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Abstract. In this presentation, we are going to explain the thermodynamic origin of
warm inflation scenarios by using the effective Stefan-Boltzmann law. In the warm in-
flation scenarios, radiation always exists to avoid the graceful exit problem, for which
the radiation energy density should be assumed to be finite at the starting point of the
warm inflation. To find out the origin of the non-vanishing initial radiation energy den-
sity, we derive an effective Stefan-Boltzmann law by considering the non-vanishing trace
of the total energy-momentum tensors. The effective Stefan-Boltzmann law successfully
shows where the initial radiation energy density is thermodynamically originated from.
And by using the above effective Stefan-Boltzmann law, we also study the cosmological
scalar perturbation, and obtain the sufficient radiation energy density in order for GUT
baryogenesis at the end of inflation. This proceeding is based on Ref. [1]

1 Introduction

Inflation is an elegant solution to the interesting problems such as the horizon and flatness problems
in the big bang cosmology [2–4], during which the rapid expansion lays the universe in a supercooled
phase. And thereafter the reheating process should be assumed for the graceful exit problem. In con-
trast to the assumption of the supercooled universe after inflation, another way to approach this issue
without reheating process has been studied in Ref. [5, 6], which is called as a warm inflation scenario.
There are two important ingredients to describe the warm inflation. First one is a damping term during
warm inflation. Since the interactions of the inflaton and radiation are inevitable during inflation, the
damping term describing the decay rate of the inflaton into other fields should be introduced during
warm inflation. Second one is the large-scale initial radiation energy density. It can be naturally as-
sumed to be nonzero, ρr(ti) � 0 [7], which is compatible with the Stefan-Boltzmann law of ρr = 3γT 4

in the hot thermal bath at the initial point of inflation, t = ti. Now, one might wonder how to exist the
large-scale initial radiation energy density and what is the origin of it in the warm inflation scenario.

2 Effective Stefan-Boltzmann law in warm inflation

The radiation energy density is related to the temperature through the Stefan-Boltzmann law in the
standard warm inflation models. As compared to this, if one were to treat the inflaton and radiation
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on an equal footing in equilibrium, then one would encounter generically non-vanishing trace of
the total energy-momentum tensor due to the inflaton part while the radiation part is still traceless.
Now, it should be emphasized that the usual Stefan-Boltzmann law commonly rests upon the traceless
condition of the energy-momentum tensor, and thus we have to modify the Stefan-Boltzmann law in
order to incorporate the non-vanishing trace of the total energy-momentum tensor.

Let us start with the first law of thermodynamics dE = TdS − PdV , where E, T , S , P, and V
are the energy, temperature, entropy, pressure, and volume of a thermal system, respectively. The
relevant energy-momentum tensor is assumed to be perfect fluid written as Tµν = (ρ + p)uµuν + gµνp,
where uµ is the four-velocity of radiation flow satisfying uµuµ = −1. Assuming that the trace of the
energy-momentum tensor is non-vanishing generically, the trace relation is obtained as −ρ + 3p = T µµ
where ρ = E/V, the differential equation for the energy density is obtained as T∂ρ/∂T − 4ρ =
T µµ − T∂T µµ /∂T, so that the effective Stefan-Boltzmann law to incorporate the non-vanishing trace of
the energy-momentum tensor can be obtained as

ρ(T ) = 3C0T 4 − 1
4

T µµ −
3
4

T 4
∫ T 1

T 4

∂T µµ
∂T

dT, (1)

p(T ) = C0T 4 +
1
4

T µµ −
1
4

T 4
∫ T 1

T 4

∂T µµ
∂T

dT, (2)

where the integration constant C0 can be fixed from an initial condition. The relations (1) and (2)
naturally reduce to the usual Stefan-Boltzmann law for the traceless case, so that C0 = γ. However,
C0 will be fixed for the case of the non-vanishing trace for our purpose later by imposing a different
boundary condition. In fact, such a modified Stefan-Boltzmann law induced by conformal anomalies
had been applied to SU(3) lattice gauge theory in particle physics in the Minkowski spacetime [8] and
the recent black hole physics in connection with the information loss problem [9, 10].

From the cosmological point of view, let us assume that the total system of the early universe con-
sists of inflaton and radiation in thermal equilibrium. Then the total energy density ρtot and pressure
ptot are written as [11]

ρtot = ρφ + ρr =
1
2
φ̇2 + Veff(φ, T ) + ρr, (3)

ptot = pφ + pr =
1
2
φ̇2 − Veff(φ, T ) + pr, (4)

where ρr, pr and ρφ, pφ denote the energy density and pressure of radiation and inflaton, respectively.
Specifically, the temperature dependent effective potential Veff for the inflaton is expressed by [12–14]

Veff(φ, T ) = −γT 4 +
1
2

(δmT )2φ2 + V0(φ), (5)

where γ = π2g∗/90 and g∗ is an effective particle number. V0(φ) is the zero-temperature potential for
the scalar field φ, and δmT (φ, T ) denotes a thermal correction which will be neglected for simplicity
along the lines of Ref. [15].

The trace for the total energy-momentum tensor appears non-vanishing due to the effective poten-
tial for the inflaton as

T µµ = −ρtot + 3ptot = −4Veff(φ, T ), (6)

where the kinetic energy is assumed to be very small as compared to the potential energy from now
on. By plugging Eq. (6) into Eqs. (1) and (2), the explicit forms of the pressure and energy density
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are obtained as

ρtot = Veff + 3γT 4 ln
(TGUT

T

)4
, ptot = −Veff + γT 4 ln

(TGUT

T

)4
. (7)

by using the initial condition of C0 = 4γ ln TGUT from the assumption that there exists only the
inflaton field at the initial temperature of our universe TGUT, i.e., ρtot(TGUT) = ρφ and ptot(TGUT) = pφ.
It is worth mentioning that we take T0 to be the GUT temperature as the maximum temperature of our
universe T0 = TGUT = 1016GeV, since all perturbative interactions can be frozen out and ineffective in
maintaining or establishing thermal equilibrium for T > 1016GeV, and thus the known interactions are
not capable of thermalizing the universe at temperature greater than the GUT scale [11]. Comparing
Eq. (7) with Eqs. (3) and (4), we can immediately find the effective Stefan-Boltzmann law for the
radiation as

ρr = 3γT 4 ln
(TGUT

T

)4
, pr = γT 4 ln

(TGUT

T

)4
. (8)

The radiation energy density (8) starts from zero with the GUT temperature as an initial condition of
our universe, and, subsequently, it increases. And eventually it gives the adequate initial radiation en-
ergy density for warm inflation and the sufficient temperature after inflation, which will be calculated
in Sec. 3.

3 Temperatures at the horizon crossing and at the end of inflation

One of the most important ingredients in warm inflation is that the decreasing radiation energy density
during inflation is replenished in such a way that the energy of the inflaton field is transferred to that
of radiation in virtue of dissipation. Now, the energy conservation law, ρ̇tot + 3H(ρtot + ptot) = 0, can
be separated into the inflaton and radiation parts as [15]

ρ̇φ + 3H(ρφ + pφ) = −Γφ̇(t)2, ρ̇r + 3H(ρr + pr) = Γφ̇(t)2, (9)

where H = ȧ/a means the Hubble parameter, and Γφ̇2 is the friction term adopted phenomenologically
to describe the decay of the inflaton field and its energy transfers into the radiation bath. And, the
Friedmann equation is also given as H2 − ρtot/(3m2

p) = 0. Based on the slow-roll approximations [15],
φ̇2 � Veff , φ̈ � Γφ̇, ρ̇r � 4Hρr, ρr � ρφ, one can get the following equations,

3Hrφ̇ + ∂φVeff = 0, 3H(ρr + pr) − Γ(φ)φ̇2 = 0, H2 − 1
3m2

p
Veff = 0, (10)

where Γ/(3H) � 1 in the warm inflationary regime.
From now on, we adopt the power-law potential V0 and damping term Γ [15] as

V0(φ) = λφn, Γ(φ) = Γ0

(
φ

φ0

)m
(11)

in order to perform the specific calculations, where the coefficients Γ0, φ0 and λ are constants, and the
power n and m are fixed as n = 2, m = 2 for simplicity. In this specific model, the number of e-folds
during warm inflation is obtained as

Ninf =

∫ tend

tHC

H(t)dt =
Γ0(λφ2

HC − γHCT 4
HC)

3
2

6
√

3mpλ2φ2
0

(12)
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by assuming that φend � φHC, where φHC and φend are the values of the inflaton field corresponding to
the horizon-crossing time tHC and the end time of warm inflation tend, respectively.

Next, we are going to determine the temperature bounds at the end of inflation via cosmological
perturbation. The thermal fluctuations produce the power spectrum Pζ for the comoving curvature ζ,
Pζ = π1/2H5/2Γ1/2T/(2φ̇2), and the power spectral index ns for the scalar perturbation is defined as
ns−1 = d ln |Pζ |/d ln k. After some tedious calculations with the slow-roll equations (10) , the spectral
index is finally obtained as

ns − 1 =
1

Ninf + N2
inf ln
(

TGUT
THC

)4 −
1

12Ninf

(
1 − ln

(
TGUT
THC

)4) −
7

4Ninf
, (13)

where the number of e-folds is assumed to be Ninf = 60 in order for solving the horizon problem. The
spectral index can respect the data of Planck 2015 when the temperature at the horizon crossing THC
lies in the interval of

8.026 × 1015GeV ≤ THC ≤ 9.985 × 1015GeV. (14)

In order to evaluate the temperature at the end of warm inflation, we will use the procedure
presented in Ref. [16]. By using Eq. (10), the total number of e-folds Ntot from the scale at
the horizon crossing aHC to the scale at the present time a0 is written as Ntot = ln (a0/aHC) =

ln
(
(
√

3k0mp)−1
√
λφ2

HC − γHCT 4
HC

)
, where the scale of the present time is fixed as a0 = 1 and the

scale at the horizon crossing is given as aHC = k0/H(tHC). Next, the relation of Trec = (1 + zrec)TCMB,
where zrec is the red-shift factor given as 1 + zrec = a0/arec, indicates that the temperature di-
minishes from the recombination era to present universe due to the expansion of the universe as
N0 = ln (a0/arec) = ln (Trec/TCMB) . For the radiation-dominated era, the adiabatic expansion of the
universe is assumed as dS = 0 [11], then the number of e-folds can be rewritten in the radiation-
dominated era Nrad as

Nrad = ln
(

arec

aend

)
=

1
3

ln
(

send

srec

)
=

1
3

ln


4γendT 3

end ln
(

TGUT
Tend

)4

4γrecT 3
rec

 , (15)

where the entropy at the end of inflation is S end = 4γenda3
endT 3

end ln (TGUT/Tend)4. By the way, S rec =

4γrecarecT 3
rec since the radiation only consists of photons without the inflaton, so that the usual Stefan-

Boltzmann law is used.
To perform the specific calculations, we choose the effective particle number at the electroweak

energy scale as gHC = gend = 106.75 and at the recombination era as grec = 2 [11]. The temperature of
CMB is known as TCMB = 2.725K, and the spectral index for k0 = 0.05Mpc−1 is ns = 0.9655±0.0062
from Planck 2015 [17, 18]. By solving the equation of Ntot = N0 + Nrad + Ninf , the range of Tend is,
finally, obtained as

2.409 × 1013 GeV ≤ Tend ≤ 2.216 × 1014 GeV, (16)

where this range lies below the well-known upper bound of the temperature of the universe to avoid
monopole proliferation [11] and above the lower bounds in Refs. [19–21]. In addition, the corre-
sponding energy density for radiation is consequently 2.852× 1056GeV4 ≤ ρend ≤ 1.291× 1060GeV4,
which is a sufficient radiation energy density to accommodate the GUT baryogenesis at the end of
inflation [22].
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4 Conclusion

Motivated by the non-zero initial radiation energy density in warm inflation scenario, we performed
thermodynamic analysis for the warm inflation model by using the definitions for the inflaton and
radiation energy density presented in Ref. [11]. And then we obtained the effective Stefan-Boltzmann
law to show that the zero radiation energy density (8) at the Grand Unification epoch just prior to
starting inflation became finite when inflation starts, which gives the adequate radiation energy density
for warm inflation. By using the effective Stefan-Boltzmann law for the radiation energy density, we
studied the number of e-folds and the spectral index of the scalar perturbation under the slow-roll
approximations in the power-law potential and damping terms, so that the temperature (16) at the
end of warm inflation was successfully calculated, and it satisfies the upper bound lower than the
GUT scale [11], and lower bound of the big bang nucleosynthesis [19, 20] by the CMB data [21].
Additionally, we confirmed that a sufficient radiation energy density could be produced for GUT
baryogenesis at the end of inflation [22].

As a matter of fact, we have assumed the simplest setting described by the perfect fluid and the
power law potential and the damping term as a toy model. The effective Stefan-Boltzmann law can
be applied to other models which have the non-vanishing trace, and it might give interesting results.
We hope that this issue will be elaborated in the near future.
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