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Abstract. Filtering algorithms for two degenerate quark flavours have advanced to the
point that, in 2+1 flavour simulations, the cost of the strange quark is significant com-
pared with the light quarks. This makes efficient filtering algorithms for single flavour
actions highly desirable, in particular when considering 1+1+1 flavour simulations for
QED+QCD. Here we discuss methods for filtering the RHMC algorithm that are imple-
mented within BQCD, an open-source Fortran program for Hybrid Monte Carlo simula-
tions.

1 Introduction

While the lattice QCD community has achieved dynamical simulations at or near the physical pion
mass [1–4], the Monte Carlo generation of gauge field configurations with light quarks presents a
numerically intensive challenge, and is only possible for groups with access to primary tier supercom-
puting resources. After several decades, the Hybrid Monte Carlo (HMC) algorithm [5] remains the
method of choice for dynamical QCD simulations.

The leading expense in modern dynamical simulations is due to the fermion determinant. To
enable the use of Monte Carlo methods, the Grassmannian fields which represent the quarks are
integrated out analytically,

∏
f

∫
Dψ f Dψ f exp

[
−ψ f Mfψ f

]
=
∏

f

det Mf , (1)

where Mf is the fermion matrix for the quark flavour f . At this point the resulting fermion matrix
determinant can be estimated stochastically through the introduction of pseudofermions,

∏
f

det Mf =
∏

f

∫
Dφ f Dφ∗f exp

[
−φ†f M−1

f φ f

]
(2)

The pseudofermion fields φ are standard complex numbers and are therefore computable. The simplest
pseudofermion formulation is for two degenerate quark flavours,

(det M)2 = det(M†M) =
∫

DφDφ∗ exp
[
−φ†(M†M)−1φ

]
, (3)
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where we have taken advantage of the fact that the determinant of the fermion matrix M is real. In
this instance, the determinant is represented by a pseudofermion action with a positive semi-definite
matrix,

S 2 f = φ
†K−1φ, (4)

where K = M†M. The positive semi-definite property enables the generation of pseudofermion fields
that satisfy the probability distribution ρ(φ) ∼ e−S 2 f (φ).

Single flavour fermion simulations pose additional computational challenges. For Wilson-type
actions, the fermion matrix has a complex spectrum, and hence cannot be used directly in the pseud-
ofermion distribution without additional modification. Noting that, if det M is real and positive we
have

det M =
√

det(M†M) =
∫

DφDφ∗ exp
[
−φ†(M†M)−

1
2 φ
]
. (5)

The Rational HMC (RHMC) algorithm [6, 7] solves this problem by replacing the fermion matrix M
with a rational approximation to the inverse square root,

R(K) ≈ K−1/2, (6)

where K = M†M is positive semi-definite, such that the pseudofermion action for a single flavour is

S 1 f = φ
†R(K)φ. (7)

Typically, R(K) is chosen to be the Zolotarev approximation, which is the optimal rational polynomial
approximation for R(z) � z−

1
2 .

Due to isospin symmetry being very nearly exact, in pure QCD simulations the up and down
quark are almost always chosen to be degenerate. This means that in a 2 + 1 flavour simulation
only the strange must be treated using RHMC. Historically, the cost of adding the strange quark to
a dynamical simulation with already light up and down quarks was relatively small. However, there
have been a large number of algorithmic improvements focused on reducing the cost of two flavour
simulations, such that in a modern dynamical simulation the cost of the including the strange quark is
significant.

Moreover, the precision of lattice QCD calculations of certain quantities has advanced to the
point that electromagnetic effects can no longer be neglected, see e.g. [8–12]. In these QCD+QED
calculations, isospin symmetry is explicitly broken as the up and down quarks have different charges
qu � qd. This means that at the physical point, 1+1+1 flavour simulations are needed [12], noting that
the down and strange quark have different masses md � ms. This motivates us to seek improvements
to the single flavour RHMC algorithm that parallel the advances made for the degenerate two flavour
case.

2 Filtering algorithms

The essential principle underlying the Hybrid Monte Carlo algorithm is the introduction of a fictitious
simulation time co-ordinate, along with the corresponding conjugate momenta and a Hamiltonian de-
scribing the evolution in this new simulation time. The molecular dynamics evolution approximately
preserves the extended Hamiltonian and this ensures a high acceptance rate for the global Metropolis
accept/reject step that takes place at the end of each trajectory.

There are two sources of computational expense in performing simulations at light quark mass.
Both stem from the fact that the fermion determinant must be represented stochastically using pseud-
ofermions with a non-local action that features the inverse of the fermion matrix. The first is that the
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Both stem from the fact that the fermion determinant must be represented stochastically using pseud-
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condition number of the fermion matrix increases at light quark mass, causing a large increase in the
number of conjugate gradient iterations required to solve the linear system. Solving this system is
required at each molecular dynamics step, which means the numerical expense of the inversions is
the dominant cost for generating dynamical gauge fields. The second is that the molecular dynamics
step-size must be decreased as the quark mass is reduced in order to maintain control over the rapid
fluctuations driven by the pseudofermion field.

Splitting the pseudofermion action using a filter provides the opportunity to address both these
issues. The application of a filter F to the fermion action kernel L results in a pseudofermion action
with multiple terms,

φ†Lφ→ φ†1Fφ1 + φ
†
2F−1Lφ2. (8)

A good choice of filter can have a two fold effect. F−1 should act as a preconditioner for L, such that
the cost of evaluating the molecular dynamics force is reduced. The second benefit comes from the
ability to place the evolution of the two terms on different time scales, such that the expensive fermion
matrix inversions are performed less often per trajectory.

There are a number of filtering techniques [13–18] that have been developed for two flavour simu-
lations, two of which are most relevant to this discussion. Polynomial filtering [13] uses a polynomial
approximation to the inverse as a preconditioner for L, with the advantage that a short polynomial fil-
ter can simultaneously capture the high frequency dynamics whilst being cheap to evaluate. Utilising
appropriately factored polynomials allows for additional time scales to be introduced. Mass precon-
ditioning [14, 15] uses the lattice Dirac matrix at heavier value of the quark mass parameter as a filter,
and again it is possible to create a tiered molecular dynamics integration scheme by using successively
increasing values of the hopping parameter κ,with simulations at the physical quark mass using four or
more Hasenbuch terms. The possibility of combining mass preconditioning and polynomial filtering
was recently shown to remove the need to fine tune the Hasenbuch parameter(s) [19].

In this work we propose two classes of filter that can be applied to the Rational Hybrid Monte
Carlo action,

S RHMC = φ
†R(K)φ. (9)

Analogously to the two flavour case, we can construct a polynomial filter for RHMC by choosing a
low order polynomial P(K) � K−1/2 that approximates the inverse square root, such that

S PF−RHMC = φ
†
1P(K)φ1 + φ

†
2P(K)−1R(K)φ2. (10)

Given a class of polynomials P(K), such as the Chebyshev approximations, we only need to tune the
polynomial order p. The polynomial term P(K) is cheap to evaluate. So long as the roots of P(K) are
sufficiently away from zero then we can obtain the filtered rational polynomial P(K)−1R(K) needed for
the remainder term with minimal additional expense by using a multi-shift solver, and the filter will
reduce the force associated with the remainder term such that it can be placed on a coarser integration
scale. The second type of filter we propose is based on the observation that the class of Zolotarev
rational polynomials R(K) � K−1/2 can be written down in an ordered product form,

R(K) = dn

n∏
k=1

(K + ak)
(K + bk),

(11)

where ak, bk, dn > 0, and the coefficients in the numerator and denominator strictly decrease as k
increases such that ak > ak+1, bk > bk+1. Table 1 provides the coefficients for the n = 20 Zolotarev
approximation R(z2) optimised for the range z ∈ [5× 10−5, 3] as an example. The ordered product can
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Table 1. The coefficients for the Zolotarev rational approximation to the inverse square root R(z2) given by
equation (11), optimised for the range z ∈ [5 × 10−5, 3] with rational polynomial order n = 20.

k ak bk

1 9.563244545350 × 10+01 2.185152657378 × 10+01

2 8.388503498802 × 10+00 3.869255332779 × 10+00

3 1.938402066167 × 10+00 1.011688743145 × 10+00

4 5.393711779563 × 10−01 2.908314285103 × 10−01

5 1.577758224234 × 10−01 8.587639032804 × 10−02

6 4.682604103557 × 10−02 2.555797860752 × 10−02

7 1.395718122336 × 10−02 7.624224868005 × 10−03

8 4.165459337102 × 10−03 2.275977093976 × 10−03

9 1.243636491310 × 10−03 6.795636775098 × 10−04

10 3.713408528751 × 10−04 2.029168564071 × 10−04

11 1.108828440206 × 10−04 6.059122761302 × 10−05

12 3.310947727642 × 10−05 1.809210191033 × 10−05

13 9.885863174458 × 10−06 5.401564705966 × 10−06

14 2.951119430158 × 10−06 1.612073222848 × 10−06

15 8.803512407386 × 10−07 4.805018241491 × 10−07

16 2.620044683831 × 10−07 1.426073879295 × 10−07

17 7.736439845055 × 10−08 4.171524002026 × 10−08

18 2.224004044081 × 10−08 1.160749939012 × 10−08

19 5.815072459290 × 10−09 2.682241760431 × 10−09

20 1.029675478286 × 10−09 2.352768004344 × 10−10

dn = 6.411915162135 × 10−02

then be partitioned into partial factors [20, 21] defined by

Ri, j(K) = (dn)δi,0
j∏

k=i+1

(K + ak)
(K + bk)

, (12)

where the overall coefficient dn is only present if i = 0. The value of this partitioning is revealed when
we observe that truncations of the ordered product R0,t(K) at order t < n also provide an approximation
to the inverse square root,

R0,t(K) = dn

t∏
k=1

(K + ak)
(K + bk)

� K−1/2. (13)

This property is demonstrated in Figure 1, where we plot the functions zR0,t(z2) � 1 for z > 0,
where R0,t are the truncations of the n = 20 Zolotarev approximation specified in Table 1. We see
that for all choices of t the approximation is good at large values of z, while the range over which
the approximation is valid gets successively better as the truncation order t increases. We observe at
t = 16 the approximation error is negligible over almost the entire range of z. Hence we have shown
that truncations of the ordered product successfully capture the high frequency dynamics. Next we
consider the correction term which is simply the remaining factors associated with a given truncation
order t,

Rt,n(K) =
n∏

k=t+1

(K + ak)
(K + bk)

� 1. (14)

Note that, due to the ordering of the product, for values of k >> 1 we have that ak � bk are both
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Figure 1. The function zR0,t(z2) � 1 for various values of the truncation order t. The truncated products R0,t

derive from a Zolotarev rational polynomial R(z2) � 1/
√

z2 of order n = 20 over the range z ∈ [5 × 10−5, 3]. The
graph demonstrates that truncations of the ordered product also approximate the inverse square root.

small, and as the order of the polynomials in the numerator and denominator are equal, the correction
term is an approximation to unity. This is very clearly demonstrated in Figure 2, which shows the
correction terms Rt,n(z2) arising from different choices of the truncation order t for the Zolotarev
approximation from Table 1. The bounds on the vertical axis are set at a 10% deviation from 1. Even
at t = 8, the correction term is approximately one over a large range, while at t = 16 the remainder is
indistinguishable from unity at the displayed scale. This is significant, as it implies that the correction
term will have a correspondingly small molecular dynamics force and thus can be placed on a coarse
integration scale.

Based on the above observations, we define the truncated ordered product (top) filtering scheme
for RHMC, denoted by tRHMC, such that

S tRHMC = φ
†
1R0,t(K)φ1 + φ

†
2Rt,n(K)φ2 (15)

is the tRHMC pseudofermion action. Here we point out a significant advantage of the tRHMC scheme
is that, as both terms are simply rational polynomials, it is very easy to implement using preexisting
RHMC code.

It is also worth noting that partitioning the ordered product form of the rational polynomial is
distinct from partitioning the sum over poles, in which different poles in the expansion of R(K) are
simply placed on different time scales. The reason is that the sum over poles simply distributes the
inversions based on their expense, and does not share the beneficial properties of the tRHMC scheme
mentioned above, namely that by also approximating K−

1
2 , R0,t acts as a high pass filter. A further

computational efficiency for the tRHMC scheme may be realised on some hardware architectures due
to the memory bandwidth benefits of evaluating multiple small order rational polynomial terms, rather
than a single term of full order.
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Figure 2. The correction term Rt,n(z2) � 1 for various values of the truncation order t. The remainders Rt,n derive
from a Zolotarev rational polynomial R(z2) � 1/

√
z2 of order n = 20 over the range z ∈ [5 × 10−5, 3]. The graph

demonstrates that truncating the ordered product yields remainders that approximate unity.

As has been done in the two flavour case, hierarchical filtering schemes can be defined for the
single flavour filters that we have proposed. In the case of PF-RHMC, we can add a higher order
polynomial Q(K), (q > p) which approximates P(K)−1K−1/2 as a secondary filter, which results in the
2PF-RHMC action,

S 2PF−RHMC = φ
†
1P(K)φ1 + φ

†
2Q(K)φ2 + φ

†
3R(K)[P(K)Q(K)]−1φ3. (16)

For the tRHMC scheme, we can add a second truncation point in the order product, such that the
2tRHMC action is given by

S 2tRHMC = φ
†
1R0,t1 (K)φ1 + φ

†
2Rt1,t2 (K)φ2 + φ

†
3Rt2,n(K)φ3. (17)

3 Characteristic scale tuning

Using a fully generalised integration scheme [13, 19], it is possible to place each term in the molecular
dynamics action on an independent scale. Typically, the step sizes hi associated with a given action
term S i can be tuned by force balancing, where given some measure Fi of the molecular dynamics
forces, for each term we attempt to balance the product of the step size and the force such that Fihi ∼
constant. Here, Fi can be the average or maximum force associated with a given term. The maximum
tends to prove a better choice, as it is more closely linked with the force variance.

However, in the case of tRHMC, for higher order truncations, the force due to the remainder term
is very small. This makes the force-balanced approach to tuning the step sizes unfavourable. Noting
that for filtered actions the acceptance rate is primarily determined by the coarsest scale, we adopt
an alternative approach to tuning using the characteristic scale. The coarsest scale h0 is tuned by
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Figure 3. The cost function C = Nmat/ρacc for the different algorithms used in this study. The red point is for
vanilla RHMC, while the blue points are for the filtering schemes using characteristic scale tuning. From left
to right, first we have the single filter results at various values of their respective order parameters, namely PF-
RHMC for different polynomial order p, and tRHMC for different truncation order t. Next we have the two filter
results, with 2PF-RHMC at fixed p = 4 and various q for the polynomial orders, followed by 2tRHMC at fixed
t1 = 4 and various t2 for the truncation orders.

fitting the acceptance probability with the complementary error function, ρacc ≈ erfc(h2
0c2), where the

characteristic scale c is the only fit parameter. With the coarsest scale h0 excluded, the remaining
scales h1 > h2 > h3 . . . are set using the force balancing relation to achieve the target acceptance rate.

4 Results

All runs were performed using the open source BQCD software package [22, 23]. Both the PF-RHMC
and tRHMC filtering methods are built into the latest release, which is available at the following link:

www.rrz.uni-hamburg.de/services/hpc/bqcd

To compare the different filtering algorithms proposed herein, we start with a thermalised 163 × 32
lattice with Nf = 2 flavours of Wilson fermions from a previous study [19]. The Wilson gauge action
is used with β = 5.6, with hopping parameter κ = 0.15825, providing a pion mass of mπ ∼ 400 MeV
and a lattice spacing of a ∼ 0.08 fm.

The various RHMC simulations are then performed with (degenerate) 1 + 1 single-flavour pseud-
ofermions. As both flavours are treated equally, they have degenerate force and fermion matrix multi-
plication count distributions. We tune the step-sizes using the characteristic scale method above such
that the acceptance rate ρacc ∼ 0.75. The rational polynomial used is the Zolotarev approximation
with order n = 20 and range [5 × 10−5, 3] given in Table 1. The polynomial filters used in the PF-
RHMC runs are the Chebyshev approximations to K−1/2 (or P(K)−1K−1/2 in the two filter case) with
range [5 × 10−5, 3]. The cost function we use to compare our methods is the same as in [19], namely

C = Nmat/ρacc, (18)
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where the matrix multiplication count Nmat is the total for both flavours.
Figure 3 compares the cost function for the various filtering methods described herein.

Polynomial-filtered RHMC provides a small benefit over vanilla RHMC. It is clear that tRHMC pro-
vides the best performance improvement, at a speedup of around 1.75. The optimal point for tRHMC
and 2tRHMC is similar, but the two truncation form is less sensitive to the choice of the truncation
parameter.

In summary, we have seen that the tRHMC filtering scheme coupled with characteristic scale
tuning works well cross a wide range of truncation orders. The tRHMC algorithm is provided by
BQCD, but is also very easy to implement in existing RHMC codes. Multiple truncation filters can
be used, and this should prove to be useful at light quark masses. The full details of our study will be
published elsewhere.
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