
University of Huddersfield Repository

Alviano, Mario, Faber, Wolfgang, Leone, Nicola and Manna, Marco

Query answering over disjunctive datalog with existential quantifiers

Original Citation

Alviano, Mario, Faber, Wolfgang, Leone, Nicola and Manna, Marco (2013) Query answering over

disjunctive datalog with existential quantifiers. In: 21st Italian Symposium on Advanced Database

Systems, 30 June - 3 July 2013, Roccella Jonica, Italy.

This version is available at http://eprints.hud.ac.uk/21033/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/20495484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Query Answering over Disjunctive Datalog

with Existential Quantifiers

Mario Alviano and Wolfgang Faber and Nicola Leone and Marco Manna

Department of Mathematics, University of Calabria, Italy
{alviano,faber,leone,manna}@mat.unical.it

Abstract. The paper discusses the impact of adding existential quantifi-
cation in the head of positive disjunctive Datalog rules. After introducing
syntax and semantics of the resulting language, we provide a notion of
instantiation, which has been proven to be adequate for query answering
purposes. Although on the one hand this new formalism is attractive for
knowledge management, especially in domains where ontology-based rea-
soning is needed, on the other hand the presence of existential quantifiers
does not preserve decidability of the typical reasoning tasks even if dis-
junction is forbidden. Therefore, we consider many decidable fragments
of the language that naturally extend analogous classes defined in the
non-disjunctive case, and we give a complete picture of the complexity
of answering conjunctive queries in this setting.

1 Introduction

Datalog based languages have their origins as query languages in Database Sys-
tems, and are now used in a variety of applications. For example, disjunctive
Datalog has been widely applied in data-integration [25], semantic information
extraction [24], workforce management [26], ontological reasoning [21] and other
real world scenarios in Artificial Intelligence [18, 19]. In particular, the field of
ontology-based Query Answering (QA) is thriving in data and knowledge man-
agement [7, 9, 11], and companies such as Oracle are adding ontological reasoning
modules on top of their existing software. In this context, queries are not merely
evaluated on an extensional relational database D, but over a logical theory com-
bining D with an ontological theory Σ describing rules for inferring intensional
knowledge from D [22]. Thus, for a Boolean conjunctive query q, it is not only
checked whether D entails q, but rather whether D ∪Σ does.

A key issue in ontology-based QA is the design of the language used for spec-
ifying the ontological theory Σ. To this end, Datalog± [7] generalizes well-known
ontology specification languages by extending Datalog with existential quanti-
fiers in rule heads. Complexity of QA has been analyzed for many fragments of
Datalog with existential quantifiers [6, 8, 14, 20, 23]. The present paper is related
to this line of research and reports results presented in [2] concerning QA over
Datalog∃,∨, an extension of Datalog that allows for disjunctions and existential
quantifiers in rule heads. More specifically, the chase procedure [22], universal

models [14], and some decidability and complexity results [7] are lifted from the
non-disjunctive case to Datalog∃,∨.

The discussed language combines the capability of disjunction to deal with
incomplete information, with the power of existential quantification to deal with
unnamed individuals. More specifically, it allows one to naturally encode ad-
vanced ontology properties such as role transitivity, role hierarchy, role inverse,
concept products and union of concepts. For example, consider a scenario where
each animal is either a carnivore or a herbivore, and any carnivore preys on
at least one other animal. This knowledge can be modeled by the following
Datalog∃,∨ rules (in the left-hand side) or in equivalent ontological terms (in the
right-hand side):

carnivore(X) v herbivore(X) ← animal(X) Animal ⊑ Carnivore ⊔ Herbivore

∃Y preys(X,Y) ← carnivore(X) Carnivore ⊑ ∃preys.⊤
animal(Y) ← preys(X,Y) ∃preys−.⊤ ⊑ Animal

2 Syntax and Semantics

In the following, we denote by ∆C , ∆N and ∆V , countably infinite domains of
terms called constants, nulls and variables, respectively; by ∆, the union of these
domains; by ϕ, a null; by X and Y, variables; by X and Y, sets of variables; by Π
an alphabet of predicate symbols each of which, say p, has a fixed nonnegative
arity; by a, b and c, atoms being expressions of the form p(t1, . . . , tk), where
p is a predicate symbol, and t1, . . . , tk is a tuple of terms. For an atom a, we
denote by pred(a) the predicate symbol of a. For any structure ς over atoms (e.g.,
a conjunction of atoms), atoms(ς) denotes the set of atoms in ς, and terms(ς)
denotes the set of terms occurring in atoms(ς). If X are the variables of ς, then ς
is also denoted by ς[X]. A structure ς[∅] is called ground. Given a nonempty set T
of terms, base(T) denotes the set of all atoms that can be formed with predicate
symbols in Π and terms from T . A mapping is a function µ : ∆→ ∆ s.t. c ∈ ∆C

implies µ(c) = c, and ϕ ∈ ∆N implies µ(ϕ) ∈ ∆C ∪ ∆N . Let T be a subset of
∆. The application of µ to T , denoted by µ(T), is the set {µ(t) | t ∈ T}. The
restriction of µ to T , denoted by µ|T , is the mapping µ′ s.t. µ′(t) = µ(t) for
each t ∈ T , and µ′(t) = t for each t /∈ T . In this case, we also say that µ is an
extension of µ′, denoted by µ ⊇ µ′. For an atom a = p(t1, . . . , tk), we denote by
µ(a) the atom p(µ(t1), . . . , µ(tk)). For a structure ς over atoms, we denote by
µ(ς) the structure obtained by replacing each atom a of ς with µ(a). Let ς1 and
ς2 be two structures over atoms. A homomorphism from ς1 to ς2 is a mapping
h s.t. h(ς1) is a substructure of ς2 (for example, if ς1 and ς2 are sets of atoms,
then h(ς1) ⊆ ς2). A substitution is a mapping σ s.t. t ∈ ∆N implies σ(t) = t, and
t ∈ ∆V implies σ(t) ∈ ∆C ∪∆N ∪ {t}.

A Datalog∃,∨ rule r is an expression of the form ∀X∃Y disj[X′∪Y] ← conj[X],
where (i) X and Y are disjoint sets of variables; (ii) X′ ⊆ X; (iii) disj is a
nonempty disjunction of atoms; and (iv) conj is a conjunction of atoms. If Y is
empty, then r coincides with a standard Datalog∨ rule. The sets atoms(disj) and
atoms(conj) are denoted by head(r) and body(r), respectively. If body(r) is the

empty set and head(r) is a singleton, then r is also referred to as a fact. A fact
that contains no ∃-variable is called ground. A Datalog∃,∨ program P is a set of
Datalog∃,∨ rules. Finally, we denote

⋃
r∈P head(r) by heads(P). A conjunctive

query (CQ) q(X) is of the form ∃Y conj[X∪Y], where X and Y are disjoint sets
of variables, and conj[X∪Y] is a conjunction of atoms from base(X ∪Y ∪∆C).
Variables inX are called free variables. Query q is called acyclic (ACQ, for short)
if its associated hypergraph is acyclic [12] or, equivalently, if it has hypertree-
width 1 [15]. A Boolean CQ (BCQ) is a query where X is empty. An atomic
query is a CQ such that conj consists of exactly one atom.

Given a rule r, a set M ⊆ base(∆C ∪∆N) is a model of r, denoted by M |= r,
if for each substitution σ s.t. σ(body(r)) ⊆ M , there is a substitution σ′ ⊇ σ|X
s.t. σ′(head(r)) ∩M 6= ∅. M is a model of a Datalog∃,∨ program P , denoted by
M |= P , if M |= r for each r ∈ P . Let mods(P) denote the set of all the models
of P . Two programs P and P ′ are called first-order equivalent (FO-equivalent,
for short) if mods(P) = mods(P ′). A BCQ q is true w.r.t. a model M , denoted
by M |= q, if there is a substitution σ s.t. σ(atoms(q)) ⊆M . For a set of models
M, q is true w.r.t. M, denoted by M |= q, if M |= q for each M ∈ M. For a
program P , q is true w.r.t. P , denoted by P |= q, if mods(P) |= q. The answer
of a CQ q(X) w.r.t. a set of models M, denoted by ans(q,M), is the set of
substitutions σ|X s.t. M |= σ|X(q) for each M ∈ M. The answer of q(X) w.r.t.
a program P , denoted by ansP (q), is the set ans(q,mods(P)). Note that for a
BCQ q, either ansP (q) = ∅ (if P 6|= q) or ansP (q) = {σ|∅} (if P |= q; σ|∅ is the
identity mapping). The same consideration also applies to ans(q,M).

Let C be a class of Datalog∃,∨ programs whose terms belong to ∆C ∪∆V . In
this paper we call query answering (QA) over C the following decision problem:

Given a program P ∈ C and a BCQ q, determine whether P |= q holds.

In the following, C is called QA-decidable if QA over C is decidable. We observe
that computing ansP (q) for a CQ q(X) is Turing-reducible to QA as defined
above. In fact, ansP (q) is defined as the set of substitutions σ|X s.t. the BCQ
σ|X(q) is true w.r.t. P . Since σ|X ∈ ansP (q) implies σ|X(∆V) ⊆ terms(P)∩∆C ,
only finitely many substitutions have to be considered.

3 Universal Model Sets and Instantiation

Let P ∈ Datalog∃,∨. A set M ⊆ mods(P) is a universal model set (UMS)
for P if for each M ∈ mods(P) there is M ′ ∈ M and a homomorphism h
s.t. h(M ′) ⊆ M . Universal model sets are sufficient for QA over Datalog∃,∨

programs, and generalize the the notion of universal model, which is widely used
in the context of QA over Datalog∃ programs. In fact, ifM is a UMS for P , then
P |= q iff M |= q for each BCQ q. We now design a strategy for identifying a
UMS for a Datalog∃,∨ program P . First, we introduce the notion of fires of a rule
r ∈ P on a set R of Datalog∃,∨ ground rules. Next, we define an instantiation
procedure for computing a ground program inst(P), the models of which form a
UMS for P . Let r be a rule of the form ∀X∃Y disj[X′∪Y] ← conj[X], and R,R′

be sets of ground rules. A firing substitution for r w.r.t. R is a substitution σ
s.t. σ = σ|X and σ(body(r)) ⊆ heads(R). The firing of r on R′ w.r.t. σ yields a
ground rule σ̂(r), where σ̂ is obtained by extending σ|X as follows: ∃-variables in
Y are assigned to the least |Y| nulls not occurring in R∪R′. A firing substitution
for a rule r is said to be spent if it has already been fired. The procedure that
computes inst(P) consists of a fair exhaustive series of fires yielding a (possibly
infinite) ground program inst(P).

Example 1. The instantiation of the program {c(X) v h(X) ← a(X); ∃Y p(X,Y)

← c(X); a(Y) ← p(X,Y); c(lion) ←} produces the following rules (in the given
order): c(lion), p(lion,ϕ1) ← c(lion); a(ϕi) ← p(lion,ϕi); c(ϕi) v h(ϕi) ←
a(ϕi); p(ϕi,ϕi+1)← c(ϕi) (i ≥ 1). The (subset-minimal) models of inst(P) are
as follows:

⋃
i∈[1..k]{c(ϕi), p(ϕi,ϕi+1), a(ϕi+1)} ∪ I ∪ {h(ϕk+1)}, ∀k ≥ 1 and

⋃
i≥1{c(ϕi), p(ϕi,ϕi+1), a(ϕi+1)} ∪ I, where I = {c(lion), p(lion,ϕ1), a(ϕ1)}.

The following result, by pointing out some relationships between the models
of P and those of inst(P), states that mods(inst(P)) is a UMS for P [2].

Theorem 1. Consider a Datalog∃,∨ program P and its instantiation P ′. It holds
thatM = {M ∈ mods(P ′) |M ⊆ heads(P ′)} is a UMS for P .

The instantiation procedure is a generalization of the oblivious chase proce-
dure [22] which associates every Datalog∃ program with a universal model. In
fact, given a Datalog∃ program P , {heads(inst(P))} is universal for P [2].

4 QA-decidable fragments of Datalog∃,∨

This section considers some Datalog∃,∨ subclasses which rely on a well known
paradigm called guardedness [6]. A Datalog∃,∨ rule r is said to be guarded if
its body contains at least one atom, the guard of r, that covers all the univer-
sally quantified variables of r. All other body atoms of r are called side atoms.
For example, the rule p(Y) v q(X) ← r(X,Y), s(X) is guarded, while the rule
p(Y) v q(X)← r(X,Y), s(X,Z) is not. Moreover, a guarded rule is called multi-
linear if each body atom can play the role of guard, linear if it contains only one
body atom, and monadic-linear if it is linear and all of its head predicates are
unary. Hereafter, a Datalog∃,∨ program P is called Guarded (resp., Multi-Linear,
Linear, Monadic-Linear) if each rule r ∈ P either is guarded (resp., multi-linear,
linear, monadic-linear) or has an empty body.

The Guarded-Datalog∃,∨ class can be further extended by relaxing the notion
of guard. To this end, we generalize the definition of affected positions of an atom
already introduced for Weakly-Guarded-Datalog∃ programs [6]. Intuitively, these
are the only positions where nulls might occur in the instantiation of a program.
Let P be a Datalog∃,∨ program, a be an atom, and X a variable occurring in
a at position i. Position i of a is (inductively) marked as affected w.r.t. P if
there is a rule r ∈ P with an atom b ∈ head(r) s.t. pred(b) = pred(a) and
X is either an ∃-variable, or a ∀-variable s.t. X occurs in body(r) in affected

positions only. For example, consider the program Pw = {∃Y1 g(Y1,X1)← p(X1);
∃Y2 s(Y2,X2) ← u(X2); g(X3,Y3) ← s(Y3,X3); t(Y4) ← g(X4,Y4), s(Y4,Z4)}.
One can verify that the first position of g(Y1,X1) is affected as well as the first
position of s(Y2,X2) and the second position of g(X3,Y3). Also, all the positions
of g(X4,Y4) are affected as well as the first position of s(Y4,Z4) and of t(Y4). We
can now define the class of weakly-guarded programs.

A rule r of a Datalog∃,∨ program P is said to be weakly-guarded w.r.t. P
if its body contains at least one atom, the weak-guard of r, that covers all the
universally quantified variables of r that appear in affected positions only. By
Weakly-Guarded-Datalog∃,∨, we denote the set of Datalog∃,∨ programs where
each rule either is weakly-guarded or has an empty body. For example, program
Pw is Weakly-Guarded since g(X4,Y4) is the weak-guard of the last rule.

The above definitions generalize Guarded-Datalog∃, Linear-Datalog∃, and
Weakly-Guarded-Datalog∃ [6]. Checking whether a program belongs to the class
Guarded-Datalog∃,∨, Linear-Datalog∃,∨ or Weakly-Guarded-Datalog∃,∨ is doable
in polynomial time. Decidability of QA over these classes can be proven by draw-
ing from recent results [5] established on the guarded fragment of first-order logic
[17], here denoted by Guarded-FOL. To this end, we first introduce the notion
of weak instantiation for compiling a Weakly-Guarded-Datalog∃,∨ program P
into a FO-equivalent Guarded-Datalog∃,∨ program winst(P). For each r ∈ P , let
winst(r) denote the set of partially ground rules associated to r and consisting
of the set {r} if r has an empty body, or of the set {σ(r) | σ is a substitution
from X to terms(P) ∩∆C} if r is weakly-guarded and X are its body variables
that are not affected. Then, winst(P) =

⋃
r∈P winst(r).

Decidability of QA over Guarded-Datalog∃,∨ follows by a compilation into
FO-equivalent Guarded-FOL formulas, for which QA is know to be decidable
[5]. Decidability extends also to Weakly-Guarded-Datalog∃,∨ by means of the
weakly instantiation [2].

Theorem 2. Weakly-Guarded-Datalog∃,∨ is QA-decidable.

We now consider the data complexity of QA over the previously introduced
Datalog∃,∨ fragments, by also varying the structure of the query. As usual, we
assume that a Datalog∃,∨ program P is paired with a database D ⊂ base(∆C).

The set of ground facts {a ← | a ∈ D} is denoted by
←−
D. We start by considering

the class Guarded-Datalog∃,∨.

Theorem 3. The data complexity of QA over Guarded-Datalog∃,∨ programs is
coNP-complete, and it is coNP-hard already both in case of (1) an acyclic CQ
over a Monadic-Linear-Datalog∨ program, and (2) an atomic query over a Multi-
Linear-Datalog∨ program.

Proof. The membership follows from statement 5 of Theorem 19 in [5] (con-
sidering the complexity of QA over Guarded-FOL), and since there exists a
logspace transducer that associates each Guarded-Datalog∃,∨ program with a
FO-equivalent Guarded-FOL formula. The fist hardness can be established by
considering a database and an acyclic CQ involving only unary and binary atoms,

and a single (nonrecursive) Monadic-Linear-Datalog∨ rule containing two head
atoms. This result is implicit in the proof of Theorem 6.4 of [10]. The second
hardness can be obtained by encoding the coNP-complete problem 3-unsat by
means of an atomic query over a Multi-Linear-Datalog∨ program [2]. ⊓⊔

As in the non-disjunctive case, the complexity of answering conjunctive queries
over Weakly-Guarded-Datalog∃,∨ is harder that the one over Guarded-Datalog∃.

Theorem 4. The data complexity of QA over Weakly-Guarded-Datalog∃,∨ is
EXP-complete, and already EXP-hard for atomic queries and no disjunction.

Proof. Hardness comes fromWeakly-Guarded-Datalog∃ [6]. For the membership,

let P be a Weakly-Guarded-Datalog∃,∨ program and P ′ = winst(P ∪
←−
D) be its

compilation into Guarded-Datalog∃,∨. The result follows by considering that:
P ∪
←−
D |= q iff P ′ |= q, the size of P ′ is polynomial (in data complexity) in the

cardinality of D, P ′ can be translated in logarithmic space into a FO-equivalent
Guarded-FOL formula, and QA over a Guarded-FOL formula is in EXP if the
formula and the query are considered fixed [5]. ⊓⊔

We now consider a disjunctive case guaranteeing tractability of QA. The
result needs a technical construction designed in [2] and improved in [16].

Theorem 5. Data complexity of atomic QA over Linear-Datalog∃,∨ is in AC0.

5 Discussion

Table 1 provides an overview of complexity results that follow from the results
obtained in this section and in the literature. Each row reports the complexity of
QA for each of the classes defined in Section 4 together with either atomic queries
(AQ), acyclic conjunctive queries (ACQ) or conjunctive queries (CQ). In each
row we differentiate between the presence or absence of existential variables and
disjunction: ∃-variables in rule heads (column {∃}), disjunctive heads (column
{∨}), and both (column {∃,∨}). Results in the {∃}-column are from [6, 7], results
for Weakly-Guarded-Datalog∨ (last cell in column {∨}) follow from [13], since
this class coincides with Datalog∨. All the remaining coNP-completeness results

Table 1. Data complexity of QA in Datalog∃,∨.

Datalog

Restrictions

Query

Structure

Datalog Extensions

{∃} {∨} {∃,∨}

(Monadic-)Linear
AQ in AC0 in AC0 in AC0

ACQ/CQ in AC0 coNP-complete coNP-complete

Multi-Linear AQ/ACQ/CQ in AC0 coNP-complete coNP-complete

Guarded AQ/ACQ/CQ P-complete coNP-complete coNP-complete

Weakly-Guarded AQ/ACQ/CQ EXP-complete coNP-complete EXP-complete

follow from Theorem 3, the remaining EXP-completeness results follow from
Theorem 4, and the AC0 upper bounds follow from Theorem 5.

Let us first consider the impact of allowing disjunction in the presence of exis-
tential quantifiers in rule heads, i.e. columns {∃} versus {∃,∨}. We can see that in
most considered cases, the problem becomes (potentially) harder, except for the
class Weakly-Guarded. Indeed, for this case the problem is provably intractable
already without disjunctions, and turns out to remain so when including them. In
most other cases, we actually identify a tractability boundary, passing from AC0

to coNP-completeness. Notable exceptions are Monadic-Linear and Linear with
atomic queries, in which case the problem remains tractable (but may be slightly
more complex). It is interesting to observe that in the presence of disjunction the
nature of the query has a huge impact on complexity for classes Monadic-Linear
and Linear, while this is not the case in the absence of disjunction.

Let us now discuss the impact of adding existential quantification in the
presence of disjunction in rule heads, i.e. columns {∨} versus {∃,∨}. We can
see that in all considered classes except for Weakly-Guarded, adding existen-
tial quantifiers does not alter complexity. This is a notable result, since having
existential quantification is a powerful construct for knowledge representation.
Only for Weakly-Guarded we obtain a significant rise from coNP-completeness
to EXP-completeness and thus provable intractability.

Concerning expressivity, we point out that Guarded-Datalog∃,∨ is strictly
more expressive than ELU [4], the extension of the well-known Description Logic
EL that allows for union of concepts. Actually, Guarded-Datalog∃,∨ even gener-
alizes the ELU extension which is enhanced by role inclusions and inverse roles.

In future work, we intend to study the impact of disjunction on other tractable
fragments of Datalog∃,∨ based on different paradigms, for example stickiness [8],
shyness [23] and weak-acyclicity [14]. Moreover, it would also be interesting to
broaden the study to combined complexity or to limit it to fixed or bounded
predicate arities. Finally, also investigating on implementation issues is on our
agenda. In fact, the extension of DLV [3] handling Datalog∃ is based on decid-
ability results on disjunctive Datalog with uninterpreted function symbols [1].

References

1. M. Alviano, W. Faber, and N. Leone. Disjunctive ASP with functions: Decidable
queries and effective computation. Theory and Practice of Logic Programming,
10(4–6):497–512, July 2010.

2. M. Alviano, W. Faber, N. Leone, and M. Manna. Disjunctive datalog with ex-
istential quantifiers: Semantics, decidability, and complexity issues. Theory and

Practice of Logic Programming, 12(4-5):701–718, 2012.
3. M. Alviano, W. Faber, N. Leone, S. Perri, G. Pfeifer, and G. Terracina. The

disjunctive datalog system DLV. In Datalog 2.0, volume 6702 of LNCS, pages
282–301. Springer, 2011.

4. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of IJCAI,
pages 364–369, 2005.

5. V. Barany, G. Gottlob, and M. Otto. Querying the Guarded Fragment. In Proc.

of LICS, pages 1–10, 2010.

6. A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the Infinite Chase: Query Answering
under Expressive Relational Constraints. In Proc. of KR, pages 70–80, 2008.

7. A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. In Proc. of PODS, pages 77–86, 2009.

8. A. Cal̀ı, G. Gottlob, and A. Pieris. Advanced Processing for Ontological Queries.
PVLDB, 3(1):554–565, 2010.

9. A. Cal̀ı, G. Gottlob, and A. Pieris. New Expressive Languages for Ontological
Query Answering. In Proc. of AAAI, pages 1541–1546, 2011.

10. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, and R. Rosati. Ontologies and Databases: The DL-Lite Approach. In
Reasoning Web, volume 5689 of LNCS, pages 255–356. Springer, 2009.

11. D. Calvanese, G. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable Rea-
soning and Efficient Query Answering in Description Logics: The DL-Lite Family.
J. Autom. Reason., 39:385–429, 2007.

12. C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theo-

retical Computer Science, 239(2):211–229, 2000.
13. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on

Database Systems, 22(3):364–418, 1997.
14. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and

query answering. Theoretical Computer Science, 336(1):89–124, 2005.
15. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable

queries. In Proc. of PODS, pages 21–32, 1999.
16. G. Gottlob, M. Manna, M. Morak, and A. Pieris. On the complexity of ontological

reasoning under disjunctive existential rules. In Proc. of MFCS, volume 7464 of
LNCS, pages 1–18. Springer, 2012.

17. E. Grädel. On the Restraining Power of Guards. The Journal of Symbolic Logic,
64(4):1719–1742, 1999.

18. G. Grasso, S. Iiritano, N. Leone, and F. Ricca. Some dlv applications for knowledge
management. In LPNMR, volume 5753 of LNCS, pages 591–597. Springer, 2009.

19. G. Grasso, N. Leone, M. Manna, and F. Ricca. Asp at work: Spin-off and ap-
plications of the dlv system. In LPNMR, volume 6565 of LNCS, pages 432–451.
Springer, 2011.

20. S. Greco, F. Spezzano, and I. Trubitsyna. Stratification Criteria and Rewriting
Techniques for Checking Chase Termination. PVLDB, 4(11):1158–1168, 2011.

21. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ- Descrption Logic to Dis-
junctive Datalog Programs. In Proc. of KR, pages 152–162, 2004.

22. D. Johnson and A. Klug. Testing containment of conjunctive queries under func-
tional and inclusion dependencies. Journal of Computer and System Sciences,
28(1):167–189, 1984.

23. N. Leone, M. Manna, G. Terracina, and P. Veltri. Efficiently Computable Datalog∃

Programs. In Proc. of KR, pages 13–23, 2012.
24. M. Manna, E. Oro, M. Ruffolo, M. Alviano, and N. Leone. The hilex system for

semantic information extraction. T. Large-Scale Data- and Knowledge-Centered

Systems, 5:91–125, 2012.
25. M. Manna, F. Ricca, and G. Terracina. Consistent query answering via asp from

different perspectives: Theory and practice. Theory and Practice of Logic Program-

ming, 13(2):227–252, 2013.
26. F. Ricca, G. Grasso, M. Alviano, M. Manna, V. Lio, S. Iiritano, and N. Leone.

Team-building with answer set programming in the gioia-tauro seaport. Theory

and Practice of Logic Programming, 12(3):361–381, 2012.

