
University of Huddersfield Repository

Jilani, Rabia, Crampton, Andrew, Kitchin, Diane E. and Vallati, Mauro

Automated Knowledge Engineering Tools in Planning: State-of-the-art and Future Challenges

Original Citation

Jilani, Rabia, Crampton, Andrew, Kitchin, Diane E. and Vallati, Mauro (2014) Automated 

Knowledge Engineering Tools in Planning: State-of-the-art and Future Challenges. In: Knowledge 

Engineering for Planning and Scheduling (KEPS) - part of ICAPS 2014, 21-26 June 2014, 

Portsmouth, NH, USA. (Unpublished) 

This version is available at http://eprints.hud.ac.uk/20380/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/20495293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Automated Knowledge Engineering Tools in Planning: State-of-the-art and Future
Challenges

Rabia Jilani and Andrew Crampton and Diane Kitchin and Mauro Vallati
School of Computing and Engineering

University of Huddersfield
United Kingdom

Abstract

Intelligent agents must have a model of the dynamics of the
domain in which they act. Models can be encoded by human
experts or, as required by autonomous systems, automatically
acquired from observation. At the state of the art, there exist
several systems for automated acquisition of planning domain
models.

In this paper we present a brief overview of the automated tools
that can be exploited to induce planning domain models. While
reviewing the literature on the existing tools for Knowledge
Engineering (KE), we do a comparative analysis of them. The
analysis is based on a set of criteria. The aim of the analysis
is to give insights into the strengths and weaknesses of the
considered systems, and to provide input for new, forthcoming
research on KE tools in order to address future challenges in
the automated KE area.

Introduction

Both knowledge acquisition and knowledge engineering for
AI planning systems are essential to improve their effective-
ness and to expand the application focus in practice. The im-
provement process includes the study of planning application
requirements, creating a model that explains the domain, and
testing it with suitable planning engines to get a final product
which consists of a domain model. Domain models can be en-
coded by human experts or automatically learned through the
observation of some existing plans (behaviours). Encoding a
domain model from observations is a very complex and time-
consuming task, even for domain experts. Various approaches
have been used to learn domain models from plans. This is of
increasing importance: domain independent planners are now
being used in a wide range of applications, but they should
be able to refine their knowledge of the world in order to be
exploited also in autonomous systems. Automated planners
require action models described using languages such as the
Planning Domain Definition Language (PDDL) (Mcdermott
et al. 1998).

There have been reviews of existing knowledge engineer-
ing tools and techniques for AI Planning (Vaquero, Silva, and
Beck 2011; Shah et al. 2013). Vaquero et al. (2011) provided
a review of tools and methods that address the challenges
encountered in each phase of a design process. Their work
covers all the steps of the design cycles, and is focused on
tools that can be exploited by human experts for encoding

domain models. Shah et al. (2013) explored the deployment
of automated planning to assist in the development of domain
models for different real-world applications.

Currently, there is no published comparison research on
KE tools for AI planning that automatically encode a domain
model from observing plan traces. In this paper, we compare
and analyse different state-of-the-art, automated KE tools
that automatically discover action models from a set of suc-
cessfully observed plans. Our special focus is to analyse the
design issues of automated KE systems, the extent of learn-
ing that can take place, the inputs that systems require and
the competency in the output domain model which systems
induce for dealing with complex real problems. We evalu-
ate nine different KE tools against the following criteria: (i)
Input Requirements (ii) Provided Output (iii) Language (iv)
Noise in Plans (v) Refinement (vi) Operational Efficiency
(vii) User Experience, and (viii) Availability. By evaluating
state-of-the-art tools we can gain insight into the quality and
efficiency of systems for encoding domain models, and better
understand the improvements needed in the design of future
supporting tools.

The rest of this paper is organised as follows. We first pro-
vide an overview of existing automated KE tools for support-
ing the task of encoding planning domain models. Then we
discuss the criteria that are used for comparing the different
encoding methods. Finally, we summarise some guidelines
for future tools.

The State of the Art

In this section we provide an overview of KE tools that can
be used for automatically producing planning domain models
from existing plans or sequences of actions.

Opmaker

Opmaker (McCluskey, Richardson, and Simpson 2002) is a
method for inducing primitive and hierarchical actions from
examples, in order to reduce the human time needed for
describing low level details related to operators’ pre- and
post-conditions.

Opmaker is an algorithm for inducing parameterized, hier-
archical operator descriptions from example sequences and
declarative domain knowledge (object hierarchy, object de-
scriptions, etc.)



Figure 1: A screen shot of Opmaker.

The user has to specify an action and identify associated
objects as being affected or unaffected by the action. The
system uses static domain knowledge, the initial and goal
states and a planning sequence as input. Using this knowl-
edge, it first deduces possible state-change pathways and then
uses them to induce the needed actions. These actions can
then be learned or regenerated and improved according to
requirement.

Opmaker extends GIPO, an integrated package for the con-
struction of domain models, using a graphical user interface
(Simpson, Kitchin, and McCluskey 2007). Figure 1 shows a
screen shot of the graphical user interface.

SLAF

The SLAF (Simultaneous Learning and Filtering) algo-
rithm (Shahaf and Amir 2006) learns action models in par-
tially observable domains. As inputs, SLAF includes specifi-
cations of fluents, as well as partial observations of interme-
diate states between action executions. The pre-conditions
and effects that this system generates in output includes im-
plicit objects and unspecified relationships between objects
through the use of action schema language.
As output the system learns action models (pre-conditions
and effects) that also include conditional effects through a
sequence of executed actions and partial observations. The ac-
tion schema from this algorithm can be used in deterministic
domains which involve many actions, relations and objects.
This algorithm uses a Direct Acyclic Graph representation of
the formula. The results from this algorithm can be used in
deterministic domains which involve many actions, relations
and objects.

ARMS

ARMS (Action-Relation Modelling System) (Yang, Wu, and
Jiang 2007) is a tool for learning action schema from ob-
served plans with partial information. It is a system for auto-
matically discovering action models from a set of observed
plans where the intermediate states are either unknown or
only partially known. To learn action schema, ARMS gathers

knowledge on the statistical distribution of frequent sets of
actions in the example plans. It then forms a weighted propo-
sitional satisfiability (weighted SAT) problem and resolves it
using a weighted MAX-SAT solver. ARMS operates in two
phases, where it first applies a frequent set mining algorithm
to find the frequent subsets of plans that share a common set
of parameters. It then applies a SAT algorithm for finding a
consistent assignment of preconditions and effects.

ARMS needs partial intermediate states in addition to ob-
served plan traces as input. The action model learnt from
ARMS is not guaranteed to be completely correct, as the
domain model induced is based on guesses with a minimal
logical action model. This is why it can only serve as an ad-
ditional component for the knowledge editors which provide
advice for human users, such as GIPO (Simpson, Kitchin, and
McCluskey 2007), and not as an independent, autonomous
agent.

Opmaker2

Opmaker2 (an extension of Opmaker) (McCluskey et al.
2009) is a knowledge acquisition and formulation tool, which
inputs a partial domain model and a training sequence, and
outputs a set of PDDL operator schema including heuristics
that can be used to make plan generation more efficient. It fol-
lows on from the original Opmaker idea. Its aims are similar
to systems such as ARMS in that it supports the automated
acquisition of a set of operator schema that can be used as
input to an automated planning engine. Opmaker2 determines
its own intermediate states of objects by tracking the chang-
ing states of each object in a training example sequence and
making use of partial domain knowledge provided with input.
Opmaker2 calls it the DetermineState procedure. The output
from DetermineState is a map of states for each object in the
example sequence. Parameterized operator schema are gener-
ated after applying the Opmaker algorithm for generalization
of object references collected from example sequences.

LOCM

LOCM (Learning Object Centred Models) (Cresswell, Mc-
Cluskey, and West 2013) is significantly different from other
systems that learn action schema from examples. It requires
only a set of valid plans as input to produce the required
action schema as output. Valid plans should be formatted in
a specific way; an example is given in Figure 2. LOCM is
based on the assumption that the output domain model can
be represented in an object-centred representation (Cresswell,
McCluskey, and West 2013). Using an object-centred repre-
sentation, LOCM outputs a set of parameterized Finite State
Machines (FSMs) where each FSM represents the behaviour
of each object in the learnt action schema. Such FSMs are
then exploited in order to identify pre- and post-conditions
of the domain operators. Although LOCM requires no back-
ground information, it usually requires many plan traces for
synthesizing meaningful domain models. Moreover, LOCM
is not able to automatically identify and encode static predi-
cates.



sequence task(1, [unstack(b8, b9),

stack(b8, b10), pick-up(b7), stack(b7,

b8), unstack(b9, b1), put-down(b9),

unstack(b1, b3), stack(b1, b9),

unstack(b3, b2), stack(b3, b6),

pick-up(b5), stack(b5, b3), unstack(b7,

b8), stack(b7, b2), unstack(b8, b10),

stack(b8, b7), pick-up(b10), stack(b10,

b5)], , ).

Figure 2: An example of a blocksworld plan formatted as
required by LOCM.

LOCM2

LOCM2 (Learning Object Centred Models 2) (Cresswell and
Gregory 2011) followed on from the LOCM idea. Experi-
ments have revealed that there are many examples that have
no model in the representation used by LOCM. A common
feature of domains which produce this issue is one where
objects can have multiple aspects of their behaviour, and so
they need multiple FSMs to represent each object’s behaviour.
LOCM2 generalizes the domain induction of LOCM by al-
lowing multiple parameterised state machines to represent
a single object, with each FSM characterised by a set of
transitions. This enables a varied range of domain models
to be fully learned. LOCM2 uses a transition-centred rep-
resentation instead of the state-centred representation used
by LOCM. The current LOCM and LOCM2 systems gather
only the dynamic properties of a planning domain and not
the static information. While domains used in planning also
depend on static information, research is being carried out to
fill that gap and make these systems able to induce both the
dynamic and the static parts of domain models.

LSO-NIO

The system LSO-NIO (Learning STRIPS Operators from
Noisy and Incomplete Observations) (Mourão et al. 2012)
has been designed for allowing an autonomous agent to ac-
quire domain models from its raw experience in the real
world. In such environments, the agent’s observation can be
noisy (incorrect actions) and incomplete (missing actions).
In order to acquire a complete STRIPS (Fikes and Nilsson
1972) domain model, the system requires a partial model,
which describes objects’ attributes and relations, and opera-
tors’ names.

LSO-NIO exploits a two-staged approach. As a first stage,
LSO-NIO learns action models by constructing a set of kernel
classifiers, which are able to deal with noise and partial ob-
servability. The resulting models are “implicit” in the learnt
parameters of the classifiers (Mourão, Petrick, and Steedman
2010). The implicit models act as a noise-free and fully ob-
servable source of information for the subsequent step, in
which explicit action rules are extracted. The final output
of LSO-NIO is a STRIPS domain model, ready to use for
domain-independent planners.

RIM

RIM (Refining Incomplete Planning Domain Models) (Zhuo,
Nguyen, and Kambhampati 2013) is a system designed for
situations where a planning agent has an incomplete model
which it needs to refine through learning. This method takes
as input an incomplete model (with missing pre-conditions
and effects in the actions), and a set of plans that are known
to be correct. By executing given plan traces and precon-
ditions/effects of the given incomplete model, it develops
constraints and uses a MAX-SAT framework for learning
the domain model (Zhuo et al. 2010). It outputs a “refined”
model that not only captures additional precondition/effect
knowledge about the given actions, but also “macro actions”.
A macro-action can be defined as a set of actions applied at
a single time, that can quickly reach a goal at less depth in
the search tree and thus problems which take a long time to
solve might become solvable quickly.

In the first phase, it looks for candidate macros found
from the plan traces, and in the second phase it learns pre-
condition/effect models both for the primitive actions and the
macro actions. Finally it uses the refined model to plan. The
running time of this system increases polynomially with the
number of input plan traces.

In the RIM paper the authors provide a comparison be-
tween RIM and ARMS by solving 50 different planning
problems; through action models, refined and induced by the
two systems. RIM uses both plans and incomplete domain
models to induce a complete domain model but ARMS uses
plans only, so to keep both systems’ output on the same scale,
RIM induces action models (used for comparison) based on
plan traces only.

Figure 3: Comparison between RIM and ARMS (Zhuo,
Nguyen, and Kambhampati 2013).

The average length of a plan is 18 when using action
models learnt by ARMS; while the average length of plans
(to the same problems as solved by ARMS) is 21. This is
when using preferences of macro-operators learnt by RIM.
Figure 3 shows a comparison of three different domains; the
correctness of RIM is better than ARMS, as RIM also learns
macro-operators and it uses macros to increase the accuracy
of plans generated with the refined system.

AMAN

AMAN (Action-Model Acquisition from Noisy plan traces)
(Zhuo and Kambhampati 2013) was designed to create do-
main models in situations where there is little or no possibil-



ity of collecting correct training data (plans). Usually, noisy
plan traces are easier and cheaper to collect. An action is
considered to be noisy if it is mistakenly observed.

AMAN works as follows. It builds a graphical model to
capture the relations between actions (in plan traces) and
states, and then learns the parameters of the graphical model.
After that, AMAN generates a set of action models according
to the learnt parameters. Specifically, AMAN first exploits
the observed noisy plan traces to predict correct plan traces
and the domain model based on the graphical model, and
then executes the correct plan traces to calculate the reward
of the predicted correct plan traces according to a predefined
reward function. Then, AMAN updates the predicted plan
traces and domain model based on the reward. It iteratively
performs the above-mentioned steps until a given number of
iterations is reached. Finally, the predicted domain model is
provided.

In the AMAN paper, a comparison of AMAN and ARMS
(Yang, Wu, and Jiang 2007) on noiseless inputs is provided.

Criteria for Evaluating Tools

We have identified several criteria that are useful for evalu-
ating the existing KE automated tools for inducing domain
models. Such criteria have been designed for investigating
the KE tools’ functionality from different perspectives: input,
output, efficiency, availability and usability.

Input Requirements:

What inputs are required by a system to refine/induce a par-
tial or full domain model? Input to the learning process could
be training plans, observations, constraints, initial and goal
states, predicates, and in some systems a partial domain
model (with missing pre-conditions and effects in the ac-
tions).

Provided Output:

What is the extent of learning that the system can do?

Language:

What language does the system support to produce the output
domain model? e.g. PDDL, STRIPS, and OCL etc.

Noise in Plans:

Is the tool able to deal with noise in plans? Noise in plans
can be either incomplete plan traces (i.e., missing actions) or
noisy actions. An action in a plan is considered to be noisy if
it is incorrectly observed.

Refinement:

Does the tool refine existing domain models or does it build
domain models from scratch?

Operational Efficiency:

How efficiently are the models produced? In general terms,
the efficiency of a system could be seen as the ratio between
input given to the system to do the learning process and the
output domain model that we get as a result of learning.

User Experience:

Is the system/tool designed for inexperienced/beginner level
planning users? Do users need to have a good knowledge of
the system output language?

Availability and Usage:

Is the system available for open use? Does the system provide
a user manual?

Tools Evaluation

In this section all the KE tools introduced in this paper are
evaluated against the outlined criteria. Table 1 shows an
overview of the comparison.

Inputs Requirements

The input to RIM, LOCM, LOCM2 and ARMS is a correct
sequence of actions (training data in the form of plan traces),
where each action in a plan is stated as a name and a list of
objects that the action refers to. For some domains which
require static knowledge, there is a need to mention static pre-
conditions for the domain to be learnt; as LOCM and LOCM2
cannot learn static aspects of the domain. RIM in addition to
a correct action sequence also requires an incomplete domain
model (with missing pre-conditions and effects in the actions)
as an input. ARMS makes use of background knowledge as
input, comprising types, relations and initial and goal states
to learn the domain model.

In comparison Opmaker2 learns from a single, valid exam-
ple plan but also requires a partial domain model (declarative
knowledge of objects hierarchy, descriptions, etc) as input.

AMAN and LSO-NIO, these systems learn from noisy
(incorrect actions) and incomplete (missing actions) observa-
tions of real-world domains. Just like Opmaker2, LSO-NIO
also requires a partial domain model, which describes objects
(and their attributes and relations) as well as the name of
the operators. The inputs to SLAF include specifications of
fluents, as well as partial observations of intermediate states
between action executions.

Provided Output

ARMS, Opmaker2, LOCM, LOCM2, LSO-NIO and RIM,
the output of these systems is a complete domain model. In
addition, LOCM also displays a graphical view of the finite
state machines, based on which the object behaviour in the
output model is learnt. To increase the efficiency of plans
generated, Opmaker2 also includes heuristics while RIM also
learns macro operators.

SLAF, as output the system learns an action model (pre-
conditions and effects) that also includes conditional effects
through a sequence of executed actions and partial observa-
tions.

Given a set of noisy action plans, AMAN generates multi-
ple (candidate) domain models. To capture domain physics it
produces a graphical model and learns its parameters.



Language

The domain model (also called domain description or action
model) is the description of the objects, structure, states, goals
and dynamics of the domain of planning (McCluskey et al.
2009).

LOCM, LOCM2 and ARMS are able to provide a PDDL
domain model representation. RIM, AMAN and LSO-NIO
can handle the STRIPS subset of PDDL. Opmaker and
Opmaker2 use a higher level language called Object Cen-
tred Language (OCL) (McCluskey, Liu, and Simpson 2003;
McCluskey and Porteous 1997) for domain modelling. Their
output is an OCL domain model, but Opmaker can exploit
the GIPO tool to translate the generated models into PDDL.
Finally, SLAF System is able to exploit several languages
to represent action schemas; starting from the most basic
language SL, and then there is SL-V and SL-H (Shahaf and
Amir 2006). Such languages are not usually supported by
domain-independent planners.

Noise in Plans

Most of the existing KE tools require valid plans. AMAN
and LSO-NIO are the systems that can deal with noisy plan
traces. Moreover, LSO-NIO is also able to handle incomplete
plan traces. On the other hand, also LAMP (Zhuo et al. 2010),
on which RIM is based, is able to exploit partial plan traces,
in which some actions are missing.

Refinement

Most existing work on learning planning models learns a
complete new domain model. The only tool among all those
reviewed in the paper that is able to refine an existing domain
model is RIM. RIM takes in correct plan traces as well as
an incomplete domain model (with missing pre-conditions
and effects in the actions), to refine it by capturing required
pre-condition/effects.

On the other hand, since Opmaker, Opmaker2, LSO-NIO
and SLAF require as input part of the domain knowledge, to
some extent they are actually refining the provided knowl-
edge.

Operational Efficiency

The efficiency of a system could be seen as the ratio between
the input given to the system for the learning process and the
output domain model we get as a result of learning. As shown
in the review of the considered tools, all systems have differ-
ent and useful motivations behind their development. Given
their relevant features of input requirements and learning
extent, we can say that the system needing the least input as-
sistance and which induces the most complete domain model
is the most efficient one. On such a scale the AMAN, LOCM
and LOCM2 approaches have the best performance. In order
to provide a complete domain model they require only some
plan traces (sequence of actions). Based on strong assump-
tions they output the solver-ready domain model. Similarly
ARMS, though requiring richer inputs, outputs a solution
which is optimal; in that it checks error and redundancy rates
in the domain model and reduces them. In contrast Opmaker2
learns from a single example together with a partial domain

model, and for output it not only produces a domain model,
but also includes heuristics that can be used to make plan
generation through the domain model more efficient.

User Experience

By experience we mean to evaluate how far the system/tool
is designed for use by inexperienced/beginner level planning
users. Most of these systems are built with the motivation
to open up planning engines to general use. Opmaker is
incorporated into GIPO as an action induction system, as
GIPO is an integrated package for the construction of domain
models in the form of a graphical user interface. It is used
both as a research platform and in education. It has been used
to support the teaching of artificial intelligence (AI) planning
to students with a low-experience level (Simpson, Kitchin,
and McCluskey 2007).

The other systems are being used as standalone systems,
they do not provide a GUI, and require the guidance of plan-
ning experts for usage. Certain systems also require separate
formats for providing inputs, e.g., LOCM requires input plan
traces in Prolog while many major planning engines use
PDDL as a planning language. So the conversion from PDDL
to Prolog is a time consuming task and requires experienced
users.

Availability and Usage

Very few systems are available on-line and open to download
and practice. No systems provide documentation that make
usage easy for beginners - except GIPO (Opmaker).

Guidelines and Recommendations

We will now discuss the guidelines and recommendations
that we have derived from our review and assessment of the
nine different state-of-the-art automated KE tools.
To create or refine an already existing domain model requires
many plan examples and sometimes other inputs such as full
or partial knowledge about predicates, initial, intermediate
and goal states, and sometimes a partial domain model. One
major concern at this stage is the way plan traces can be
collected. There are three general ways to collect example
plans. The first is when plans are generated through goal ori-
ented solutions, the second through random walks and thirdly
through observation of the environment by a human or by an
agent. Goal oriented plan solutions are generally expensive in
that a tool or a planner is needed to generate a large enough
number of correct plans to be used by the system. To do this
one must also have a pre-existing domain model. Observation
by an agent has a high chance that noise will be introduced
in the plan collection; which can clearly affect the learning
process. Currently most working systems assume the input
knowledge to be correct and consequently not suitable for
real-world applications. To increase potential utility, systems
should be able to show equal robustness to noise.
Another issue is the expressiveness of the output domain
model. Observing the output of the current automated learn-
ing systems, there is a need to extend their development so
that they can also learn metric domains that include durative
actions, action costs and other resources. In other words, the



Criteria AMAN ARMS LOCM LOCM2 LSO-NIO Opmaker Opmaker2 RIM SLAF

Inputs NP BK,P P P PDM,NP PDM,P PDM,P PDM,P Pr,IS

Outputs DM DM DM DM DM DM DM,H RDM DM

Language STRIPS PDDL PDDL PDDL STRIPS OCL OCL STRIPS SL

Noise + − − − + − − − −

Refinement − − − − − − − + −

Efficiency + i + + i − i − −

Experience − − − − − + + − −

Availability − − − − − − − − −

Table 1: Comparison of KE Tools. P: Plan traces; BK: Background Knowledge; PDM: Partial Domain Model; Pr: Predicates; IS:
Intermediate States; NP: Noisy Plans; DM: Domain Model; RDM: Refined Domain Model; H: Heuristics. Where available, +, i
(intermediate) or − give a qualitative evaluation w.r.t. the corresponding metric.

systems should broaden the scope of domain model genera-
tion to produce more expressive versions of PDDL that can
be applied to a greater range of real-world problems.
Systems which learn only from plan traces could make the
output domain model more intelligible and useful by assign-
ing meaningful names to all learnt fluents/predicates.
To enhance the potential utility of the induced domain in the
real-world, error and redundancy checks should be performed
in order to enhance the effectiveness of plans generated by
planning engines using these domains.
To make learning systems more accessible and open to use
by research students and the scientific community, these sys-
tems should be available on-line, and include a GUI and user
manual for ease of use by non-planning experts. A significant
extension would be to create a consistent interface across all
systems for specifying inputs. Having to convert PDDL plans
into Prolog, for example, is likely to inhibit the uptake of
automated KE tools by non-experts rather than encourage it.

Conclusion

In order to encourage the exploitation of Automated Planning
in autonomous systems, techniques for the automatic acquisi-
tion of domain models are of fundamental importance. Pro-
viding robust and expressive automated KE tools for domain
model acquisition, that can be easily used by non-planning
experts, will better promote the application of planning in
real-world environments; particularly in applications where
the actual domain model is unclear and/or too complex to
design manually.

In this paper we have presented the state-of-the-art of
Knowledge Engineering tools for the automatic acquisition
of planning domain models. We proposed and used a set of
criteria consisting of: input requirements, output, efficiency,
supported language, ability to handle noisy plans, ability to
refine existing models, user experience and availability. We
observed that different tools require very different inputs
and, usually, are designed for experienced users. We high-
lighted the weaknesses of existing methods and tools and we
discussed the need for PDDL-inspired development in the
design of future tool support.

Future work will include an experimental comparison,
based on a case-study. We are also interested in improving
existing KE tools for overcoming the major weaknesses that

this review has highlighted.

References

Cresswell, S., and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In Proceedings of The
21th International Conference on Automated Planning &
Scheduling (ICAPS-11).

Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using locm. The Knowl-
edge Engineering Review 28(02):195–213.

Fikes, R. E., and Nilsson, N. J. 1972. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3):189–208.

McCluskey, T. L., and Porteous, J. M. 1997. Engineering
and compiling planning domain models to promote validity
and efficiency. Artificial Intelligence 95(1):1–65.

McCluskey, T. L.; Cresswell, S.; Richardson, N. E.; and West,
M. M. 2009. Automated acquisition of action knowledge.

McCluskey, T.; Liu, D.; and Simpson, R. M. 2003. Gipo
ii: Htn planning in a tool-supported knowledge engineering
environment. In Proceedings of the Thirteenth International
Conference on Automated Planning and Scheduling (ICAPS
2003), volume 3, 92–101.

McCluskey, T. L.; Richardson, N. E.; and Simpson, R. M.
2002. An interactive method for inducing operator descrip-
tions. In Proceedings of the Sixth International Conference
on Artificial Intelligence Planning Systems, 121–130.

Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. Technical report,
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.

Mourão, K.; Zettlemoyer, L. S.; Mark, R. P.; and Steedman.
2012. Learning strips operators from noisy and incomplete
observations. In Proceedings of the Twenty Eighth Con-
ference on Uncertainty in Artificial Intelligence (UAI-12),
614–623.

Mourão, K.; Petrick, R. P. A.; and Steedman, M. 2010.
Learning action effects in partially observable domains. In
Proceedings of the 19th European Conference on Artificial
Intelligence (ECAI-10), 973–974.



Shah, M.; Chrpa, L.; Jimoh, F.; Kitchin, D.; McCluskey, T.;
Parkinson, S.; and Vallati, M. 2013. Knowledge engineer-
ing tools in planning: State-of-the-art and future challenges.
Knowledge Engineering for Planning and Scheduling 53.

Shahaf, D., and Amir, E. 2006. Learning partially observable
action schemas. In The Twenty-First National Conference
on Artificial Intelligence and the Eighteenth Innovative Ap-
plications of Artificial Intelligence Conference (AAAI-06),
volume 21, 913. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999.

Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. 2007.
Planning domain definition using gipo. The Knowledge En-
gineering Review 22(02):117–134.

Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2011. A brief
review of tools and methods for knowledge engineering for
planning & scheduling. In Proceedings of the Knowledge
Engineering for Planning and Scheduling workshop – The
21th International Conference on Automated Planning &
Scheduling (ICAPS-11).

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted max-sat. Artificial
Intelligence 171(2-3):107–143.

Zhuo, H. H., and Kambhampati, S. 2013. Action-model
acquisition from noisy plan traces. In Proceedings of the
Twenty-Third International Joint Conference on Artificial
Intelligence (IJCAI-13), 2444–2450. AAAI Press.

Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence 174(18):1540 – 1569.

Zhuo, H. H.; Nguyen, T.; and Kambhampati, S. 2013. Refin-
ing incomplete planning domain models through plan traces.
In Proceedings of the Twenty-Third International Joint Con-
ference on Artificial Intelligence, 2451–2457. AAAI Press.


