understorey vegetation in these reserves is very open, with 67 
only 20% ± 18% cover, with minimal understorey vegetation >1 m high. E. wandoo grows on clayey-loam soils 68 
that harden during the warmer months, making penetration difficult (Mercer 1991). Both reserves have histories 69 
of land clearing, stock grazing, harvesting (logging) and controlled fire management (DCLM 1980). Although 70 
the reserves have differing conservation statuses (Dryandra Woodland: State Forest and Nature Reserve; 71 
Wandoo Conservation Park: Conservation Park) they are both managed by the same government agency 72 
(Department of Parks and Wildlife) for conservation of flora and fauna and are two of the three largest blocks of 73 
E. wandoo remaining. 74 

Sites within Dryandra Woodland and Wandoo Conservation Park were selected using Landsat data and 75 
Vegmachine (Wallace et al. 2006; CSIRO 2010), which determines changes in vegetation condition over time 76 
from reflectance values. Using Vegmachine, we selected sites that were either predominantly declining or 77 
healthy (12 of each, six in each reserve at least >500 m away from the edges of remnant vegetation) from 1990 78 
till 2009, since this period spanned the most recent decline in E. wandoo. Although sites were termed declining 79 
or healthy, E. wandoo decline is heterogeneous in nature, where healthy and declining trees are adjacent 80 
(Brouwers et al. 2012; Moore et al. 2013b), differing from declines in other eucalypts such as Eucalyptus 81 
gomocephala (tuart) (Wentzel 2010) and Eucalyptus marginata (jarrah) (Matusick et al. 2013a, 2013b), in 82 
which entire stands of trees are dead or declining. This led to the study occurring at the tree level, rather than at 83 
the site level. 84 

Diggings and scat count assessments 85 

We surveyed diggings and scats at the base of four trees per site (totalling 96 E. wandoo trees of various 86 
condition states). A radius of 1.8 m (giving a survey area of 10 m2) from the base of each tree was monitored for 87 
diggings and scats. Prior to the commencement of this monitoring, survey areas were cleared of all scats and 88 
diggings already present were marked so they could be excluded from future counts. All subsequent diggings 89 
were counted monthly, individually marked using wooden pop sticks and the species that dug them identified. 90 
Over time many of the diggings were not identifiable due to age and weather conditions. Where new diggings 91 
were made over the top of the old diggings, they were counted as new diggings (pop sticks were not removed so 92 
it was possible to determine a new digging from an old digging). Surveys (sampling events) were repeated 10 93 
times between May 2010 and April 2011. Note that on two occasions, August 2010 and January 2011, two 94 
months passed between the scat and diggings counts. 95 

Diggings made by B. penicillata and I. obesulus can become very similar and difficult to differentiate after a 96 
month (James and Eldridge 2007); however, monthly surveying allowed differentiation between these two 97 
species. Oryctolagus cuniculus (European rabbit) diggings were identified as burrows and cavities; their 98 
diggings were visibly different from those of B. pencillata and I. obesulus in depth and size (Eldridge and Kwok 99 
2008). All other diggings were easily identifiable and different from one another. Tachyglossus aculeatus leave 100 
nose tracks through the soil and debris (Travers et al. 2012). Turnix varia (painted button quail) leave shallow 101 
holes from a pivoting action where they have been foraging (Marchant et al. 1990). Macropus spp. create 102 



shallow hip holes when resting (Eldridge and Rath 2002). Lastly, Varanus spp. create long narrow digs when 103 
searching for other lizards and invertebrates (Eldridge and Kwok 2008; Eldridge and James 2009). All diggings 104 
were identified to species and B. penicillata and T. aculeatus diggings were analysed separately. 105 

All scats >1 cm diameter were identified, counted and removed from the survey area after each monthly 106 
sampling event. Scats that could not be identified in the field were examined in the laboratory using Triggs 107 
(2006) as a guide. The scats from Macropus fuliginosus (western grey kangaroo) and Macropus irma (brush-108 
tailed wallaby) were combined (hereafter Macropus spp.), since studies have shown that scats of these two 109 
species cannot be reliably differentiated (Bulinski and McArthur 2000). Scats of T. vulpecula were identifiable 110 
to species. All other scats were pooled. 111 

A range of tree and habitat characteristics were recorded as covariate data on all 96 trees (Table 1). Percentage 112 
measures were adjusted by arcsine-square-root transformation of the proportional data to meet the assumptions 113 
of parametric statistics (Zar 1998). 114 

Analysis 115 

To determine the relationships between the scat and diggings densities and the tree and habitat characteristics, 116 
mixed-model ANOVAs were performed with site (1–24) and sample event (time) as random factors and the tree 117 
and habitat variables as covariates (Statsoft 2007). Diggings and scat data were analysed across both locations, 118 
with the exception of B. penicillata diggings, which were analysed only for Dryandra Woodland. 119 

Results 120 

Diggings 121 

In total, 854 diggings (over the 960 m2) were recorded over one year (10 sampling events) beneath the 96 trees 122 
in Dryandra Woodland and Wandoo Conservation Park. These were carried out by a range of vertebrates: T. 123 
varia, T. aculeatus, B. penicillata, I. obesulus, Varanus spp. and Macropus spp. (Table 2). O. cuniculus and 124 
Macrotis lagotis (bilbies, Dryandra Woodland only) were present but there was no evidence of their activities 125 
(diggings or scats) beneath the trees monitored. However, 19% of diggings could not be identified due to 126 
collapse or lack of identifying features. 127 

Total digging density differed over sample event (time) and site (Table 4). T. aculeatus made a majority of the 128 
diggings, 44% (Table 2), which varied over time (Fig. 1a, Table 4). B. penicillata diggings (26% of diggings at 129 
Dryandra Woodland) did not differ over the sampling events (time) or at the 12 sites in Dryandra Woodland 130 
(Fig. 1b, Table 4). 131 

Total diggings were positively related to time since last fire (Fig. 2a) and negatively related to crown dieback 132 
(Fig. 2b). T. aculeatus diggings were positively related to time since last fire (Fig. 3, Table 4). There were no 133 
discernible relationships with B. penicillata diggings and tree and habitat characteristics. 134 

Scats 135 



In total, 18 766 scats were collected over 10 sampling events beneath the 96 trees, with more collected from 136 
Dryandra Woodland (11 125 over 480 m2) than Wandoo Conservation Park (7656 over 480 m2) (Table 3). These 137 
scats were identified as from 12 known species, including Macropus spp. (75%), T. vulpecula (10%), O. 138 
cuniculus (5%), Myrmecobius fasciatus (numbat) (<1%), B. penicillata (<1%), Felis catus (feral cat) (<1%), 139 
Vulpes vulpes (red fox) (<1%), Sus scrofa (feral pig) (<1%), Dromaius novaehollandiae (emu) (<1%), Dasyurus 140 
geoffroii (chuditch) (<1%), T. aculeatus (<1%) and I. obesulus (1%) (Table 3). Some scats were recorded from 141 
only one location; i.e. S. scrofa, V. vulpes, B. penicillata and M. fasciatus were recorded only in Dryandra 142 
Woodland, and D. novaehollandiae was recorded only in Wandoo Conservation Park. Some scats, 5%, could 143 
not be identified. 144 

Total scat density differed over sample event (time) and site (Table 4). Sample event (time) and site were related 145 
to the number of T. vulpecula scats (Fig. 1c, Table 4). Macropus spp. scats differed over sample event (time) 146 
and site (Fig. 1d; Table 4). 147 

Tree and habitat characteristics had no effect on the total scat density (Table 4). Time since last fire was 148 
positively related to T. vulpecula scats recorded (Fig. 4; Table 4). There were no discernible relationships with 149 
tree and habitat characteristics and the Macropus spp. scats recorded. 150 

Discussion 151 

We hypothesised that healthier E. wandoo trees would provide more resources and shelter for vertebrates, 152 
resulting in more foraging activity at the base of healthy E. wandoo trees. However, there were few relationships 153 
between vertebrate foraging activity and tree and habitat characteristics. The only correlation was a single 154 
negative relationship between crown dieback and total digs, indicating that more foraging activities occurred 155 
beneath E. wandoo trees with more canopy and less dieback. Perhaps this preference for healthy E. wandoo 156 
trees is a result of their full canopies providing shelter, food resources and a stable microhabitat for terrestrial 157 
vertebrates. This study indicates that a healthy E. wandoo woodland does provide more resources for vertebrates 158 
and result in more foraging activities. However, more research that incorporates other habitat variables not 159 
explored here is required to substantiate the original hypothesis (Catling and Burt 1994, 1995; Catling et al. 160 
2001; Gibson 2001). 161 

Fire has the potential to alter a landscape and habitat complexity and wildlife (Hobbs 1987; Burrows and Abbott 162 
2003; Fisher and Wilkinson 2005; Valentine et al. 2012). In the present study more T. aculeatus diggings and T. 163 
vulpecula scats were recorded under trees that had experienced a longer interval between fires (contributing to 164 
significant results for the total diggings and scats). Older fire histories are often linked to more coarse woody 165 
debris, structurally complex vegetation and leaf litter (Lunney and O’Connell 1988; Catling et al. 2001; 166 
Schurbon and Fauth 2003; Gresser 2009). Diggings made by T. aculeatus would be more common beneath trees 167 
with an older fire history as fewer fire events lead to a build-up of coarse woody debris, a main source of their 168 
invertebrate prey, termites (Abensperg-Traun et al. 1991; Wilkinson et al. 1998; Eldridge and Mensinga 2007). 169 
Complex vegetation in areas that have not been recently burnt provides resources such as flowers, foliage and 170 
invertebrates to be utilised by T. vulpecula for shelter and food resources (Inions et al. 1989; Lindenmayer et al. 171 
1996; Lindenmayer and Cunningham 1997). B. penicillata digs for hypogeous fungi, roots and seeds that would 172 



be more abundant in a complex leaf litter layer that builds up in the absence of fire (Christensen 1980; Garkaklis 173 
et al. 2003). Studies in the same sites have demonstrated strong links between leaf litter beneath trees and time 174 
since last fire (Moore et al. 2013b). However, fire events are required for some ecosystem processes. Within 175 
Dryandra Woodland, the dominant understorey species, Gastrolobium oxylobioides and A. pulchella, require 176 
fire for germination and are used by B. penicillata (Christensen 1980). Understorey cover of 50–80% is 177 
preferred by B. penicillata, which avoids very dense or open areas (Christensen 1980). Overall, mosaics of fire 178 
ages across the two reserves are more likely to provide ample resources for vertebrates and lead to the creation 179 
of more diggings and scats. 180 

With the exception of B. penicillata, activity as evidenced by both diggings and scats changed over time. 181 
Underground food resources are likely to change over the seasons due to changes in the soil moisture, growth of 182 
trees and plants and soil porosity (Boeken et al. 1998; Eldridge and James 2009; Cai et al. 2010) along with 183 
foraging intensity. For example, in wetter winter months increased growth of grasses and herbs above ground, 184 
and subterranean fungi, may contribute to more foraging and defaecation by wildlife. Although, B. pencillata 185 
diggings were not significantly different over time, the standard errors of the counts indicate that there was high 186 
variation from month to month. However, as the standard errors overlap, a non-significant relationship was 187 
found. Environmental factors that change over the seasons may alter the food resources for vertebrates and 188 
therefore their signs of foraging activity. 189 

Tree condition, habitat characteristics, foraging activities and the resultant ecosystem functions potentially have 190 
a cyclical relationship. Changes in the habitat as a result of E. wandoo decline as well as fire events can modify 191 
this cyclic relationship. The present study has indicated that changes in tree condition and habitat can alter the 192 
foraging activities of terrestrial vertebrates. Loss or alteration of soil disturbance, an ecosystem function, can in 193 
turn reduce habitat quality, tree recruitment and tree condition. 194 
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Fig. 1. Tachyglossus aculeatus diggings (a), Bettongia penicillata diggings (b), Trichosurus vulpecula scats 354 
(c) and Macropus spp. scats (d) underneath 96 trees over 10 separate sampling events in 2010 and 2011 at 355 
Wandoo Conservation Park and Dryandra Woodland. Values are average number of diggings ± standard error. 356 
Note that Bettongia penicillata diggings are from Dryandra Woodland only. 357 

Fig. 2. Relationships between total diggings and time since last fire (a) and crown density (b) underneath 96 358 
trees over 10 sampling events in 2010 and 2011 at Wandoo Conservation Park and Dryandra Woodland. Each 359 
point represents diggings per site per sampling event. 360 

Fig. 3. Relationships between Tachyglossus aculeatus diggings and time since last fire underneath 96 trees 361 
over 10 sampling events in 2010 and 2011 at Wandoo Conservation Park and Dryandra Woodland. Each point 362 
represents diggings per site per sampling event. 363 

Fig. 4. Trichosurus vulpecula scats and the relationship with time since last fire underneath 96 trees over 10 364 
sampling events in 2010 and 2011 at Wandoo Conservation Park and Dryandra Woodland. Each point 365 
represents scats collected per site per sampling event. 366 
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Table 1. Tree and habitat characteristics measured on the 96 trees at Wandoo Conservation Park and 

Dryandra Woodland 

Time since last fire was measured at each of the 24 sites, not on the individual tree as per the other 

characteristics. Crown density, uncompacted live crown ratio and crown dieback originate from the USDA tree 

condition assessment used by US foresters for Pinus spp. (Schomaker et al. 2007), adapted for use on eucalypt 

trees. The proportion of dead branches, epicormic growth (Podger 1980; Stone 1999) and canopy cover 

(Wentzel 2010) originate from other studies that investigated the relationships between tree condition and 

wildlife 

Characteristic Definition 

Whitford tree condition measure 

(Whitford et al. 2008) 

Describes tree condition using a pictorial scale (C1 = healthy, to C6 = 

dead). 

Crown density (%) Percentage of crown that contains foliage, branches, and reproductive 

structures. 

Uncompacted live crown ratio (%) Percentage of live crown to above-ground tree length, i.e. ratio of crown to 

tree trunk. 

Crown dieback (%) Percentage of crown that has undergone recent dieback, or lost foliage. 

Proportion of dead branches (%) Percentage of all major branches with a diameter >20 cm that are 

senescent. 

Epicormic growth (%) Percentage of foilage in the canopy that is epicormic growth (i.e. growth 

from beneath the bark, as the tree recovers from a decline). 

Canopy cover (%) Four canopy cover measurements taken 1.5 m from the base of each tree at 

north, south, east and west facings using a spherical densitometer and 

averaged for each tree to give a single canopy cover measure. 

Tree leaf litter (%) Measured by estimating the leaf litter cover in two 1-m2 survey areas at the 

base of each tree, within the same 10-m2 survey area that all diggings and 

scats were recorded. 

Time since last fire (years) Time since last fire was taken from site records (Department of Parks and 

Wildlife, Hills and Great Southern Districts) and indicates years since a 

fire event. 

 

 

 



Table 2. The number of diggings recorded from Wandoo Conservation Park and Dryandra Woodland 

(96 trees, total 960 m2) attributed to six vertebrates species and unknown species over one year 

Bettongia penicillata diggings were recorded only at Dryandra Woodland 

 

 

Species No. of digs  

Tachyglossus aculeatus (echidna) 397 

Bettongia penicillata (brush-tail bettong) 176 

Isoodon obesulus (southern brown bandicoot) 44 

Turnix varia (painted button quail) 41 

Varanus spp. 19 

Macropus spp. 1 

Unknown species 176 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. The number of scats collected from Wandoo Conservation Park and Dryandra Woodland from 

12 species of known and unknown vertebrates over one year 

Macropus spp. includes the two species of macropods 

 

Species Wandoo Conservation Park Dryandra Woodland Total 

Macropus spp. 6715 7449 14164 

Trichosarus vulpecula 177 1782 1959 

Oryctolagus cuniculus 313 801 1114 

Isoodon obesulus 51 219 270 

Bettongia penicillata 0 154 154 

Myrmecobius fasciatus 0 17 17 

Tachyglossus aculeatus 1 11 12 

Sus scrofa 0 9 9 

Dromaius novaehollandiae 5 0 5 

Vulpes vulpes 0 4 4 

Felis catus 1 2 3 

Dasyurus geoffroii 1 1 2 

Unidentified scats 392 676 1053 

  Total 7656 11125 18766 

 

 

 

 

 

 

 



Table 4. Summary of mixed-model ANOVAs demonstrating relationships between diggings and scats, tree and habitat characteristics, 
sample number and site in Dryandra Woodland and Wandoo Conservation Park 

Significant values are shown in bold 

 

 
  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Dependant variable   
Total digging 
density 

Tachyglossus 
aculeatus diggings 

Bettongia 
penicillata 
diggingsA 

Total scat density 
Trichosurus 
vulpecula scats 

Macropus spp. 
scats 

 Effect d.f. F P F P F P F P F P F P 

Time since last fire (years) *Fixed 1 8.161 0.012 6.194 0.026 0.001 0.985 1.235 0.284 8.492 0.011 0.267 0.613 

Canopy cover (%) *Fixed 1 1.793 0.201 0.556 0.468 0.004 0.960 4.197 0.059 3.873 0.068 4.113 0.061 

Crown dieback (%) *Fixed 1 5.178 0.039 2.644 0.126 0.315 0.718 0.057 0.815 0.759 0.398 0.347 0.565 

Crown density (%) *Fixed 1 4.269 0.057 0.283 0.603 7.087 0.401 0.046 0.833 0.234 0.636 0.028 0.869 

Epicormic growth (%) *Fixed 1 0.921 0.352 0.097 0.759 4.218 0.247 0.485 0.497 0.021 0.887 0.827 0.377 

Whitford tree condition measure *Fixed 1 0.935 0.349 0.508 0.488 3.467 0.394 0.315 0.583 0.104 0.752 0.287 0.600 

Tree leaf litter (%) *Fixed 1 1.364 0.262 0.049 0.829 0.406 0.726 0.012 0.914 0.451 0.512 0.253 0.622 

Proportion of dead branches (%) *Fixed 1 0.007 0.933 0.679 0.424 2.545 0.482 0.758 0.398 0.110 0.745 0.829 0.377 

Uncompacted live crown ratio (%) Fixed 1 0.251 0.624 0.599 0.452 0.364 0.696 0.042 0.840 2.370 0.145 0.187 0.671 

Sample event (1–10) Random 9 1.949 0.047 2.315 0.017 1.316 0.239 19.100  <0.001 4.250  <0.001 20.920  <0.001 

Site (1–24) Random 15 2.127 0.010 1.614 0.072 0.431 0.731 5.687  <0.001 4.940  <0.001 4.568  <0.001 
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Figure 1: Tachyglossus aculeatus diggings (a), Bettongia penicillata diggings (b), 3 

Trichosurus vulpecula scats (c) and Macropus spp. scats (d) underneath 96 trees over 10 4 

separate sampling events in 2010 and 2011 at Wandoo Conservation Park and Dryandra 5 

Woodland.  Values are average number of diggings ± standard error.  Note Bettongia 6 

penicillata diggings are from DW only. 7 
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 9 

Figure 2: Relationships between total diggings and time since last fire a); and crown density 10 

b) underneath 96 trees over 10 sampling events in 2010 and 2011 at Wandoo Conservation 11 

Park and Dryandra Woodland.  Each point represents diggings per site per sampling event. 12 
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Figure 3: Relationships between Tachyglossus aculeatus diggings and time since last fire 15 

underneath 96 trees over 10 sampling events in 2010 and 2011 Wandoo Conservation Park 16 

and Dryandra Woodland.  Each point represents diggings per site per sampling event. 17 
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 19 

Figure 4: Trichosurus vulpecula scats and the relationship with time since last fire underneath 20 

96 trees over 10 sampling events in 2010 and 2011 Wandoo Conservation Park and Dryandra 21 

Woodland.  Each point represents scats collected per site per sampling event. 22 
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