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Abstract

Data originating from the Web, sensor readings and social media result in increasingly huge datasets. The so

called Big Data comes with new scientific and technological challenges while creating new opportunities,

hence the increasing interest in academia and industry. Traditionally, logic programming has focused on

complex knowledge structures/programs, so the question arises whether and how it can work in the face

of Big Data. In this paper, we examine how the well-founded semantics can process huge amounts of

data through mass parallelization. More specifically, we propose and evaluate a parallel approach using

the MapReduce framework. Our experimental results indicate that our approach is scalable and that well-

founded semantics can be applied to billions of facts. To the best of our knowledge, this is the first work

that addresses large scale nonmonotonic reasoning without the restriction of stratification for predicates of

arbitrary arity.

KEYWORDS: Well-Founded Semantics, Big Data, MapReduce Framework

1 Introduction

Huge amounts of data are being generated at an increasing pace by sensor networks, govern-

ment authorities and social media. Such data is heterogeneous, and often needs to be combined

with other information, including database and web data, in order to become more useful. This

big data challenge is at the core of many contemporary scientific, technological and business

developments.

The question arises whether the reasoning community, as found in the areas of knowledge

representation, rule systems, logic programming and semantic web, can connect to the big data

wave. On the one hand, there is a clear application scope, e.g. deriving higher-level knowledge,

assisting decision support and data cleaning. But on the other hand, there are significant chal-

lenges arising from the area’s traditional focus on rich knowledge structures instead of large

amounts of data, and its reliance on in-memory methods. The best approach for enabling rea-

soning with big data is parallelization, as established e.g. by the LarKC project (Fensel et al.

(2008)).

As discussed in (Fensel et al. (2008)), reasoning on the large scale can be achieved through

parallelization by distributing the computation among nodes. There are mainly two proposed

approaches in the literature, namely rule partitioning and data partitioning (Soma and Prasanna

(2008)).

In the case of rule partitioning, the computation of each rule is assigned to a node in the cluster.
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Thus, the workload for each rule (and node) depends on the structure and the size of the given

rule set, which could possibly prevent balanced work distribution and high scalability. On the

other hand, for the case of data partitioning, data is divided in chunks with each chunk assigned

to a node, allowing more balanced distribution of the computation among nodes.

Parallel reasoning, based on data partitioning, has been studied extensively. In particular,

MARVIN (Oren et al. (2009)), follows the divide-conquer-swap strategy in which triples are

being swapped between nodes in the cluster in order to achieve balanced workload. MARVIN

implements the SpeedDate method, presented in (Kotoulas et al. (2010)), where authors pointed

out and addressed the scalability challenge posed by the highly uneven distribution of Semantic

Web data.

WebPIE (Urbani et al. (2012)) implements forward reasoning under RDFS and OWL ter Horst

semantics over the MapReduce framework (Dean and Ghemawat (2004)) scaling up to 100 bil-

lion triples. In (Goodman et al. (2011)) authors present RDFS inference scaling up to 512 pro-

cessors with the ability to process, entirely in-memory, 20 billion triples.

FuzzyPD (Liu et al. (2011, 2012)) is a MapReduce based prototype system allowing fuzzy

reasoning in OWL pD∗ with scalability of up to 128 process units and over 1 billion triples.

Description logic in the form of E L+ have been studied in (Mutharaju et al. (2010)). The au-

thors parallelize an existing algorithm for E L+ classification by converting it into MapReduce

algorithms, while experimental evaluation was deferred to future work.

(Tachmazidis et al. (2012)) deals with defeasible logic for unary predicates scaling up to bil-

lions of facts, while authors extend their approach in (Tachmazidis et al. (2012)) for predicates

of arbitrary arity, under the assumption of stratification, scaling up to millions of facts. Finally,

the computation of stratified semantics of logic programming that can be applied to billions of

facts is reported in (Tachmazidis and Antoniou (2013)).

In this paper, we propose a parallel approach for the well-founded semantics computation

using the MapReduce framework. Specifically, we adapt and incorporate the computation of joins

and anti-joins, initially described in (Tachmazidis and Antoniou (2013)). The crucial difference

is that in this paper recursion through negation is allowed, meaning that the well-founded model

can contain undefined atoms. A challenge in this respect is that materializing the Herbrand base is

impractical in the context of big data. To overcome this scalability barrier we require programs to

be safe and apply a reasoning procedure that allows closure calculation based on the consecutive

computation of true and unknown literals, requiring significantly less information. Experimental

results highlight the advantages of the applied optimizations, while showing that our approach

can scale up to 1 billion facts even on a modest computational setup.

The rest of the paper is organized as follows. Section 2 introduces briefly the MapReduce

framework, the well-founded semantics and the alternating fixpoint procedure. Join and anti-join

operations for the well-founded semantics are described in Section 3. Section 4 provides a paral-

lel implementation over the MapReduce framework, while experimental results are presented in

Section 5. We conclude and discuss future directions in Section 6.

2 Preliminaries

2.1 MapReduce Framework

MapReduce is a framework for parallel processing over huge datasets (Dean and Ghemawat

(2004)). Processing is carried out in a map and a reduce phase. For each phase, a set of user-
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defined map and reduce functions are run in parallel. The former performs a user-defined op-

eration over an arbitrary part of the input and partitions the data, while the latter performs a

user-defined operation on each partition.

MapReduce is designed to operate over key/value pairs. Specifically, each Map function re-

ceives a key/value pair and emits a set of key/value pairs. Subsequently, all key/value pairs pro-

duced during the map phase are grouped by their key and passed to reduce phase. During the

reduce phase, a Reduce function is called for each unique key, processing the corresponding set

of values.

Let us illustrate the wordcount example. In this example, we take as input a large number of

documents and calculate the frequency of each word.

Consider the following documents as input:

Doc1: “Hello world.”

Doc2: “Hello MapReduce.”

During map phase, each map operation gets as input a line of a document. Map function ex-

tracts words from each line and emits pairs of the form <w, “1”> meaning that word w occurred

once (“1”), namely the following pairs:

<Hello, 1> <world, 1> <Hello, 1> <MapReduce, 1>

MapReduce framework will perform grouping/sorting resulting in the following intermediate

pairs:

<Hello, <1,1>> <world, 1> <MapReduce, 1>

During the reduce phase, the Reduce function sums up all occurrence values for each word

emitting a pair containing the word and the frequency of the word. Thus, the reducer with key:

Hello will emit <Hello, 2>

world will emit <world, 1>

MapReduce will emit <MapReduce, 1>

2.2 Well-Founded Semantics

In this section we provide the definition of the well-founded semantics (WFS) as it was defined

in (Gelder et al. (1991)).

Definition 2.1

(Gelder et al. (1991)) A general logic program is a finite set of general rules, which may have

both positive and negative subgoals. A general rule is written with its head, or conclusion on the

left, and its subgoal (body), if any to the right of the symbol “←”, which may be read “if”. For

example,

p(X)← a(X), not b(X).

is a rule in which p(X) is the head, a(X) is a positive subgoal, and b(X) is a negative subgoal. This

rule may be read as “p(X) if a(X) and not b(X)”. A Horn rule is one with no negative subgoals,

and a Horn logic program is one with only Horn rules.
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We use the following conventions. A logical variable starts with a capital letter while a constant

or a predicate starts with a lowercase letter. Note that functions are not allowed. A predicate of

arbitrary arity will be referred as a literal. Constants, variables and literals are terms. A ground

term is a term with no variables. The Herbrand universe is the set of constants in a given program.

The Herbrand base is the set of ground terms that are produced by the substitution of variables

with constants in the Herbrand universe. In this paper, we will refer to Horn rules also as definite

rules, likewise Horn programs will also be referred to as definite programs.

Definition 2.2

(Gelder et al. (1991)) Given a program P, a partial interpretation I is a consistent set of literals

whose atoms are in the Herbrand base of P. A total interpretation is a partial interpretation that

contains every atom of the Hebrand base or its negation. We say a ground (variable-free) literal

is true in I when it is in I and say it is false in I when its complement is in I. Similarly, we say a

conjunction of ground literals is true in I if all of the literals are true in I, and is false in I if any

of its literals is false in I.

Definition 2.3

(Gelder et al. (1991)) Let a program P, its associated Herbrand base H and a partial interpretation

I be given. We say A ⊆ H is an unfounded set (of P) with respect to I if each atom p ∈ A satisfies

the following condition: For each instantiated rule R of P whose head is p, (at least) one of the

following holds:

1. Some (positive or negative) subgoal of the body is false in I.

2. Some positive subgoal of the body occurs in A.

A literal that makes (1) or (2) above true is called a witness of unusability for rule R (with respect

to I).

Theorem 2.1

(Gelder et al. (1991)) The data complexity of the well-founded semantics for function-free pro-

grams is polynomial time.

In this paper, we require each rule to be safe, that is, each variable in a rule must occur (also) in

a positive subgoal. Safe programs consist of safe rules only. This safety criterion is an adaptation

of range restriction (Nicolas (1982)), which guarantees the important concept of domain inde-

pendence, originally studied in deductive databases (see for example (Abiteboul et al. (1995))).

Apart from this semantic property, the safety condition implicitly also enforces a certain locality

of computation, which is important for our proposed method, as we shall discuss in Section 4.2.

2.3 Alternating Fixpoint Procedure

In this section, we provide the definition of the alternating fixpoint procedure as it was defined

in (Brass et al. (2001)).

Definition 2.4

(Brass et al. (2001)) For a set S of literals we define the following sets:

pos(S) := {A ∈ S | A is a positive literal },

neg(S) := {A | not A ∈ S}.
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Definition 2.5

(Brass et al. (2001)) (Extended Immediate Consequence Operator)

Let P be a normal logic program. Let I and J be sets of ground atoms. The set TP,J(I) of immediate

consequences of I w.r.t. P and J is defined as follows:

TP,J(I) := {A | there is A←B ∈ ground(P) with pos(B) ⊆ I and neg(B) ∩ J = /0}.

If P is definite, the set J is not needed and we obtain the standard immediate consequence oper-

ator TP by TP(I) = TP, /0(I).

For an operator T we define T ↑ 0 := /0 and T ↑ i := T (T ↑ i−1), for i > 0. lfp(T ) denotes the

least fixpoint of T , i.e. the smallest set S such that T (S) = S.

Definition 2.6

(Brass et al. (2001)) (Alternating Fixpoint Procedure)

Let P be a normal logic program. Let P+ denote the subprogram consisting of the definite rules of

P. Then the sequence (Ki,Ui)i≥0 with set Ki of true (known) facts and Ui of possible (unknown)

facts is defined by:

K0 := lfp(TP+ ) U0 := lfp(TP,K0
)

i > 0 : Ki := lfp(TP,Ui−1
) Ui := lfp(TP,Ki

)

The computation terminates when the sequence becomes stationary, i.e., when a fixpoint is

reached in the sense that (Ki,Ui) = (Ki+1,Ui+1). This computation schema is called the Alter-

nating Fixpoint Procedure (AFP).

We rely on the definition of the well-founded partial model W∗p of P as given in (Gelder et al.

(1991)).

Theorem 2.2

(Brass et al. (2001)) (Correctness of AFP)

Let the sequence (Ki,Ui)i≥0 be defined as above. Then there is a j ≥ 0 such that (K j,U j)=

(K j+1,U j+1). The well-founded model W∗p of P can be directly derived from the fixpoint (K j,U j),

i.e.,

W∗p = {L | L is a positive ground literal and L ∈ K j or

L is a negative ground literal not A and A ∈ BASE(P) − U j},

where BASE(P) is the Herbrand base of program P.

Lemma 2.1

(Brass et al. (2001)) (Monotonicity)

Let the sequence (Ki,Ui)i≥0 be defined as above. Then the following holds for i≥ 0 :

Ki ⊆ Ki+1, Ui ⊇ Ui+1, Ki ⊆ Ui.

3 Computing TP,J(I)

Consider the following program:

p(X,Y)← a(X,Z), b(Z,Y), not c(X,Z), not d(Z,Y).
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Here p(X,Y) is our final goal, a(X,Z) and b(Z,Y) are positive subgoals, while c(X,Z) and d(Z,Y)

are negative subgoals. In order to compute our final goal p(X,Y) we need to ensure that {a(X,Z),

b(Z,Y)} ⊆ I and {c(X,Z), d(Z,Y)} ∩ J = /0 (see Definition 2.5), namely both a(X,Z) and b(Z,Y) are

in I while none of c(X,Z) and d(Z,Y) is found in J.

As positive subgoals depend on I we can group them into a positive goal. A positive goal

consists of a new predicate (say ab) that contains as arguments the union of two sets: (a) all the

arguments of the final goal (X,Y) and (b) all the common arguments between positive and nega-

tive subgoals (X,Z,Y), namely we need to compute ab(X,Z,Y). The final goal (p(X,Y)) consists of

all values of the positive goal (ab(X,Z,Y)) that do not match any of the negative subgoals (c(X,Z)

and d(Z,Y)) on their common arguments (X,Z and Z,Y respectively).

3.1 Positive goal calculation

Consider the following program:

p(X,Y)← a(X,Z), b(Z,Y), not c(X,Z), not d(Z,Y).

where

I = {a(1,2), a(1,3), b(2,4), b(3,5)}

J = {c(1,2), d(2,3)}

A single join (Cluet and Moerkotte (1994)), calculating the positive goal ab(X,Z,Y), can be

performed as described below. Note that we use only literals from I.

The Map function will emit pairs of the form <Z,(a,X)> for predicate a and <Z,(b,Y)> for

predicate b, namely the following pairs:

<2, (a,1)> <3, (a,1)> <2, (b,4)> <3, (b,5)>

MapReduce framework will perform grouping/sorting resulting in the following intermediate

pairs:

<2, <(a,1), (b,4)>> <3, <(a,1), (b,5)>>

During the reduce phase we match predicates a and b on their common argument (which is

the key) and use the values to emit positive goals. Thus, the reducer with key:

2 will emit ab(1,2,4)

3 will emit ab(1,3,5)

Note that we need to filter out possibly occurring duplicates as soon as possible because they

will produce unnecessary duplicates as well, affecting the overall performance.

For rules with more than one join between positive subgoals we need to apply multi-joins

(multi-way join).

Consider the following program:

q(X,Y)← a(X,Z), b(Z,W), c(W,Y), not d(X,W).

We can compute the positive goal (abc(X,W,Y)) by applying our approach for single join twice.

First, we need to join a(X,Z) and b(Z,W) on Z, producing a temporary literal (say ab(X,W)), and

then join ab(X,W) and c(W,Y) on W producing the positive goal (abc(X,W,Y)). Once abc(X,W,Y)

is calculated, we proceed with calculating the final goal q(X,Y) by retaining all the values of

abc(X,W,Y) that do not match d(X,W) on their common arguments (X,W).
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For details on single and multi-way join, readers are referred to literature. More specifically,

multi-way join has been described and optimized in (Afrati and Ullman (2010)). In order to

achieve an efficient implementation, optimizations in (Afrati and Ullman (2010)) should be taken

into consideration.

3.2 Final goal calculation

Consider the program mentioned at the beginning of Section 3.1. By calculating the positive goal

ab(X,Z,Y) we obtain the following knowledge:

ab(1,2,4) ab(1,3,5)

In order to calculate the final goal (p(X,Y)) we need to perform an anti-join (Cluet and Mo-

erkotte (1994)) between ab(X,Z,Y) and each negative subgoal (c(X,Z) and d(Z,Y)). Note that to

perform an anti-join we use only the previously calculated positive goal (ab(X,Z,Y)) and literals

from J.

We start by performing an anti-join between ab(X,Z,Y) and c(X,Z) on their common arguments

(X,Z), creating a new literal (say abc(X,Z,Y)), which contains all the results from ab(X,Z,Y) that

are not found in c(X,Z), as described below.

The Map function will emit pairs of the form <(X,Z),(ab,Y)> for predicate ab and <(X,Z),c>

for predicate c (while predicate d will be taken into consideration during the next anti-join),

namely the following pairs:

<(1,2), (ab,4)> <(1,3), (ab,5)> <(1,2), c>

MapReduce framework will perform grouping/sorting resulting in the following intermediate

pairs:

<(1,2), <(ab,4), (c)>> <(1,3), (ab,5)>

During the reduce phase we output values of the predicate ab only if it is not matched by

predicate c on their common arguments (which are contained in the key) and emit abc(X,Z,Y).

Thus, the reducer with key:

(1,2) will have no output

(1,3) will emit abc(1,3,5)

In order to calculate the final goal (p(X,Y)), we need to perform an additional anti-join between

abc(X,Z,Y) and d(Z,Y) on their common arguments (Z,Y). Here, abc(1,3,5) and d(2,3) do not

match on their common arguments (Z,Y) as (3,5) 6= (2,3). Thus, our calculated final goal is

p(1,5).

4 Computing the Well-Founded Semantics

In this section we describe an optimized implementation for the calculation of the well-founded

semantics. A naive implementation is considered as one following Definition 2.6 while ignoring

the monotonicity properties of the well-founded semantics (see Lemma 2.1).
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4.1 Optimized implementation

A naive implementation would introduce unnecessary overhead to the overall computation since

it comes with the overhead of reasoning over and storage of overlapping sets of knowledge. A

more refined version of both WFS fixpoint and least fixpoint of TP,J(I) is defined in Algorithm 1

and Algorithm 2 respectively.

Algorithm 1 Optimized WFS fixpoint

opt WFS fixpoint(P): ⊲ input: program P

1: K0 = opt lfp(P+, /0, /0); ⊲ output: set of literals Ki−1, Ui−1

2: i = 0;

3: repeat

4: Ui = Ki ∪ opt lfp(P, Ki, Ki);

5: i++; ⊲ next “inference step”

6: Ki = Ki−1 ∪ opt lfp(P, Ki−1, Ui−1);

7: until Ki−1.size() == Ki.size()

8: return Ki−1, Ui−1;

Algorithm 2 Optimized least fixpoint of TP,J(I)

opt lfp(P, I, J): ⊲ precondition: I ⊆ lfp(TP,J( /0))

1: S = /0; ⊲ input: program P, set of literals I and J

2: new = /0; ⊲ output: set of literals S (lfp(TP,J(I) - I)

3: repeat

4: S = S ∪ new;

5: new = T(P, (I ∪ S), J);

6: new = new - (I ∪ S);

7: until new == /0

8: return S;

Our first optimization is the changed calculation of the least fixpoint of TP,J(I) (opt lfp), which

is depicted in Algorithm 2. Instead of calculating the least fixpoint starting from I = /0, for a given

program P and a set of literals J, we allow the calculation to start from a given I, provided that I

⊆ lfp(TP,J( /0)), and return only the newly inferred literals (S) that led us to the least fixpoint. Thus,

the actual set of literals that the least fixpoint of TP,J(I) consists of is I ∪ S. In order to reassure

correctness we need to take into consideration both I and S while calculating the least fixpoint,

namely new literals are inferred by calculating TP,J(I ∪ S). However, we use a temporary set

of inferred literals (new) in order to eliminate duplicates (new = new − (I ∪ S)) prior to adding

newly inferred literals to the set S (S = S ∪ new). Note that the set of literals I remains unchanged

when the optimized least fixpoint is calculated.

The optimized version of the least fixpoint is used, in Algorithm 1, for the computation of each

set of literals K and U. K0 is a special case where we start from I = /0 and J = /0, and thus, unable

to fully utilize the advantages of the optimized least fixpoint.

The proposed optimizations are mainly based on the monotonicity of the well-founded seman-

tics as given in Lemma 2.1. Note that in this section, the indices of the sets K and U found in

Lemma 2.1 are adjusted to the indices used in Algorithm 1 in order to facilitate our discussion.
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Since Ki ⊆ Ui, for i≥ 0 (see Lemma 2.1), the computation of Ui can start from Ki, namely I =

Ki. Thus, instead of recomputing all literals of Ki while calculating Ui, we can use them to speed

up the process. Note that the actual least fixpoint of Ui is the union of sets Ki and opt lfp(P, Ki,

Ki), as the optimized least fixpoint computes only new literals (which are not included in given

I).

Since Ki−1 ⊆ Ki, for i ≥ 1 (see Lemma 2.1), the computation of Ki can start from Ki−1,

namely I = Ki−1. Once opt lfp(P, Ki−1, Ui−1) is computed, we append it to our previously stored

knowledge Ki−1, resulting in Ki. In addition, a WFS fixpoint is reached when Ki−1 = Ki, namely

when Ki−1 and Ki have the same number of literals.

Proof

If Ki−1 = Ki, for i≥ 1, then

Ui−1 = Ki−1 ∪ opt lfp(P, Ki−1, Ki−1) = Ki ∪ opt lfp(P, Ki, Ki) = Ui

Thus, fixpoint is reached as (Ki−1,Ui−1) =(Ki,Ui).

According to Theorem 2.2, having reached WFS fixpoint at step i, we can determine which

literals are true, undefined and false as follows: (a) true literals, denoted by Ki, (b) undefined

literals, denoted by Ui − Ki and (c) false literals, denoted by BASE(P) − Ui.

Although for Ki calculation only new literals are inferred during each “inference step”, for Ui

we have to recalculate a subset of literals that can be found in Ui−1, as literals in Ui−1 − Ki−1

are discarded prior to the computation of Ui. However, the computational overhead coming from

the calculation of opt lfp(P, Ki, Ki) reduces over time since the set of literals in Ui − Ki becomes

smaller after each “inference step” due to Ki−1 ⊆ Ki and Ui−1 ⊇ Ui, for i≥ 1, (see Lemma 2.1).

We may further optimize our approach by minimizing the amount of stored literals. A naive

implementation would require the storage of up to four overlapping sets of literals (Ki−1, Ui−1,

Ki, Ui). However, as Ki ⊆ Ui, while calculating Ui, we need to store in our knowledge base only

the sets Ki and opt lfp(P, Ki, Ki), since Ui = Ki ∪ opt lfp(P, Ki, Ki).

As Ki−1 ⊆ Ki, for the calculation of Ki, we need to store in our knowledge base only three

sets of literals, namely: (a) Ki−1, (b) Ui−1 − Ki−1 = opt lfp(P, Ki−1, Ki−1) and (c) currently

calculating least fixpoint opt lfp(P, Ki−1, Ui−1). All newly inferred literals in opt lfp(P, Ki−1,

Ui−1), are added to Ki (replacing our prior knowledge about Ki−1), while literals in Ui−1 - Ki−1

= opt lfp(P, Ki−1, Ki−1) are deleted, if fixpoint is not reached, as they cannot be used for the

computation of Ui.

A WFS fixpoint is reached when Ki−1 = Ki, namely when no new literals are derived during the

calculation of Ki, which practically is the calculation of opt lfp(P, Ki−1, Ui−1). Since (Ki−1,Ui−1)

= (Ki,Ui), we return the sets of literals Ki−1 and Ui−1, representing our fixpoint knowledge base.

In practice, the maximum amount of stored data occurs while calculating Ki, for i≥ 1, where

we need to store three sets of literals, namely: (a) Ki−1, (b) Ui−1 − Ki−1 and (c) opt lfp(P, Ki−1,

Ui−1), requiring significantly less storage space compared to the naive implementation.

4.2 Computational Impact of Safety

In this paper, we follow the alternating fixpoint procedure, over safe WFS programs, in order

to avoid full materialization of or reasoning over the Herbrand base for any predicate. Storing

or performing reasoning over the entire Herbrand base may easily become prohibiting even for

small datasets, and thus, not applicable to big data.

Apart from the semantic motivation of the safety requirement outlined in Section 2.2, it also
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has considerable impact on the computational method followed in this paper. Recall that safety

requires that each variable in a rule must occur (also) in a positive subgoal. If this safety condition

is not met, an anti-join is no longer a single lookup between the positive goal and a negative

subgoal, but a comparison between a subset of the Herbrand base and a given set of literals J. An

efficient implementation for such computation is yet to be defined and problematic, as illustrated

next.

Consider the following program:

p(X,Y)← a(X,Y), not b(Y,Z).

q(X,Y)← c(X,U), not d(W,U), not e(U,Y).

For the first rule, each (X,Y) in a(X,Y) is included in the final goal (p(X,Y)) only if for a given Y,

there is a Z the in Herbrand universe such that b(Y,Z) does not belong to J. For the second rule,

for each (X,Y) that is included in the final goal (q(X,Y)) there should be a literal c(X,U) that does

not match neither d(W,U) on U, for any W in Herbrand universe, nor e(U,Y) on U, for any Y in

Herbrand universe. Thus, we need to perform reasoning over a subset of the Herbrand base for

b(Y,Z), d(W,U) and e(U,Y) in order to find the nonmatching literals.

5 Experimental results

Methodology. In order to evaluate our approach, we surveyed available benchmarks in the lit-

erature. In (Liang et al. (2009)), the authors evaluate the performance of several rule engines on

data that fit in main memory. However, our approach is targeted on data that exceed the capacity

of the main memory. Thus, we follow the proposed methodology in (Liang et al. (2009)) while

adjusting several parameters. In (Liang et al. (2009)) loading and inference time are separated,

focusing on inference time. However, for our approach such a separation is difficult as loading

and inference time may overlap.

We evaluate our approach considering default negation by applying the win-not-win test and

merge large (anti-)join tests with datalog recursion and default negation, creating a new test

called transitive closure with negation. Other metrics in (Liang et al. (2009)), such as indexing,

are not supported by the MapReduce framework, while all optimizations and cost-based analysis

were performed manually.

Platform. We have implemented our experiments using the Hadoop MapReduce framework1,

version 1.2.1. We have performed experiments on a cluster of the University of Huddersfield. The

cluster consists of 8 nodes (one node was allocated as “master” node), using a Gigabit Ethernet

interconnect. Each node was equipped with 4 cores running at 2.5GHz, 8GB RAM and 250GB

of storage space.

Evaluation tests. The win-not-win test (Liang et al. (2009)) consists of a single rule, where

move is the base relation:

win(X)← move(X,Y), not win(Y).

We test the following data distributions:

• the base facts form a cycle: {move(1,2), ..., move(i, i+1), ..., move(n-1,n), move(n,1)}.

• the data is tree-structured: {move(i, 2*i), move(i, 2*i+1) | 1 ≤ i ≤ n}.

1 http://hadoop.apache.org/mapreduce/
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We used four cyclic datasets and four tree-structured datasets with 125M, 250M, 500M and

1000M facts.

The transitive closure with negation test consists of the following rule set, where b is the base

relation:

tc(X,Y)← par(X,Y). par(X,Y)← b(X,Y), not q(X,Y).

tc(X,Y)← par(X,Z), tc(Z,Y). par(X,Y)← b(X,Y), b(Y,Z), not q(Y,Z).

q(X,Y)← b(Z,X), b(X,Y), not q(Z,X).

We test the following data distribution:

• the base facts are chain-structured: {b(i, i+k) | 1 ≤ i ≤ n, k < n}. Intuitively, the i values

are distributed over ⌈n/k⌉ levels, allowing ⌈n/k⌉ − 1 joins in the formed chain.

The transitive closure with negation test allows for comparing the performance of the naive

and the optimized WFS fixpoint calculation when the computation of lfp(TP,J(I)) starts from I

= /0 and I 6= /0 respectively. For Ui and Ki+1, for i ≥ 0, the optimized implementation speeds up

the process by using, as input, the previously computed transitive closure of Ki, while the naive

implementation comes with the overhead of recomputing previously inferred literals. Intuitively,

this test allows the subsequent computation of transitive closure that becomes larger after each

“inference step”.

We used four chain-structured datasets for increasing number of joins in the initially formed

chain (⌈n/k⌉ − 1) with n = 125M, and k = 41.7M, 25M, 13.9M and 7.36M, and four chain-

structured datasets for a constant number of joins in the initially formed chain (⌈n/k⌉ − 1) with

n = 62.5M, 125M, 250M and 500M, and k = 12.5M, 25M, 50M and 100M respectively.

Results. We can identify four main factors that affect the performance of our approach: (a)

number of facts, affecting the input size, (b) number of rules, affecting the output size, (c) data

distribution, affecting the number of required MapReduce jobs, and (d) rule set structure, affect-

ing the number of required MapReduce jobs.

Figure 1 presents the runtimes of our system for the win-not-win test over cyclic datasets with

input sizes up to 1 billion facts. In this case, our system scales linearly with respect to both

dataset size and number of nodes. This is attributed to the fact that the runtime per MapReduce

job scales linearly for increasing data sizes, while the number of jobs remains constant.

Figure 2 shows the runtimes of our system for the win-not-win test over tree-structured datasets

with input sizes up to 1 billion facts. Our approach scales linearly for increasing data sizes and

number of nodes.

Figure 3 depicts the scaling properties of our system for the transitive closure with negation

test over chain-structured datasets, when run on 7 nodes. Practically, transitive closure depends

on the number of joins in the initially formed chain, which are equal to ⌈n/k⌉ − 1, namely 2, 4,

8 and 16, and thus, appropriate for scalability evaluation. The length of the chain affects both the

size of the transitive closure and the number of “inference steps”, leading to polynomial com-

plexity. Note that our results are in line with Theorem 2.1. Finally, the speedup of the optimized

over the naive implementation is higher for longer chains, since the naive implementation has to

recompute larger transitive closures.

Figure 4 illustrates the scalability properties of our system for the transitive closure with nega-

tion test over chain-structured datasets for constant number of joins in the initially formed chain,

when run on 7 nodes. Our approach scales linearly, both for naive and optimized implementation

as the number of jobs remains constant, while the runtime per job scales linearly for increasing

number of facts.
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6 Conclusion and Future Work

In this paper, we studied the feasibility of computing the well-founded semantics, while allowing

recursion through negation, over large amounts of data. In particular, we proposed a parallel

approach based on the MapReduce framework, ran experiments for various rule sets and data

sizes, and showed the performance speedup coming from the optimized implementation when

compared to a naive implementation. Our experimental results indicate that this method can be

applied to billions of facts.

In future work, we plan to study more complex knowledge representation methods including

Answer-Set programming (Gelfond (2008)), and RDF/S ontology evolution (Konstantinidis et al.

(2008)) and repair (Roussakis et al. (2011)). We believe that these complex forms of reasoning

do not fall under the category of “embarrassingly parallel” problems for which MapReduce is

designed, and thus, a more complex computational model is required. Parallelization techniques

such as OpenMP2 and Message Passing Interface (MPI) may provide higher degree of flexibility

than the MapReduce framework, giving the opportunity to overcome arising limitations. In fact,

in Answer-Set programming, the system claspar (Gebser et al. (2011)) uses MPI, but it needs

a preliminary grounding step, as it accepts only ground or propositional programs. (Perri et al.

(2013)) uses POSIX threads on shared memory for parallelized grounding. Combining these two

approaches and making them more data-driven would be an interesting challenge.

2 http://openmp.org/wp/
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